
Real-Time 3D Shape Reconstruction,

Dynamic 3D Mesh Deformation,

and High Fidelity Visualization

for 3D Video

T. Matsuyama, X. Wu, T. Takai, and S. Nobuhara

Graduate School of Informatics, Kyoto University
Sakyo, Kyoto, 606-8501, Japan

Abstract

3D video[1] is the ultimate image media recording dynamic visual events in the
real world as is; it records time varying 3D object shape with high fidelity surface
properties (i.e. color and texture). Its applications cover wide varieties of personal
and social human activities: entertainment (e.g. 3D game and 3D TV), education
(e.g. 3D animal picture books), sports (e.g. sport performance analysis), medicine
(e.g. 3D surgery monitoring), culture (e.g. 3D archive of traditional dances) and so
on. In this paper, we propose: 1. a PC cluster system for real-time reconstruction
of dynamic 3D object action from multi-view video images, 2. a deformable 3D
mesh model for reconstructing the accurate dynamic 3D object shape, and 3. an
algorithm of rendering natural-looking texture on the 3D object surface from the
multi-view video images. Experimental results with quantitative performance eval-
uations demonstrate the effectiveness of these methods in generating high fidelity
3D video from multi-view video images.

Key words: Dynamic 3D Shape Reconstruction, Real-Time Processing, PC
Cluster, Multi-Viewpoint Video, Deformable Mesh Model, Video Texture Mapping

1 Introduction

3D video[1][4] is the ultimate image media recording dynamic visual events in
the real world as is; it records time varying 3D object shape with high fidelity

This paper addresses a comprehensive report of our research activities on 3D video.
Earlier versions of sections 3.1, 4, and 5.2 were reported in [2] and [3].

Preprint submitted to Elsevier Science 17 March 2004

surface properties (i.e. color and texture). Its applications cover wide varieties
of personal and social human activities: entertainment (e.g. 3D game and 3D
TV), education (e.g. 3D animal picture books), sports (e.g. sport performance
analysis), medicine (e.g. 3D surgery monitoring), culture (e.g. 3D archive of
traditional dances) and so on.

Several research groups developed real-time 3D shape reconstruction systems
for 3D video and have opened up the new world of image media [1] [5] [6] [7]
[8] [9]. All these systems focus on capturing human body actions and share a
group of distributed video cameras for real-time synchronized multi-viewpoint
action observation. While the real-timeness of the earlier systems[1] [5] was
confined to the synchronized multi-view video observation alone, the parallel
volume intersection on a PC cluster has enabled the real-time full 3D shape
reconstruction [6] [7] [8] [10].

To cultivate the 3D video world and make it usable in everyday life, we have
to solve the following technical problems:

• Computation Speed: We have to develop both faster machines and algo-
rithms, because near frame-rate 3D shape reconstruction has been attained
only in coarse resolution.

• High Fidelity: To obtain high fidelity 3D video in the same quality as ordi-
nary video images, we have to develop high fidelity texture mapping meth-
ods as well as increase the resolution.

• Wide Area Observation: 3D areas observable by the systems developed so
far are confined to small ones (e.g. about 2m×2m×2m in [6]), which should
be extended considerably to capture human actions like sports playing.

• Data Compression: Since naive data representation of 3D video results in
huge data, effective compression methods are required to store and transmit
3D video data[11].

• Editing and Visualization: Since editing and visualization of 3D video are
conducted in the 4D space (3D geometric + 1D temporal), we have to
develop human-friendly 3D video editors and visualizers that help a user to
understand dynamic events in the 4D space[12].

This paper first describes a PC cluster system for reconstructing dynamic 3D
object action from multi-view video images, by which a temporal series of
3D voxel representations of the object action can be obtained in real-time.
Following an overview of our earlier system[6][12][2], we propose a new plane-
based volume intersection method for real-time active 3D action reconstruc-
tion. Then, we present a deformable 3D mesh model for reconstructing the
accurate dynamic 3D object shape. With this deformation, we can reconstruct
even concave parts of the 3D object, which cannot be managed by the volume
intersection. The last part of the paper describes an algorithm of rendering
video texture on the reconstructed dynamic 3D object surface and evaluates

2

Myrinet

Fig. 1. PC cluster for real-time active 3D object shape reconstruction.

its performance using 3D mesh data with and without the deformation. Ex-
perimental results with quantitative performance evaluations demonstrate the
effectiveness of these methods in generating high fidelity 3D video from multi-
view video images.

2 Basic Scheme of 3D Video Generation

Figure 1 illustrates the architecture of our real-time active 3D object shape
reconstruction system. Based on the experiences obtained using the first gen-
eration system with 16 PCs and 12 off-the-shelf NTSC active cameras [6][12],
we developed the second generation system. It consists of

• PC cluster: 30 node PCs (dual Pentium III 1GHz) are connected through
Myrinet, an ultra high speed network (full duplex 1.28Gbps). PM library
for Myrinet PC clusters[13] allows very low latency and high speed data
transfer, based on which we can implement efficient parallel processing on
the PC cluster.

• Distributed active video cameras: Among 30, 25 PCs have Fixed-Viewpoint
Pan-Tilt (FV-PT) cameras[14], respectively, for active object tracking and
image capturing. We newly developed a FV-PT camera module, where the
projection center stays fixed irrespectively of any camera rotations, which
greatly facilitates real-time active object tracking and 3D shape reconstruc-
tion. Moreover, digital IEEE 1394 video cameras are employed to enhance
video quality (image size: 640 × 480).

• Camera layout: As will be discussed in Section 3.2.3, the cameras are placed
on the floor as well as at the ceiling to capture fully surrounding views of
an object, while the first generation system employed ceiling cameras alone.

3

Voxel data

Marching Cubes

Method
Texture Mapping

Patch data

3D video

......

......

Volume Intersection

Silhouette Extraction

Fig. 2. 3D video generation process

Figure 2 illustrates the basic process of generating a 3D video frame in our
system:

(1) Synchronized Multi-View Image Acquisition: A set of multi-view
object images are taken simultaneously by a group of distributed video
cameras (top row in Figure 2).

(2) Silhouette Extraction: Background subtraction is applied to each cap-
tured image to generate a set of multi-view object silhouettes (second top
row in Figure 2).

(3) Silhouette Volume Intersection: Each silhouette is back-projected
into the common 3D space to generate a visual cone encasing the 3D
object. Then, such 3D cones are intersected with each other to generate
the voxel representation of the object shape (third bottom in Figure 2).

(4) Surface Shape Computation: The discrete marching cubes method[15]
is applied to convert the voxel representation to the surface patch repre-
sentation. Then the generated 3D mesh is deformed to obtain accurate
3D object shape(second bottom in Figure 2).

(5) Texture Mapping: Color and texture on each patch are computed from
the observed multi-view images (bottom in Figure 2).

4

By repeating the above process for each video frame, we have a live 3D motion
picture.

In the following sections, we describe our real-time 3D shape reconstruction
system, deformable mesh model, and high fidelity video texture mapping al-
gorithm.

3 Real-Time Dynamic 3D Object Shape Reconstruction System

This section proposes a real-time dynamic 3D object shape reconstruction
system using the PC cluster in Figure 1.

Here we classify the 3D shape reconstruction into the following two levels:

• Level 1: Real-time 3D shape reconstruction without camera actions.
• Level 2: Real-time 3D shape reconstruction with camera actions for track-

ing a moving object.

For the level one, we give an overview of our earlier system: the plane-based
parallel pipeline volume intersection method[6][12][2].

For the level two, i.e. active 3D shape reconstruction of a moving object, we
augment the plane-based volume intersection method so that it can cope with
dynamic camera actions for tracking a moving object.

3.1 Real-Time 3D Shape Reconstruction without Camera Actions

3.1.1 Parallel Pipeline Plane-Based Volume Intersection Method

Silhouette Volume Intersection [16] [17] [18] [19] [20] [21] [22] [23] is the most
popular method for reconstructing 3D object shape from multi-view images
(Figure 3). This method is based on the silhouette constraint that a 3D ob-
ject is encased in the 3D frustum produced by back-projecting a 2D object
silhouette on an image plane. With multi-view object images, therefore, an
approximation of the 3D object shape can be obtained by intersecting such
frusta. This approximation is called visual hull [24]. Recently, this method was
further extended using photometric information to reconstruct more accurate
shapes [25].

In the naive volume intersection method, the 3D space is partitioned into
small voxels (Figure 4(a)), and each voxel is mapped onto each image plane to
examine whether or not it is included in the object silhouette. This voxel-wise

5

Silhouette
on Image PlaneCamera A

Camera B

Intersection

Reconstructing space

Object

Fig. 3. Silhouette volume intersection.

���

���

���

�

	

�

���

���

���

�

	

�

(a) (b)

Fig. 4. 3D shape representations: (a) 3D voxel space, (b) parallel plane space.

11

22

Base Slice

Base Silhouette

Fig. 5. Plane-based volume intersection method

perspective projection process requires very expensive computation. Borovikov
and Davis[7] introduced an octree to represent the 3D voxel space and pro-
posed an efficient projection method.

To accelerate the computation, we proposed the following method in [6]:

1. Plane-Based Volume Intersection method : the 3D voxel space is par-
titioned into a group of parallel planes (Figure 4(b)) and the cross-section
of the 3D object volume on each plane is reconstructed (Figure 5):
(1) Project the object silhouette observed by each camera onto a common

base plane (Figure 5 left, 1©).
(2) Project each base plane silhouette onto the other parallel planes (Figure

5 left, 2©).

6

B

A

C

o

o

P

P

C

A B
B C

CA

A C B C

Fig. 6. Linearized PPPP algorithm

(3) Compute 2D intersection of all silhouettes projected on each plane (Fig-
ure 5 right).

2. Linearized Plane-to-Plane Perspective Projection(LPPPP) algorithm
: Figure 6 illustrates the algorithm. Suppose we want to map a silhouette on
plane A onto B. A

⋂
B denotes the intersection line between the planes and

O the center of perspective projection. Let P denote the line that is parallel
to A

⋂
B and passing O. Then, take any plane including P (C in Figure 6),

the image data on the intersection line A
⋂

C is projected onto B
⋂

C. As
shown in the right part of Figure 6, this linear (i.e. line-based) perspective
projection can be computed just by scaling operation. By rotation plane C
around line P , we can map full 2D image on A onto B.

Note that when A and B are parallel (i.e. in the case (2) above), the
projection between them is simplified to 2D isotropic scaling and translation.
That is, once we have a base plane silhouette, we can efficiently project it
onto the other slice planes just by 2D binary image processing: Plane-Wise
Plane-to-Plane Perspective Projection.

3. Parallel Pipeline Processing on a PC cluster system : Figure 7 il-
lustrates the processing flow of the parallel pipeline 3D shape reconstruc-
tion. It consists of the following five stages:
(1) Image Capture : Triggered by a capturing command, each PC with a

camera captures a video frame (Figure 7 top row).
(2) Silhouette Extraction : Each PC with a camera extracts an object sil-

houette from the video frame (SIP in Figure 7).
(3) Projection to the Base-Plane : Each PC with a camera projects the

silhouette onto the common base-plane in the 3D space (BPP in Figure
7).

(4) Base-Plane Silhouette Duplication : All base-plane silhouettes are du-
plicated across all PCs over the network so that each PC has the full
set of all base-plane silhouettes (Communication in Figure 7). Note that
the data are distributed over all PCs (i.e. with and without cameras)
in the system.

7

Communication

Silhouette
Image

Base Plane
Silhouette
Image

Final Result

node1 node2 node3

Captured
Image

Silhouette
on a slice

Loop Loop Loop

Object Area
on a slice

SIP

PPP

BPP

INT

SIP SIP

BPPBPP

PPP PPP

INT INT

Fig. 7. Processing flow of the parallel pipelined 3D shape reconstruction.

(5) Object Cross Section Computation : Each PC computes object cross
sections on specified parallel planes in parallel (PPP and INT in Figure
7).

In addition to the above parallel processing, we introduced a pipeline
processing on each PC: 5 stages (corresponding to the 5 steps above) for PC
with a camera and 2 stages (the steps 4 and 5) for PC without a camera. In
this pipeline processing, each stage is implemented as a concurrent process
and processes data independently of the other stages.

3.1.2 Performance Evaluation

To analyze in detail the performance of the real-time 3D volume reconstruction
system, we used 6 digital IEEE1394 cameras placed at the ceiling for captur-
ing multi-view video data of a dancing human (like in Figure 1). A hardware
synchronization module was employed to capture synchronized multi-view ob-
ject images. The size of input image is 640× 480 pixels and we measured the
time taken to reconstruct one 3D shape in the voxel size of 2cm× 2cm× 2cm
contained in a space of 2m × 2m × 2m.

In the first experiment, we analyzed processing time spent at each pipeline
stage by using 6 - 10 PCs for computation. Figure 8 shows the average com-
putation time 1 spent at each pipeline stage. Note that the image capturing

1 For each stage, we calculated the average computation time of 100 video frames

8

Fig. 8. Average computation time for each pipeline stage.

stage is not taken into account in this experiment.

From this figure, we can observe the followings:

• The computation time for the Projection to the Base-Plane stage is about
18ms, which proves the LPPPP algorithm is very efficient.

• With 6 PCs (i.e. with no PCs without cameras), the bottleneck for real-
time 3D shape reconstruction rests at the Object Cross Section Computation
stage, since this stage consumes the longest computation time (i.e. about
40ms).

• By increasing the number of PCs, the time taken at that most expensive
stage decreases considerably (i.e. well below 30ms). This proves the proposed
parallelization method is effective. Note that while the time spent at the
Base-Plane Silhouette Duplication stage increases as the number of PCs is
increased, it stays well below 30ms.

• With more than 8 PCs, we can realize real-time (video-rate) 3D shape re-
construction.

In the second experiment, we measured the total throughput of the system
including the image capturing process by changing the numbers of cameras
and PCs. Figure 9 shows the throughput 2 to reconstruct one 3D shape. We
observe that while the throughput is improved by increasing PCs, it saturates
at a constant value in all cases: 80 ∼ 90ms.

Since as was proved in the first experiment, the throughput of the pipelined
computation itself is about 30ms, the elongated overall throughput is due to
the speed of Image Capture stage. That is, although a camera itself can capture
images at a rate of 30 fps individually, the synchronization reduces its frame

on each PC. The time shown in the graph is the average time for all PCs.
2 The time shown in the graph is the average throughput for 100 frames.

9

Fig. 9. Computation time for reconstructing one 3D shape.

rate down into half. This is because the external trigger for synchronization is
not synchronized with the internal hardware cycle of the camera.

In summary, the experiments proved the effectiveness of the proposed real-time
3D shape reconstruction system: the plane-based volume intersection method,
the LPPPP algorithm, and the parallel pipeline implementation. Moreover, the
proposed parallel processing method is flexible enough to scale up the system
by increasing numbers of cameras and PCs. To realize video-rate 3D shape
reconstruction, we have to develop sophisticated video capturing hardwares.

3.2 Real-Time 3D Shape Reconstruction with Camera Actions

While not noted explicitly so far, the plane-based volume intersection method
we proposed can exhibit a serious problem: when the optical axis of a camera
is nearly parallel to the base plane, the size of the projected silhouette becomes
very huge, which damages the computational efficiency. In the worst case, i.e.
when the optical axis becomes parallel to the base plane, the projection cannot
be computed and the method breaks down.

In the case of static camera arrangements, it is possible to select the base
plane so that the worst case can be avoided. But the question of which base
plane is optimal for computation remains open. In the case of dynamic cam-
era arrangements, we have to extend the method to keep the computational
efficiency as well as avoid the worst case.

Here we first analyze how the computational cost changes depending on the
base plane selection and then propose an augmented plane-based volume in-
tersection method for active cameras.

10

S

B

Fig. 10. Projection from an input image screen to the base plane

3.2.1 Optimal Base Plane Selection

Suppose an observed object silhouette on an input image screen S is repre-
sented as a circle of radius r, which is projected onto the base plane B as an
ellipse (Figure 10). Let θ, f , l denote the dihedral angle between B and S,
focal length, and the distance from the projection center to B respectively.
The area size s of the projected silhouette becomes:

s = πr2 ·R(θ, f, l), (1)

where R(θ, f, l) =
l2

f 2 cos θ
.

Thus, the projected silhouette is expanded in the ratio of R(θ, f, l). Figure
11 shows the graph of R for θ ∈ [0, π/2). It is clear that R is monotonically
increasing with θ and diverges to infinity at θ = π/2, which corresponds to
the worst case.

In the case of a static arrangement of n cameras, let {f1, f2, . . . , fn}, {v1,v2, . . . ,vn}
and {p1,p2, . . . ,pn} denote the focal lengths, view directions and positions of
the cameras respectively. The base plane can be represented by its normal vec-
tor D = (Dx, Dy, Dz)

t from the origin of the world coordinate system. Given
the base plane, θi and li for each camera can be calculated from vi, pi and
D. Let {a1, a2, . . . , an} denote the area sizes of object silhouettes observed
by the cameras. From equation (1), the area size of each projected silhouette
becomes:

si = ai ·Ri = ai · l2i
f 2

i cos θi

(2)

So the optimal selection of the base plane can be achieved by solving

D = argmin
n∑

i=1

si. (3)

11

0 0.2 0.4 sin−1(
√

3/3)0.8 1 1.2 1.4 π/2

R

l2

f 2

θ

Fig. 11. Size ratio between the projected silhouette and the observed silhouette

Note firstly that it is hard to solve this problem analytically, because we cannot
represent {a1, a2, . . . , an} in analytical forms. Moreover, since {a1, a2, . . . , an}
change dynamically depending on the object action, the optimal base plane
selection should be done frame by frame, which introduces a large overhead.
Note also that if we changed the base plane frame by frame, we would have to
map each reconstructed 3D volume to a common coordinate system since the
3D volume is represented in such coordinate system that is defined by the base
plane. This coordinate transformation would also introduce a large overhead.

3.2.2 3-Base-Plane Volume Intersection Method

Considering the above discussions, we augment the plane-based volume inter-
section as follows:

(1) Let P(t) denote the rectangular parallelepiped encasing the 3D object
at t, whose three faces are parallel to x − y, y − z, andz − x planes of
the world coordinate system. Let P(t) = (xP(t), yP(t), zP(t))t denote the
centroid of P(t) and lx(t), ly(t), lz(t) the side lengths of P(t). Note that
since we do not know the exact 3D object shape at t, the bounding box
P(t) should be estimated based on the object motion history before t.

(2) Define as the 3 base planes at t those planes whose normal vectors are

defined by Dx(t) = (xP(t), 0, 0)t, Dy(t) = (0, yP(t), 0)t, and Dz(t) =

(0, 0, zP(t))t. Thus we have 3 mutually orthogonal base planes intersect-

ing at P(t) = (xP(t), yP(t), zP(t))t.
(3) For each camera, calculate the angles between the camera direction and

each of {Dx(t),Dy(t),Dz(t)}. Let { {θ1Dx(t)
, θ1Dy(t)

, θ1Dz(t)
} , {θ2Dx(t)

, θ2Dy(t)
, θ2Dz(t)

}

12

, . . . , {θnDx(t)
, θnDy(t)

, θnDz(t)
} } denote such angles.

(4) Select the base plane Bi(t) for ith camera at t as:

Bi(t) =



Dx(t), if θiDx(t)
= min(θiDx(t)

, θiDy(t)
, θiDz(t)

)

Dy(t), if θiDy(t)
= min(θiDx(t)

, θiDy(t)
, θiDz(t)

)

Dz(t), if θiDz(t)
= min(θiDx(t)

, θiDy(t)
, θiDz(t)

)

(4)

(5) By the above base plane selection, a set of cameras are partitioned into
3 groups: cameras in each group share the same base plane.

(6) Suppose Dx(t) is selected as the base plane for ith camera. Then, compute
the silhouette of P(t) on the base plane by projecting the vertices of
P(t) onto Dx(t). Allocate a 2D array for storing the base plane object
silhouette so that the array encases the projected silhouette of P(t).

(7) Apply the Linearized Plane-to-Plane Perspective Projection to generate
the base plane object silhouette for ith camera.

(8) To compute object silhouettes on the other parallel planes, first decom-
pose the volume of P(t) into the set of slices parallel to the base plane
Dx(t). Let denote such slices as

Vx(t) = {SDx1
(t),SDx2

(t), . . . ,SDxnx
(t)},

where nx stands for the number of the slices, which can be determined by
the required spatial resolution. Note that the size of the arrays to store
silhouette data on the slices is determined by P(t): that is, each array
stands for a cross section of P(t).

(9) Project the base object silhouettes on Dx(t) onto each slice in Vx(t) by
the Plane-wise Plane-to-Plane Perspective Projection. Note that since
each slice is bounded, it is enough to compute a projected silhouette in
such clipped area.

(10) Apply the same processing for those cameras whose base planes coincide
with Dx(t) and intersect projected silhouettes on each slice in Vx(t).
Then, we have a partial 3D object shape computed based on one of the
3 base planes, i.e. Dx(t).

(11) By conducting the same processing for Dy(t) and Dz(t), we have three
partial 3D object shapes, which then are intersected to generate the com-
plete 3D object shape at t.

With this 3-base-plane volume intersection method, since Dx(t)⊥Dy(t)⊥Dz(t),

min(θiDx(t)
, θiDy(t)

, θiDz(t)
)) ≤ sin−1(

√
3/3). (5)

This means that from equation (1), the area size of a projected object sil-

houette is bounded by

√
6

2
· li(t)

2

f 2
i

ai(t)(Figure 11). That is, by this extension,

13

YZ XZ XY

Camera 1 14.15 51.01 35.43

Camera 2 57.60 24.61 19.70

Camera 3 43.89 39.86 20.78

Camera 4 12.84 54.63 32.31

Camera 5 13.95 53.24 33.20

Camera 6 27.35 62.38 3.51

Camera 7 35.82 54.06 2.51

Camera 8 69.22 20.55 2.91

Camera 9 84.49 5.45 0.76
Table 1
View directions of the cameras: Angles with YZ, XZ, and XY planes[DEG]

not only the worst case can be avoided, but also we can estimate the upper
bound of the computational cost, which is very important for the design of
the real-time active 3D shape reconstruction.

Note also that

• For each active camera, its corresponding base plane is changed dynamically
according to the selection rule in equation (4).

• Such dynamic selection of the base plane does not introduce any significant
overhead since the directions of the 3 base planes are fixed.

• By introducing the (estimated) bounding box of the object and making the
3 base planes parallel to the faces of the box, we can confine the sizes of both
the base plane silhouette images and the silhouette images on the parallel
slices, as well as their locations. This greatly facilitates the computation
required in the plane-based volume intersection method.

• While their locations are changed dynamically, the 3 base planes are parallel
to the world coordinate system, we can easily trace and compare a temporal
sequence of reconstructed 3D volumes.

3.2.3 Performance Evaluation

To evaluate the performance of the 3-base-plane volume intersection method,
we compared it with the original plane-based volume intersection method.
Figure 12 shows the camera layout and Table 1 the angles between the view
directions of the cameras and YZ, XZ, and XY planes. While the cameras in
this experiment are fixed, a human changed his poses as illustrated in Figure
13.

14

Fig. 12. Camera Layout

pose1 pose2 pose3 pose4 pose5

Fig. 13. 5 different poses

Then, we measured the computation time to project a captured object silhou-
ette onto the base plane by a PC controlling each camera: i.e. the time spent
at the Projection to the Base-Plane stage. Figure 14 compares the computa-
tion times by the original plane-based and 3-base-plane volume intersection
methods. From this result, we observe

• In all poses, since the view directions of cameras 6, 7, 8, and 9 are nearly
parallel to the XY plane, the original base-plane projection method broke
down when their object silhouettes were projected onto the XY plane. Note
that in the experiments described in section 3.1.2, all cameras were placed
at the ceiling and looking downward as illustrated in Figure 1, by which the
break down was avoided.

• For cameras 1, 2, 3, 4, and 5, the computation times by the original base-
plane projection method varied depending the poses of a human and the
view angles of the cameras. This variation incurs a serious computational
problem in realizing real-time processing; the pipeline is clogged depending
on human actions.

• The 3-base-plane method never broke down and was very efficient. More-
over, while its computation time varied depending on the human poses and
the view angles of the cameras, its variation was small enough. Note that
since we used 1cm voxel resolution for the experiments to make clear the
computational efficiency, the net computation time exceeded 30msec; we

15

pose1 pose2

pose3 pose4

pose5

Fig. 14. Computation times of the base-plane projection by the original plane-based
and 3-base-plane volume intersection methods.

used 2cm voxel resolution in the experiments in section 3.1.2.

In short, the 3-base-plane volume intersection method is robust and stable
against both dynamic object pose changes and camera layout variations as
well as efficient enough to realize real-time volume reconstruction.

Currently we are developing a system for real-time active 3D action recon-
struction, where the algorithm described in section 3.2.2 is integrated with
the real-time active object tracking system described in [26]. The parallel pro-
cessing method and performance evaluation of the system will be reported in
a separate paper.

16

4 Dynamic 3D Shape from Multi-View Images Using Deformable
Mesh Model

As is well known, the volume intersection method is stable, but cannot re-
construct accurate 3D object shape; its output represents just the visual hull
of the object and concave portions of the object cannot be reconstructed. In
contrast, the stereo method can reconstruct any kind of visible surfaces, but it
is difficult to obtain dense and accurate stereo matching. Moreover, since the
stereo analysis merely generates a 2.5D shape, multi-view stereos should be
integrated to reconstruct the full 3D object shape. Thus, volume intersection
and stereo analysis have their own advantages and disadvantages.

To accomplish more stability and accuracy, recent methods propose frame-
works to combine multiple reconstruction cues. For example, Fua[27] repre-
sented object shape by a 2.5D triangular mesh model and deformed it based
on photometric stereo and silhouette constraint. Cross[28] carved a visual hull,
a set of voxels given by silhouettes, using photometric properties.

For dynamic 3D shape reconstruction, on the other hand, a naive method
would be:
Step 1. reconstruct 3D shape for each frame,
Step 2. estimate 3D motion by establishing correspondences between a pair of
3D shapes at frames t and t + 1.
In such a heterogeneous processing scheme, it is hard to coordinate differ-
ent computational algorithms conducted in different steps. We believe that a
homogeneous processing scheme, i.e., simultaneous recovery of shape and mo-
tion is required to attain effective dynamic 3D shape reconstruction. In fact,
Vedula[29] showed an algorithm to recover 3D shapes represented by voxels in
two consecutive frames as well as the per-voxel-correspondence between them
simultaneously.

In this section, we propose a framework for dynamic 3D shape reconstruc-
tion from multi-view images using a deformable mesh model[3][30]. With this
method, we can obtain 3D shape and 3D motion of the object simultaneously
by a single computational scheme.

We represent the shape by a surface mesh model and the motion by transla-
tions of its vertices, i.e., deformation. Thus the global and local topological
structure of the mesh are preserved from frame to frame. This helps us to
analyze the object motion, to compress the 3D data[31], and so on.

Our model deforms its shape so as to satisfy several constraints: 1) “photo-
consistency” constraint, 2) silhouette constraint, 3) smoothness constraint, 4)
3D motion flow constraint, and 5) inertia constraint. We show this constraint-
based deformation provides a computational framework to integrate several

17

reconstruction cues such as surface texture, silhouette, and motion flow ob-
served in multi-view images.

In our 3D deformable mesh model, we introduce two types of deformation:
intra-frame deformation and inter-frame deformation. In the intra-frame de-
formation, our model uses the visual hull, a result of the volume intersection,
as initial shape and changes its shape so as to satisfy constraints 1), 2) and 3)
described above. Volume intersection estimates a rough but stable shape us-
ing geometric information, i.e., silhouettes, and the deformable model refines
this shape using photometric information. In the inter-frame deformation, our
model changes its shape frame by frame, under all constraints 1), ..., 5). This
deforming process enables us to obtain the topologically consistent shape in
the next frame and per-vertex-correspondence information, i.e., motion simul-
taneously.

4.1 Deformable 3D Mesh Model For Intra-frame Deformation

With our deformable mesh model, we can employ both geometric and pho-
tometric constraints of the object surface in the reconstruction of its shape;
these constraints are not used in volume intersection, stereo, or space carving
methods[25].

Our intra-frame deformation algorithm consists of the following steps:

step 1 Convert the visual hull of the object: the voxel representation is trans-
formed into a triangle mesh model by the discrete marching cubes algo-
rithm[15], and this is used as an initial shape.

step 2 Deform the model iteratively:
step 2.1 Compute force acting on each vertex.
step 2.2 Move each vertex according to the force.
step 2.3 Terminate if all vertex motions are small enough. Otherwise go

back to 2.1 .

This shape deformation is similar to the 2D approach used in active contour
models or “Snakes”[32]; to realize it, we can use either energy function based or
force based methods. As described above, we employed a force based method.
This is firstly, from a computational point of view, because we have too many
vertices to solve energy function (for example, the mesh model shown in Figure
2 has about 12,000 vertices), and secondly, from an analytical point of view,
because one of the constraints used to control the deformation cannot be
represented as an analytical energy function (see below).

We employed the following three types of constraints to control the intra-frame
deformation:

18

Fig. 15. Frame and skin model

(1) Photometric constraint: A patch in the mesh model should be placed
so that its texture, which is computed by projecting the patch onto a
captured image, is consistent irrespectively of the image onto which it is
projected.

(2) Silhouette constraint: When the mesh model is projected onto an im-
age plane, its 2D silhouette should coincide with the observed object
silhouette on that image plane.

(3) Smoothness constraint: The 3D mesh should be locally smooth and
should not intersect with itself.

These constraints define a frame and skin model to represent 3D object shape:

• Suppose we want to model the object in Figure 15 (a).
• First, the silhouette constraint defines a set of frames for the object (Figure

15 (b)).
• Then the smoothness constraint defines a rubber sheet skin to cover the

frames (Figure 15 (c)).
• Finally, the photometric constraint defines supporting points on the skin

that have prominent textures (Figure 15 (d)).

In what follows, we describe the forces generated at each vertex to satisfy the
constraints.

4.2 Forces at each Vertex

We denote a vertex, its 3D position, and the set of cameras which can observe
this vertex by v, qv, and Cv respectively. For example, Cv = {CAM2, CAM3}
in Figure 16.

We introduce the following three forces at v to move its position so that the
above mentioned three constraints are be satisfied:

External Force: F e(v)

19

Fig. 16. Photometric consistency and
visibility

Fig. 17. Silhouette preserving force

First, we define an external force F e(v) to deform the mesh to satisfy the
photometric constraint.

F e(v) ≡ ∇Ee(qv), (6)

where Ee(qv) denotes the correlation of textures to be mapped around v (Fig-
ure 16) :

Ee(qv) ≡
1

N(Cv)

∑

c∈Cv

‖pv,c − pv‖2 , (7)

where c denotes a camera in Cv, N(Cv) the number of cameras in Cv, pv,c the
texture corresponding to v on the image captured by c, and pv the average of
the pv,c . F e(v) moves v so that its corresponding image textures observed by
the cameras in Cv become mutually consistent.

Internal Force: F i(v)
Since F e(v) may destroy the smoothness of the mesh or lead to self-intersection,
we introduce an internal force F i(v) at v:

F i(v) ≡
∑n

j qvj
− qv

n
, (8)

where qvj
denotes the neighboring vertices of v and n the number of neighbors.

F i(v) act as tension between vertices and keeps them locally smooth.

Note that the utilities of this internal force is twofold: (1) make the mesh shrink
and (2) make the mesh smooth. We need (1) in the intra-frame deformation
since it starts with the visual hull which encases the real object shape. (2),
on the other hand, stands for a popular smoothness heuristic employed in
many vision algorithms such as the regularization and active contour models.
The smoothing force works to prevent self-intersection since a self-intersecting
surface includes protrusions and dents, which will be smoothed out before
causing self-intersection.

20

For the inter-frame deformation, on the other hand, we redefine F i(v) as a
combination of attraction and repulsion between linked vertices, and add a
diffusion step just after step 2.1 (see below). This is because we do not need
(1) described above in the inter-frame deformation process.

Silhouette Preserving Force: F s(v)
To satisfy the silhouette constraint described above, we introduce a silhouette
preserving force F s(v). This is the most distinguishing characteristic of our
deformable model and involves a nonlinear selection operation based on the
global shape of the mesh, which cannot be analytically represented by an
energy function.

Figure 17 explains how this force at v is computed, where So,c denotes the
object silhouette observed by camera c, Sm,c the 2D projection of the 3D
mesh onto the image plane of camera c, and v′ the 2D projection of v onto
the image plane of camera c.

(1) For each c in Cv, compute the partial silhouette preserving force f s(v, c)
by the following method.

(2) If
(a) v′ is located outside of So,c or
(b) v′ is located inside So,c and on the contour of Sm,c,
then compute the shortest 2D vector from v′ to So,c (Figure 17 2©) and
assign its corresponding 3D vector to f s(v, c) (Figure 17 4©).

(3) Otherwise, f s(v, c) = 0.

The overall silhouette preserving force at v is computed by summing up
f s(v, c):

F s(v) ≡ ∑

c∈Cv

f s(v, c). (9)

Note that F s(v) acts only on those vertices that are located around the object
contour generator[28], which is defined based on the global 3D shape of the
object as well as the locations of cameras’ image planes.

Overall Vertex Force: F (v)
Finally we define a vertex force F (v) with coefficients α, β, γ as follows:

F (v) ≡ αF i(v) + βF e(v) + γF s(v), (10)

where coefficients are constants and examples for typical values will be given
in following experiments section. F e(v) and F s(v) work to reconstruct the
accurate object shape and F i(v) to smooth and interpolate the shape. Note
that there may be some vertices where Cv = {} and hence F e(v) = F s(v) = 0.

21

Fig. 18. Camera arrangement

(a) CAM5 (b) CAM1

Fig. 19. Initial shape. (a) is viewed from
CAM5 in Figure 18, (b) from CAM1

4.3 Performance Evaluation

Real Images Figure 18 illustrates the camera arrangement for the experi-
ments, where we use CAM1, . . . , CAM4 for shape reconstruction and CAM5 for
performance evaluation. That is, we compare the 2D silhouette of the recon-
structed shape viewed from the position of CAM5 with the actually observed
by CAM5. Note that captured images are synchronized and blur-free.

Figure 19 shows the initial object shape computed by the volume intersection
using the images captured by CAM1, . . . , CAM4, i.e., the visual hull of the
object. The shaded regions of (a) and (b) show the projection of the initial
shape, that is, Sm,5 and Sm,1, respectively. Bold lines in the figures highlight
the contours of So,5 and So,1. We can observe some differences between So,5

and Sm,5, but not between So,1 and Sm,1. This is because the image captured
by CAM5 is not used for the reconstruction.

In the experiments, we evaluated our algorithm with the following configu-
rations : (a) F (v) = F i(v), (b) F (v) = 0.5F i(v) + 0.5F s(v), (c) F (v) =
0.3F i(v) + 0.4F e(v) + 0.3F s(v). The left and center columns of Figure 20
shows Sm,5 and Sm,1 for each configuration together with bold lines denot-
ing the corresponding observed object silhouette contours So,5 and So,1. The
graphs in the right column show how the average error between Sm,c and
So,c (c = 1, 5) changes during the iterative shape deformation. Note that the
processing time of deformation is about 3 minutes for 12000 vertices and 4
cameras.

From these results we can make the following observations:

• With F i(v) alone (Figure 20(a)), the mesh model shrinks, resulting in a
large gap between its 2D silhouette on each image plane and the observed
silhouette.

22

(a)

CAM5 CAM1

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40 45 50

di
st

an
ce

 to
 th

e
si

lh
ou

et
te

 /
co

nt
ou

r-
po

in
t

iteration

CAM1-4
CAM5

(b)

CAM5 CAM1

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35 40 45 50

di
st

an
ce

 to
 th

e
si

lh
ou

et
te

 /
co

nt
ou

r-
po

in
t

iteration

CAM1-4
CAM5

(c)

CAM5 CAM1

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35 40 45 50

di
st

an
ce

 to
 th

e
si

lh
ou

et
te

 /
co

nt
ou

r-
po

in
t

iteration

CAM1-4
CAM5

Fig. 20. Experimental results. Top: (a) F i(v) alone (α = 1.0, β = 0.0, γ = 0.0), Mid-
dle: (b) F i(v)+F s(v) (α = 0.5, β = 0.0, γ = 0.5) Bottom: (c) F i(v)+F e(v)+F s(v)
(α = 0.3, β = 0.4, γ = 0.3)

• With F i(v) and F s(v), while Sm,c, c = {1 . . . 4} match well with So,c, Sm,5,
whose corresponding image is not used for the reconstruction, does not
deform well (Figure 20(b)).

• With F i(v), F e(v), and F s(v), Sm,5 matches well with So,5 (Figure 20(c)).
This shows the effectiveness of F e(v).

Note that the values of the coefficients α, β, and γ are given a priori and fixed
throughout the iteration.

23

(a) Camera arrangement (b) Synthesized object (c) Visual hull

Fig. 21. Camera arrangement and synthesized object

(a) 100 % (b) 50 % (c) 10 %

Fig. 22. Evaluating the effectiveness of the deformable mesh model. upper: super
quadrics (n = 3.0, e = 1.0) with different degrees of surface textures: k % means k
% of the surface area is covered with texture. lower: reconstructed object shapes.

(n, e) Synthesized object Visual hull Deformable mesh model

(0.0, 0.0)

(1.0, 1.0)

(3.0, 1.0)

(5.0, 1.0)

Fig. 23. Reconstruction results for various n and e (with 100% textured surfaces)

24

Synthesized Images To evaluate the quantitative performance of the mesh
model, we conducted experiments with synthetic objects defined by super
quadric functions. Super quadric functions are a set of functions defined in
terms of spherical coordinates u and v:

x(u, v) = a1 cosn u cose v

y(u, v) = a2 cosn u sine v

z(u, v) = a3 sinn u

−π

2
≤ u ≤ π

2
, π ≤ v ≤ π

(11)

where n and e denote parameters controlling roundness/squareness, a1, a2, a3

denote scale factors for x, y, z respectively. In this experiment, the values of
the coefficients α, β, and γ are the same as used in the experiment with real
images, that is, F (v) = 0.3F i(v) + 0.4F e(v) + 0.3F s(v).

Figure 21 illustrates: (a) the camera arrangement for this experiment, (b)
the synthesized object, and (c) the visual hull reconstructed by the volume
intersection method. We use the 9 black cameras in Figure 21(a) for the re-
construction and the white camera in Figure 21(a) for the evaluation.

Figure 22 shows reconstruction results of objects (n = 3.0, e = 1.0) having (a)
100%, (b) 50%, and (c) 10% textured surfaces. The percentage denotes the
surface area of the object covered with texture. All object images are captured
by the white camera in Figure 21(a).

From these results we can observe the following:

• Unlike the visual hull (Figure 21(c)), the mesh model can reconstruct the
concave parts of the object (Figure 22(a) and (b)).

• The mesh model does not necessarily require a dense texture (Figure 22(a)
and (b)). This is because the skin over frames (Figure 15) can interpolate
the object surface between points with prominent textures.

• The reconstructed shape becomes poor when the object has little texture
(Figure 22(c)).

Figure 23 shows reconstruction results of objects defined by various n and e,
that is, objects having different concavities. Note that each object has 100%
textured surface.

We can observe that the deformable mesh model with fixed coefficients α, β,
and γ has limitations in recovering large concavities as well as large protrusions
(Figure 23, bottom row). This is because large curvature on a vertex yields
a large internal force F i(v), which dominates F e(v) even if the vertex has
prominent texture.

25

Compared with the Space-Carving method[25], which employs photometric
consistency as its main reconstruction cue, our approach additionally employs
geometric continuity and a silhouette constraint. Such rich constraints make
our approach more stable and accurate. Moreover, our deformable mesh model
can be extended to dynamic inter-frame deformation, which will enable us to
analyze dynamic object motion and realize highly efficient data compression.
The next section describes this inter-frame deformation algorithm.

4.4 Dynamic Shape Recovery Using Deformable 3D Mesh Model

If a model at time t deforms its shape to satisfy the constraints at time t + 1,
we can obtain the shape at t+1 and the motion from t to t+1 simultaneously.

Clearly, the constraints used in the intra-frame deformation should be satisfied
and would be sufficient if we had rich texture information all over the object
surface. However, to make the dynamic deformation process more stable and
reliable, we first modify the constraints used in the intra-frame deformation.
Note that

• We have the mesh model at t as well as the captured multi-view images and
visual hulls at t and t + 1. Note that for the first frame, we compute the
initial mesh model from the initial visual hull by the intra-frame deformation
method described above.

• We redefine F (v) in equation (10) to F (vt+1), where vt+1 denotes vertex v
of the mesh at t + 1. Note that the position of vt, qvt

, is fixed while that of
vt+1, qvt+1

, changes during the deformation process.
• Cvt , the set of cameras which can observe vt, does not change throughout

the iteration. Cvt+1 , however, may change according to the deformation.

(1) Photometric constraint: The textures of each patch in the multi-view
images should be consistent in the frames at both t and t + 1.

According to this redefinition, we modify equation (6):

F e(vt+1) ≡ ∇Ee(qvt+1
), (12)

where qvt+1
denotes the position of vt+1, and Ee(qvt+1

) the correlation of
textures to be mapped around v (Figure 16) at both t and t + 1, which
is obtained by modifying equation (7) :

Ee(qvt+1
) ≡

∑
c∈Cvt

∥∥∥pvt,c − pvt,vt+1

∥∥∥
2
+

∑
c∈Cvt+1

∥∥∥pvt+1,c − pvt,vt+1

∥∥∥
2

N(Cvt) + N(Cvt+1)
,

(13)
where pvt,vt+1 denotes the average of pvt,c and pvt+1,c .

26

Fig. 24. Roughly estimated 3D motion flow lines from t (in blue) to t + 1 (in red).
The blue and red region denote the visual hull at t and t + 1 respectively (same as
the center column of Figure 25).

(2) Smoothness constraint: As described in section 4.2, the internal force
defined in equation (8) plays two roles: (1) make the mesh shrink and
(2) make the mesh smooth. Role (1) is a reasonable strategy for the
intra-frame deformation because its initial shape is the visual hull of the
object. In the inter-frame deformation, on the other hand, we should not
use (1) since some parts of the mesh should ’shrink’ and others ’expand’
depending on the object non-rigid motion. So we replace equation (8)
with the following one. This new internal force represents the smoothness
constraint by connecting vertices with springs and dampers as used in
non-rigid skin-modeling[33][34].

F i(vt+1) ≡ ∇Ei(qvt+1
), (14)

where Ei(qvt+1
) denotes the local potential field defined by neighbor ver-

tices of vt+1:

Ei(qvt+1
) =

N∑

j




∥∥∥qvt+1
− qvt+1,j

∥∥∥
2
+

1
∥∥∥qvt+1

− qvt+1,j

∥∥∥
2


 (15)

where qvt+1,j
denotes the position of the jth neighbor vertex of vt+1, and

N the number of neighbors.
(3) Silhouette constraint: Equation (9) should be modified to satisfy the

silhouette constraint at t + 1:

F s(vt+1) ≡
∑

c∈Cvt+1

f s(vt+1, c). (16)

We now introduce additional constraints:

(4) 3D Motion flow constraint: A mesh vertex should drift in the direction
of the motion flow of its vicinity.

(5) Inertia constraint: The motion of a vertex should be smooth and con-
tinuous.

27

Drift Force: F d(vt+1)
As described in section 4.1, we assume that we have multi-view silhouette
images and a visual hull for each frame. With these visual hulls, i.e., sets
of voxels, we can compute rough inter-frame voxel correspondences by the
point-set-deformation algorithm described in [35] (Figure 24).

This algorithm gives us the voxel-wise correspondence flow from Vt, the voxel
set at t, to Vt+1, the voxel set at t + 1. We can represent this flow by a set of
correspondence lines:

Lt =
{
li| i = 1, . . . , N(Vt)

}
, (17)

where li denotes the correspondence line starting from ith voxel in Vt and
N(Vt) the number of voxels in Vt. While visual hulls do not represent accurate
object shapes, we can use this correspondence as a rough estimate of 3D
motion flow.

Once the motion flow is obtained, we define the potential field Ed(vt+1) gener-
ated by this flow. First, let lvt+1 denote the correspondence line in Lt closest to
vt+1, plvt+1 ,vt+1

the point on lvt+1 closest to vt+1, and slvt+1
the starting point of

the correspondence line lvt+1 . Then, we define the potential field as a function
of the distance from vt to lvt and the distance from slvt

to plvt ,vt
:

Ed(qvt+1
) ≡ ‖slvt+1

− plvt+1 ,vt+1
‖2 − ‖qvt+1

− plvt+1 ,vt+1
‖2. (18)

Finally, we define the drift force F d(vt+1) at vertex vt+1 as the gradient vector
of Ed(qvt+1

):
F d(vt+1) ≡ ∇Ed(qvt+1

). (19)

Inertia Force: F n(vt+1)
If we assume that the interval between successive frames is short enough, we
can expect that the motion of the object to be smooth and continuous. This
assumption tells us that we can predict the location of a vertex at t + 1 from
its motion history.

We can represent such predictions as a set of prediction lines connecting qvt

and q̂vt+1
, where q̂vt+1

denotes the predicted location of vt+1. Then we can de-
fine the inertia force F n(vt+1) in just the same way as the drift force F d(vt+1):

F n(vt+1) ≡ ∇En(qvt+1
), (20)

where En(qvt+1
) denotes the potential field defined for the set of prediction

lines, defined in just the same way as in equation (18).

Overall Vertex Force: F (vt+1)
Finally we define the vertex force F (vt+1) with coefficients α, β, γ, δ, ε as fol-

28

Frame Captured image Visual hull
Deformable
mesh model

t → =

↓ ↓ ↓

t + 1 →

↓ ↓ ↓

t + 2 →

Fig. 25. Successive deformation results (overview)

lows:

F (vt+1) ≡ αF i(vt+1) + βF e(vt+1) + γF s(vt+1) + δF d(vt+1) + εF n(vt+1).
(21)

Each vertex of the mesh is moved according to F (vt+1) at each iteration step
until the movement lies under some threshold.

4.5 Experimental Results

Figure 25 and 26 illustrate the inter-frame deformation through 3 successive
frames. The columns of Figure 25 show, from left to right, the captured images,
the visual hulls generated by the discrete marching cubes method for each
frame, and the mesh models deformed frame by frame, respectively. Note that
captured multi-view video data are not completely synchronized and include
motion blur. In this experiments, we used 9 cameras arranged in the same
way as Figure 21 (a) to capture object images. The mesh models consist
of about 12,000 vertices and 24,000 triangles, and the processing time per
frame is about 10 minutes by PC (Xeon 1.7GHz). Note that the visual hull in
frame t was used as the initial shape for the intra-frame deformation and then
the resultant mesh for the inter-frame deformation. We used fixed coefficients
α = 0.2, β = 0.2, γ = 0.2, δ = 0.3, ε = 0.1 given a priori.

From these results, we can observe:

• Our dynamic mesh model can follow the non-rigid object motion smoothly.

29

Fig. 26. Successive deformation results (detailed)

• During its dynamic deformation, our mesh model preserves both global and
local topological structure and hence we can find corresponding vertices be-
tween any pair of frames for all vertices. Figure 26 illustrates this topology
preserving characteristic. That is, the left mesh denotes a part of the initial
mesh obtained by applying the marching cubes to the visual hull at t. The
lower bold arrow stands for the inter-frame deformation process, where any
parts of the mesh can be traced over time. Aligned along the upper bold
arrow, on the other hand, are parts of the meshes obtained by applying
the marching cubes to each visual hull independently, where no vertex cor-
respondence can be established because the topological structures of the
meshes are different.

We applied the inter-frame deformation for a long series of frames and observed
the following problems:

(1) The mesh cannot well follow motions of non-textured surfaces such as
skin areas and sometimes overall mesh shapes deviate from correct ones.

30

(2) In the dancing lady video sequence, the overall topological structure
changes depending on her dancing poses; sometimes hands are attached
to her body. The current mesh model cannot cope with such topological
changes.

In summary, while we can demonstrate the effectiveness of our dynamic de-
formable mesh model, it should be improved in the following points:

• To reduce the computation time (i.e. 10 minutes per frame), we have to
introduce parallel processing as well as efficient computation schemes such
as the coarse-to-fine strategy and/or functional approximations for local
surfaces.

• Since the current computation is purely local, bottom-up and data-driven,
we should introduce object models to globally control the deformation. Such
model information will be useful to obtain physically meaningful deforma-
tion. For non-textured surface deformation, firstly, we will achieve more
robust motion estimation if we assume articulated motion by increasing the
stiffness of springs between vertices[36][37]. Secondly, global object shape
models such as articulated shape models will be useful to cope with the
topological structure changes described above.

5 High Fidelity Texture Mapping Algorithm

In this section, we propose a novel texture mapping algorithm to generate high
fidelity 3D video and then evaluate the effectiveness of the mesh deformation
method described in the previous section for generating 3D video . The prob-
lem we are going to solve here is how we can generate high fidelity object
images from arbitrary viewpoints based on the 3D object shape of limited
accuracy. That is, the computed 3D mesh model is just an approximation of
the real 3D object shape and include considerable amount of noise.

The input data for the texture mapping algorithm are

• A temporal series of 3D mesh data. We prepare two types of 3D mesh data to
evaluate the effectiveness of the mesh deformation for 3D video generation:
· Mesh: 3D mesh data obtained by applying the discrete marching cubes

method [15] to the voxel data of each frame.
· D–Mesh: 3D mesh data obtained by applying the intra-frame deforma-

tion to Mesh of each frame. This is because, as noted at the end of the
previous section, the current inter-frame deformation method cannot cope
with global topological structure changes. Since the texture mapping al-
gorithm proposed here conducts rendering frame by frame, we have no
problem even if the mesh topology changes frame by frame.

31

Fig. 27. Viewpoint independent patch-based method

• A temporal series of multi-view video data.
• Camera calibration data for all cameras.

Note that these data were produced by our first generation PC cluster system,
since the real-time 3D volume reconstruction by the second generation system
described in section 3 is not completed. Note also that since the cameras used
in the first generation system do not support a hardware trigger or a shutter
speed control, captured multi-view video data are not completely synchronized
and include motion blur when a human moves quickly.

5.1 Naive Algorithm: Viewpoint Independent Patch-Based Method

We first implemented a naive texture mapping algorithm, which selects the
most ”appropriate” camera for each patch and then maps onto the patch the
texture extracted from the image observed by the selected camera. Since this
texture mapping is conducted independently of the viewer’s viewpoint of 3D
video, we call it as the Viewpoint Independent Patch-Based Method (VIPBM
in short).

Algorithm (Figure 27)

(1) For each patch pi, do the following processing.
(2) Compute the locally averaged normal vector Vlmn using normals of pi and

its neighboring patches.
(3) For each camera cj, compute viewline vector Vcj

directing toward the
centroid of pi.

(4) Select such camera c∗ that the angle between Vlmn and Vcj
becomes max-

imum.
(5) Extract the texture of pi from the image captured by camera c∗.

32

This method generates fully textured 3D object shape, which can be viewed
from arbitrary viewpoints with ordinary 3D graphic display systems. More-
over, its data size is very compact compared with that of the original multi-
view video data.

From the viewpoint of fidelity, however, the displayed image quality is not
satisfying;

(1) The best camera c∗ for a patch may vary from patch to patch even if
they are neighboring. Thus, textures on neighboring patches are often
extracted from those images captured by different cameras (i.e. view-
points), which introduces jitters in displayed images.

(2) Since the texture mapping is conducted patch by patch and their normals
are not accurate, textures of neighboring patches may not be smoothly
connected. This introduces jitters at patch boundaries in displayed im-
ages.

To overcome these quality problems, we developed a viewpoint dependent
rendering method [38]: a viewpoint dependent vertex-based texture mapping
algorithm. In this algorithm, the color (i.e. RGB values) of each vertex of
patches is computed taking account of the viewpoint of a viewer and then the
texture of each patch is generated by interpolating color values of its three
vertices. In what follows, we first define words and symbols to describe the
algorithm and then present the computation process, followed by experimental
results.

5.2 Viewpoint Dependent Vertex-Based Texture Mapping Algorithm

(1) Definitions
First of all, we define words and symbols as follows (Figure 28), where bold
face symbols denote 3D position/directive vectors:

• a group of cameras: C = {c1, c2, . . . , cn}
• a viewpoint for visualization: eye
• a set of surface patches: P = {p1, p2, . . . , pm}
• outward normal vector of patch pi: npi

• a viewing direction from eye toward the centroid of pi: veye→pi

• a viewing direction from cj toward the centroid of pi: vcj→pi

• vertices of pi: vk
pi

(k = 1, 2, 3)
• vertex visible from cj (defined later): vk

pi,cj

• RGB values of vk
pi,cj

(defined later): I(vk
pi,cj

)
• a depth buffer of cj: Bcj

Geometrically this buffer is the same as the image plane of camera cj. Each
pixel of Bcj

records such patch ID that is nearest from cj as well as the

33

Fig. 28. Viewpoint and camera position

Fig. 29. Depth buffer

distance to that patch from cj (Figure 29). When a vertex of a patch is
mapped onto a pixel, its vertex ID is also recorded in that pixel.

(2) Visible Vertex from Camera cj

The vertex visible from cj vk
pi,cj

is defined as follows.

(1) The face of patch pi can be observed from camera cj, if the following
condition is satisfied.

npi
· vcj→pi

< 0 (22)

(2) vk
pi

is not occluded by any other patches.

Then, we can determine vk
pi,cj

by the following process:

(1) First, project all the patches that satisfy equation (22) onto the depth
buffer Bcj

.

34

Type (1) Type (2) Type (3)

Type (4) Type (5)

Fig. 30. Relations between patches

(2) Then, check the visibility of each vertex using the buffer. Figure 30 illus-
trates possible spatial configurations between a pair of patches: all the
vertices in type (1) and (2) are visible, while in type (5) three vertices of
the occluded patch are not visible. In type (3) and (4), only some vertices
are visible.

RGB values I(vk
pi,cj

) of the visible vertex vk
pi,cj

are computed by

I(vk
pi,cj

) = Icj
(v̂pi,cj

), (23)

where Icj
(v) shows RGB values of pixel v on the image captured by camera

cj, and v̂k
pi,cj

denotes the pixel position onto which the vertex vk
pi,cj

is mapped
by the imaging process of camera cj.

(3) Algorithm

(1) Compute RGB values of all vertices visible from each camera in C =
{c1, c2, . . . , cn}. Furthermore, each vertex has information of visibility
from each camera.

(2) Specify the viewpoint eye.
(3) For each surface patch pi ∈ P , do 4 to 9.
(4) If veye→pi

· npi
< 0, then do 5 to 9.

(5) Compute weight wcj
= (vcj→pi

· veye→pi
)m, where m is a weighting factor

to be specified a priori.
(6) For each vertex vk

pi
(k = 1, 2, 3) of patch pi, do 7 to 8.

(7) Compute the normalized weight for vk
pi

by

w̄k
cj

=
wk

cj∑
l wk

cl

. (24)

Here, if vk
pi

is visible from camera cj, then wk
cj

= wcj
, else wk

cj
= 0.

35

450 cm

400 cm
250 cm

#1 #5

#8

#7

#6

#12#12

#11#11

#10

#9

#2

#3

#4

Fig. 31. Camera Setting

(8) Compute the RGB values I(vk
pi

) of vk
pi

by

I(vk
pi

) =
n∑

j=1

w̄k
cj

I(vk
pi,cj

) (25)

(9) Generate the texture of patch pi by linearly interpolating RGB values of
its vertices. To be more precise, depending on the number of pi’s vertices
that are visible from any cameras, the following patch painting processing
is conducted:
• 3.

Generate RGB values at each point on the patch by linearly interpo-
lating the RGB values of the 3 vertices .

• 2.
Compute mean value of the RGB values of the 2 visible vertices, which
is regarded as those of the other vertex. Then apply the linear interpo-
lation on the patch.

• 1.
Paint the patch by the RGB values of the visible vertex.

• 0.
Texture of the patch is not generated: painted by black for example.

By the above process, an image representing an arbitrary view (i.e from eye)
of the 3D object is generated.

5.3 Performance Evaluation

To evaluate the performance of the proposed viewpoint dependent vertex-
based method (VDVBM in short) and the effectiveness of the mesh deforma-
tion, we applied VIPBM and VDVBM to Mesh and D–Mesh respectively
and evaluated the generated images qualitatively.

36

Mesh D–Mesh

Fig. 32. Images generated by the Viewpoint Independent Patch-Based Method

Mesh D–Mesh

Fig. 33. Images generated by the Viewpoint Dependent Vertex-Based Method

Figures 32 and 33 show images generated by VIPBM and VDVBM, respec-
tively, using the same frame data of Mesh and D–Mesh and the same view-
points. From these images, we can observe

• Comparing those images generated by VIPBM and VDVBM, the former
introduces many jitters in images, which are considerably reduced by the
latter.

• Comparing those images generated with Mesh and D–Mesh,
· VIPBM with D–Mesh can generate better images; while many jitters

are still included, detailed textures can be observed. This is because the
surface normals are smoothed and become more accurate by the mesh
deformation.

· On the other hand, VDVBM with D–Mesh does not show any observable
improvements and instead seems to introduce more blurring effects. This
is because in VDVBM, the viewpoint information to generate an image
plays much more important role than the accuracy of the 3D shape. In
other words, VDVBM can work well even for 3D object shape data of
limited accuracy.

Figure 34 compares images generated by VIPBM and VDVBM with D–Mesh
to their corresponding original video images. This also verify the effectiveness
of VDVBM.

Next, we conducted quantitative performance evaluations of VIPBM and VD-
VBM with Mesh and D–Mesh. We calculate RGB root-mean-square (rms)
errors between a real image captured by camera cj and its corresponding
images generated by VIPBM and VDVBM, respectively: in generating the

37

VDVBM

VIPBM

Original sequence

frame # 106 frame # 126

Fig. 34. Sample images of generated 3D video with D–Mesh

images, the position and direction of camera cj are used as those of the view-
point for the 3D video (i.e. eye in VDVBM). To evaluate the performance of
VDVBM, we employed two methods: VDVBM–1 generates images by using
all multi-view images including real images captured by camera cj itself, while
VDVBM–2 excludes such real images captured by camera cj. The experiments
were conducted under the following settings:

• camera configuration: Figure 31
• image size: 640×480[pixel] 24 bit RGB color
• viewpoint: camera 5
• weighting factor in VDVBM: m = 5

Figure 35 illustrates the experimental results, where rms errors for frame 101
to 140 are computed. This figure proves that

• VDVBM–1 and VDVBM–2 perform better than VIPBM with both Mesh
and D–Mesh.

• Comparing Mesh with D-Mesh,
· In VIPBM, D–Mesh improves the fidelity of generated images signifi-

cantly.
· In VDVBM–2, D-Mesh reduces rms errors about 10%.
· In VDVBM–1, on the other hand, D-Mesh increases rms errors slightly.

38

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 105 101 110 115 120 125 130 135 140

R
o

o
t-

m
e

a
n

-s
q

u
a

re
 e

rr
o

r

Frame number

VDVBM-1

VDVBM-2

VIPBM

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 105 101 110 115 120 125 130 135 140

R
o

o
t-

m
e

a
n

-s
q

u
a

re
 e

rr
o

r

Frame number

VDVBM-1

VDVBM-2

VIPBM

Mesh D–mesh

Fig. 35. Root-mean-square errors of RGB values (1)

An original patch A patch subdivided A patch subdivided

into three (S3) into six (S6)

Fig. 36. Subdivision of a surface patch

This is because D–Mesh introduces blurring effects as discussed before.

Finally, we tested how we can improve the performance of VDVBM by in-
creasing the spatial resolution of patch data. Note that we use D-Mesh alone
in this experiment. Figure 36 shows the method of subdividing a patch into
three (S3) and six (S6) sub-patches to increase the spatial resolution.

To evaluate the physical spatial resolution, we examine the average side length
of a patch on the image plane of each camera by projecting original and
subdivided patches onto the image plane. Figure 37 shows the mean side
length in pixel on the image plane of each camera. Note that since camera 9
is located closer to the 3D object (see Figure 31), object images captured by
it become larger than those by the other cameras, which caused bumps (i.e.
larger side length in pixel) in the graphs in Figure 37.

We can observe that the spatial resolution of S6 is approximately the same as
that of an observed image (i.e. 1 pixel). That is, S6 attains the finest resolution,
which physically represents about 5mm on the object surface. To put this in
another way, we can increase the spatial resolution up to the six sub-division,
which can improve the quality of images generated by VDVBM.

To quantitatively evaluate the quality achieved by using subdivided patches,
we calculated root-mean-square errors between real images and images gener-

39

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 cam1 cam2 cam3 cam4 cam5 cam6 cam7 cam8 cam9 cam10 cam11 cam12

P
ix

e
l

Camera number

Original

Subdivided into 3

Subdivided into 6

Fig. 37. Mean side length in pixel on image planes of cameras

 33

 34

 35

 36

 37

 38

 39

 40

 41

 105 101 110 115 120 125 130 135 140

R
o
o
t-

m
e
a
n
-s

q
u
a
re

 e
rr

o
r

Frame number

Original

Subdivided into 3

Subdivided into 6

Fig. 38. Root-mean-square errors of RGB values (2)

ated by VDVBM-1 with original, S3, and S6, respectively (Figure 38). From
this experiment, we observe that subdividing patches does not significantly re-
duce the errors. The reasons of this can be considered as follows. As shown in
Figure 39, most of the errors arise around the contour of the object and edges
of texture (e.g. an edge between skin and clothes, etc.). These errors cannot
be reduced by subdividing patches because they come from motion blur or
asynchronization, i.e. capturing the images is not perfectly synchronized.

Note that while the total numerical errors are not reduced significantly, the
quality of generated images is improved by using subdivided patches. Figure
40 shows that the spatial resolution is increased, i.e. the blurring effect is
reduced, by subdividing patches.

40

Fig. 39. Difference image between a real image and a generated image (frame #106)

Original Subdivided (S6)

Fig. 40. Example images visualized with original and subdivided patches (frame
#103)

Finally, we show examples generated by VDVBM–1 with subdivided patches
(S6) viewed from camera 5, 11, and an intermediate point between them (Fig-
ure 41). Figure 41 shows that the images generated by VDVBM–1 look almost
real even when they are viewed from the intermediate point of the cameras.

By compiling a temporal sequence of reconstructed 3D shape data and multi-
view video into a temporal sequence of vertex lists, which takes about 3 seconds
per volume, we can render arbitrary VGA views of 3D video sequence at video
rate by an ordinary PC.

41

cam 5
an intermediate image

(cam 5 to cam 11) cam 11

Fig. 41. Visualized 3D video with subdivided patches (frame#103)

6 Conclusion

We are proposing 3D video as new image media: it records the object’s full 3D
shape, motion, and surface properties (i.e. color and texture). In this paper,
we presented research attainments so far obtained to generate 3D video:

(1) A PC cluster system for real-time reconstruction of dynamic 3D object
actions from multi-view video images: we first developed the plane-based
volume intersection method, where the 3D voxel space is partitioned into
a group of parallel planes and the cross-section of the 3D object volume
on each plane is reconstructed. Secondly, we devised the Plane-to-Plane
Perspective Projection algorithm to realize efficient plane-to-plane projec-
tion computation. And thirdly, to realize real-time processing, we imple-
mented parallel pipeline processing on a PC cluster system. Experimental
results showed that the proposed methods works efficiently and the PC
cluster system can reconstruct 3D shape of a dancing human at about 12
volume per second in the voxel size of 2cm× 2cm× 2cm contained in a
space of 2m × 2m × 2m.

(2) 3-base-plane volume intersection method: we augmented the plane based
volume intersection method to cope with dynamic human and camera
actions. Experimental results demonstrated its computational efficiency
and stability against the dynamic actions.

(3) A deformable 3D mesh model for reconstructing the accurate 3D object
shape and motion: we proposed the intra- and inter-frame deformation
methods. The former employs the smoothness, silhouette, and photo-
consistency constraints to control the deformation, while the latter in-
troduces the 3D motion flow and inertia constraints additionally to cope
with non-rigid object motion. Experimental results showed that the mesh
deformation methods can significantly improve the accuracy of the recon-
structed 3D shape. But their computation speeds are far from real-time:
for both the intra- and inter-frame deformations, it took about 5 minutes
for 12000 vertices with 4 cameras and 10 minutes for 12000 vertices with
9 cameras by PC (Xeon 1.7GHz).

42

(4) An algorithm of rendering high fidelity texture on the reconstructed 3D
object surface from the multi-view video images: we proposed the view-
point dependent vertex-based method to avoid jitters in rendered object
images which are caused due to the limited accuracy of the reconstructed
3D object shape. Experimental results showed that the proposed method
can generate almost natural looking object images from arbitrary view-
points. By compiling a temporal sequence of reconstructed 3D shape data
and multi-view video into a temporal sequence of vertex lists, which takes
about 3 seconds per volume, we can render arbitrary VGA views of 3D
video sequence at video rate by an ordinary PC.

While we believe that the proposed methods set a milestone to realize 3D
video, we still have to develop the followings to make 3D video usable in
everyday life.

• higher speed and more accurate 3D action reconstruction methods, espe-
cially for the 3D mesh deformation,

• methods of generating more natural images which can work even for 3D
shape data of limited accuracy,

• methods of editing 3D video for artistic image content, and
• efficient data compression methods to reduce the huge data size of 3D video.

With these novel technologies, we will be able to open up new image me-
dia world and promote personal and social activities in education, culture,
entertainment, sport, and so on.

This work was supported by the grant-in-aid for scientific research (A) 13308017
and 13224051. We are grateful to Real World Computing Partnership, Japan
for allowing us to use their multi-view video data.

References

[1] S. Moezzi, L. Tai, P. Gerard, Virtual view generation for 3d digital video, IEEE
Multimedia (1997) 18–26.

[2] T. Matsuyama, X. Wu, T. Takai, T. Wada, Real-time dynamic 3d object shape
reconstruction and high-fidelity texture mapping for 3d video, IEEE Trans. on
Circuit and Systems for Video Technology 14 (2004) 357–369.

[3] S. Nobuhara, T. Matsuyama, Dynamic 3d shape from multi-viewpoint images
using deformable mesh models, in: Proc. of 3rd International Symposium on
Image and Signal Processing and Analysis, Rome, Italy, 2003, pp. 192–197.

[4] T.Matsuyama, X.Wu, T.Takai, S.Nobuhara, Real-time generation and high
fidelity visualization of 3d video, in: Proc. of Mirage 2003, 2003, pp. 1–10.

43

[5] T. Kanade, P. Rander, P. J. Narayanan, Virtualized reality: Constructing
virtual worlds from real scenes, IEEE Multimedia (1997) 34–47.

[6] T. Wada, X. Wu, S. Tokai, T. Matsuyama, Homography based parallel volume
intersection: Toward real-time reconstruction using active camera, in: Proc. of
International Workshop on Computer Architectures for Machine Perception,
Padova, Italy, 2000, pp. 331–339.

[7] E. Borovikov, L. Davis, A distributed system for real-time volume
reconstruction, in: Proc. of International Workshop on Computer Architectures
for Machine Perception, Padova, Italy, 2000, pp. 183–189.

[8] G. Cheung, T. Kanade, A real time system for robust 3d voxel reconstruction of
human motions, in: Proc. of Computer Vision and Pattern Recognition, South
Carolina, USA, 2000, pp. 714–720.

[9] J. Carranza, C. Theobalt, M. A. Magnor, H.-P. Seidel, Free-viewpoint video of
human actors, ACM Trans. on Computer Graphics 22 (3).

[10] M. Li, M. Magnor, H.-P. Seidel, Hardware-accelerated visual hull reconstruction
and rendering, Proc. of Graphics Interface (GI’03) .

[11] T. Matsuyama, R. Yamashita, Requirements for standardization of 3d video,
ISO/IEC JTC1/SC29/WG11, MPEG2002/M8107 .

[12] T. Matsuyama, T. Takai, Generation, visualization, and editing of 3d video, in:
Proc. of symposium on 3D Data Processing Visualization and Transmission,
Padova, Italy, 2002, pp. 234–245.

[13] H. Tezuka, A. Hori, Y. Ishikawa, M. Sato, Pm: An operating system coordinated
high performance communication library, high-performance computing and
networking, lecture notes in computer science, vol. 1225 (1997).

[14] T. Wada, T. Matsuyama, Appearance sphere : Background model for pan-
tilt-zoom camera, in: Proc. of 13th International Conference on Pattern
Recognition, Vienna, Austria, 1996, pp. A–718–A–722.

[15] Y. Kenmochi, K. Kotani, A. Imiya, Marching cubes method with connectivity,
in: Proc. of 1999 International Conference on Image Processing, Kobe, Japan,
1999, pp. 361–365.

[16] H. Baker, Three-dimensional modelling, in: Proc. of Fifth International Joint
Conference on Artificial Intelligence, 1977, pp. 649–655.

[17] B. G. Baumgart, Geometric modeling for computer vision, Technical Report
AIM-249, Artificial Intelligence Laboratory, Stanford University .

[18] W. N. Martin, J. K. Aggarwal, Volumetric description of objects from multiple
views, IEEE Transactions on Pattern Analysis and Machine Intelligence 5(2)
(1987) 150–158.

[19] M. Potmesil, Generating octree models of 3d objects from their silhouettes in a
sequence of images, Computer Vision,Graphics, and Image Processing 40 (1987)
1–29.

44

[20] P. Srinivasan, P. Liang, S. Hackwood, Computational geometric methods in
volumetric intersections for 3d reconstruction, Pattern Recognition 23(8) (1990)
843–857.

[21] R. Szeliski, Rapid octree construction from image sequences, CVGIP: Image
Understanding 58(1) (1993) 23–32.

[22] K. M. Cheung, S. Baker, T. Kanade, Visual hull alignment and refinement
across time: A 3d reconstruction algorithm combining shape-from-silhouette
with stereo, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2003, pp. 375–382.

[23] W. Matusik, C. Buehler, L. McMillan, Polyhedral visual hulls for real-
time rendering, in: Procȯf the 12th Eurographics Workshop on Rendering
Techniques, 2001, pp. 115–126.

[24] A. Laurentini, How far 3d shapes can be understood from 2d silhouettes, IEEE
Transactions on Pattern Analysis and Machine Intelligence 17(2) (1995) 188–
195.

[25] K. N. Kutulakos, S. M. Seitz, A theory of shape by space carving, in: Proc.
of International Conference on Computer Vision, Kerkyra, Greece, 1999, pp.
307–314.

[26] T. Matsuyama, N. Ukita, Real-time multi-target tracking by a cooperative
distributed vision system, Proceedings of IEEE 90 (7) (2002) 1136–1150.

[27] P. Fua, Y. G. Leclerc, Using 3-dimensional meshes to combine image-based and
geometry-based constraints, in: ECCV (2), 1994, pp. 281–291.

[28] G. Cross, A. Zisserman, Surface reconstruction from multiple views using
apparent contours and surface texture (2000).

[29] S. Vedula, S. Baker, S. Seitz, T. Kanade, Shape and motion carving in 6d, in:
Computer Vision and Pattern Recognition (CVPR), Vol. 2, 2000, pp. 592–598.

[30] J. Isidoro, S. Sclaroff, Stochastic mesh-based multiview reconstruction, in:
Proceedings of 3D Data Processing, Visualization, and Transmission, Padova,
Italy, 2002, pp. 568–577.

[31] H. Briceño, P. Sander, L. McMillan, S. Gortler, H. Hoppe, Geometry videos:
A new representation for 3d animations, in: Proc. of ACM Symposium on
Computer Animation, 2003, pp. 136–146.

[32] M. Kass, A. Witkin, D. Terzopoulos, Snakes: Active contour models,
International Journal of Computer Vision 1 (4) (1988) 321–331.

[33] D. Terzopoulos, J. Platt, A. Barr, K. Fleischer, Elastically deformable models,
in: Proc. of SIGGRAPH 87, 1987, pp. 205–214.

[34] D. Baraff, A. Witkin, Large steps in cloth simulation, Proc. of SIGGRAPH
1998 32 (1998) 43–54.

45

[35] D. Burr, A dynamic model for image registration, Computer Graphics and
Image Processing 15 (1981) 102–112.

[36] X. Provot, Deformation constraints in a mass-spring model to describe rigid
cloth behavior, in: W. A. Davis, P. Prusinkiewicz (Eds.), Graphics Interface
’95, Canadian Human-Computer Communications Society, 1995, pp. 147–154.

[37] J. Christensen, J. Marks, J. T. Ngo, Automatic motion synthesis for 3d mass-
spring models, The Visual Computer 13 (1) (1997) 20–28.

[38] P. E. Debevec, Y. Yu, G. Boshokov, Efficient view-dependent image-based
rendering with projective texture-mapping, in: Proc. of 9th Eurographics
Rendering Workshop, 1998, pp. 105–116.

46

