
Harmonised Texture Mapping

Takeshi Takai
University of Surrey, UK
t.takai@surrey.ac.uk

Adrian Hilton
University of Surrey, UK
a.hilton@surrey.ac.uk

Takashi Matsuyama
Kyoto University, Japan
tm@i.kyoto-u.ac.jp

Abstract

This paper presents a novel method for rendering non-blurred and high quality
free viewpoint images of 3D video with camera parameters and a reconstructed 3D
shape that are not perfectly accurate. The contributions of this paper are propos-
ing methods for: 1) view-dependent texture deformation for generating consistent
textures and 2) optimisation of a 3D mesh with regard to texture consistency and
shape preservation which cooperates with the deformation. By using these meth-
ods, our approach implicitly performs non linear deformation of textures to reduce
such artifacts as blurring and ghosting of rendered images. In this paper, we first
describe what is the problem and how to cope with it, and then demonstrate effec-
tiveness of the proposed method with real scenes.

1 Introduction
3D video is currently a popular method for reconstructing object’s 3D shape and tex-
tures with dynamic motions from multiple view video. In the last decade, several
groups have developed 3D video technologies [7, 9, 8, 10, 11, 1] and it is now becom-
ing an applicative technique for media productions, e.g., film and games [5, 6]. One of
the advantages of 3D video among the computer graphics and computer vision tech-
nologies such as motion capture, image-based rendering, etc.. is that it can record the
complete dynamic 3D shape, motion and texture seen from multiple cameras. As 3D
video represents the captured object using 3D meshes with textures, it can be edited
in a conventional computer graphics pipeline, e.g., rigging, retargeting, adding virtual
objects, placing on a background model, etc.,

3D video reconstruction often results in a loss of visual quality compared to the
original video which is caused by inaccuracy of:

Camera parameters: Errors occur due to the difficulty of accurately calibrating mul-
tiple wide-baseline views.

1

Shape reconstruction: Errors in shape reconstruction occur with existing volumet-
ric and stereo-based methods due to the limited number of views and errors in
correspondence.

These inaccuracies cause blurring and ghosting artifacts in rendered images.
This paper presents a novel method for 3D video rendering, which enables us to re-

duce such artifacts by dynamically deforming multiple textures depending on a virtual
viewpoint.We also propose a mesh optimisation method with respect to texture consis-
tency as well as shape preservation, which cooperates with the texture deformation.

For the sake of reviewing 3D video, we summarise the flow of its generation here.
We first calibrate a set of cameras and capture a synchronised multiple-view image
sequence of an object’s performance. We reconstruct a 3D mesh from the captured
images using a graph-cut based method [12] without its super-resolution process. We
generate textures from the captured images, and finally, we can render free viewpoint
images with the generated 3D mesh and textures. The target processes of harmonised
texture mapping include mesh reconstruction, texture generation and rendering.

2 Related Work
Texture generation and visualisation of 3D video is a problem of generating a single
arbitrary view image from multiple view captured images.

A simple method generates texture for a certain mesh face by choosing the ‘best
camera’ that captures the most frontal view. However, this can cause discontinuities
between contiguous faces due to inaccuracies in shape. Starck and Hilton utilise a
method for generating a single continuous texture using a spherically mapped 3D shape
and multiresolution texture blending, which ensures that details of the textures can be
preserved [10]. However, this approach is limited to surfaces with genus-0 spherical
topology.

View-dependent rendering has been used to achieve high-quality rendering of changes
in appearance with viewpoint by dynamically generating textures based on the virtual
viewpoint. This requires a much larger data size than a single texture but ensures
that the exact appearance of a captured object is rendered from the original camera
viewpoints. Several view-dependent methods have been proposed including vertex-
based [8] and face-based methods [11].

Most existing methods, however, do not consider the inaccuracy of camera pa-
rameters and estimated 3D shape, and therefore textures extracted for a certain face
from multiple view images are often not consistent with each other. This inconsistency
causes blurring and ghosting artifacts in the rendered image.

Cobzas et. al.proposed an image-based rendering method for generating arbitrary
poses of an object from captured images using coarse geometry (2D) and a uncali-
brated camera [2]. They generate a spatial texture basis from the captured images, and
synthesise a new texture for a new pose from the basis. They then warp the texture
back onto the geometry, and finally render naturally synthesised images. Eisemann et.
al.recently proposed floating textures [3], which reduces such blurring and ghosting
artifacts by dynamic image warp of textures depending on a virtual viewpoint so that

2

View-dependent
texture deformation

Deform textures depending on a virtual viewpoint
to compensate texture inconsistency using the texture
coordinate complements that are computed in the
mesh optimisation process.

Virtual camera

Mesh optimisation

Refinement

Reduction

Add vertices (texture coords)
to realise adaptive texture
deformation.
Texture coord complements
are computed for texture
deformation and evaluation of
texture consistensy.

Reduce a number of facets
in order to have sufficient
image features for finding
correspondences between
multiple view images.

Ca
pt

ur
in

g
an

d
sh

ap
e

re
co

ns
tr

uc
tio

n

Re
nd

er
in

g

Figure 1: Process Flow of Harmonised texture mapping.

the textures are consistent with each other, instead of trying to estimate more accurate
camera parameters and 3D shape. They presume that the camera parameters and the
3D shape are almost accurate but not perfect, and thus a small deformation is enough
to compensate for the texture inconsistency.

The main concept of the proposed method is similar to the floating textures. Our
method is, however, based on a 3D mesh optimisation for the texture deformation that
enables us to deform textures more effectively. Here we denote the advantages of
utilising our 3D mesh based method over floating textures as:

Adaptive texture deformation: Our method can apply texture deformation to regions
of an object adaptively by optimising a 3D mesh with respect to shape and texture
consistency, that is, it can control where and how much the textures should be
deformed.

Valid texture deformation: Our method can validate whether texture deformation of
a certain region is appropriate or not by evaluating texture consistency and con-
trolling the range of texture deformation through the mesh optimisation process.

Real- time rendering: Our method can render images in real time (≥ 30 fps) with 15
viewpoint images, since it applies 3D mesh optimisation in an offline process.

3 Harmonised Texture Mapping
The key ideas of harmonised texture mapping are view- dependent deformation of multiple-
view textures and 3D mesh optimisation which cooperates with the deformation. This
enables us to produce non- blurred and high quality images using inaccurate camera
parameters and errors in 3D shape estimation. That is, we do not try to estimate precise
camera parameters and 3D shape, but appropriately deform the textures and shape for
the novel view generation. Before describing the details of the proposed method, we
summarise terms that are used in the following sections.

3

• Camera, Ci, {i = 1, 2, · · · , nc}, nc = number of cameras: a camera placed in a capturing
studio. An image captured by Ci is denoted by Ii.

• Mesh, M: a reconstructed mesh of an object which comprises vertices, vv ∈ R
3, {v =

1, 2, · · · , nv}, nv = number of vertices, and faces, f j. We only use a mesh with triangular
faces in this paper.

• Projected mesh, M̂i, {i = 1, 2, · · · , nc}: a mesh projected to Ci, which comprises vertices
of M, vertices of M projected to Ci (projected vertices; v̂M̂i

v ∈ R2), and visibility of the
vertices from Ci.

• Image segment (face), I f
M̂i←M̂ j

: an image of face, f , which is extracted from I j and trans-
formed onto Ii with M and camera parameters of Ci and C j.

• Image segment (vertex), Iv
M̂i←M̂ j

: a set of image segments (face) of all faces that share
vertex, v, which are extracted from I j and transformed onto Ii.

• Image matching: We evaluate consistency of images with (1). We call a matched point a
point which has a minimum value of (1) between two images, Ii and I j.

||Ii − I j|| =
1

3np

∑
y

∑
x

∑
c∈{R,G,B}

||Ix,y,c
i − Ix,y,c

j ||, (1)

where Ix,y,c denotes intensity of colour band, c, at point (x, y) on image, I. np denotes the
number of pixels between compared images.

As shown in Fig. 1, the flow of the harmonised texture mapping is divided into
two phases, i.e., mesh optimisation (offline) and view-dependent texture deformation
(online).

In the offline phase, we optimise a 3D mesh generated from multiple view images
so that the texture deformation in the succeeding phase can be applied effectively. The
mesh optimisation is applied in a coarse-to-fine strategy, that is, we first reduce the
number of faces of a mesh so that the size of faces is large enough to have sufficient
feature points for matching, and then refine the mesh by adding vertices (i.e., texture
coordinates) as control points for the texture deformation. In other words, our mesh
optimisation is a method to restructure the 3D mesh with respect to texture consistency
as well as shape preservation. Through the refinement process, we compute texture
coordinate complements (TCC) for all vertices of the mesh and for each viewpoint
of the cameras. TCC are a set of corresponding points of image features around a
projected vertex between multiple-view images. By adjusting texture coordinates with
the TCC appropriately, we can deform the textures to be consistent with each other.
Note that we do not try to estimate a more accurate 3D shape in the refinement process
because: 1) we already have optimised the shape to a certain level by a graph-cut
based stereo refinement method, and 2) it is hard to estimate it more accurately with
inaccuracies in camera parameters.

In the online phase, we dynamically deform multiple textures with the optimised
mesh and the TCC depending on a virtual viewpoint. Once the multiple deformed
textures are generated, we blend them with weighting factors depending on the virtual
viewpoint, and finally have a rendered image with few blurring and ghosting artifacts.

In summary, by using the above methods, we can implicitly apply a non-linear
texture deformation dynamically to the original 3D mesh, and this enables us to gen-
erate non-blurred and high quality free view point images. We describe the detailed
algorithms in the following sections.

4

3.1 Mesh Optimisation
As described in the previous section, the mesh optimisation has two processes, i.e.,
reduction and refinement. In the mesh reduction part, we first reduce the number of
faces of a mesh by edge collapse with respect to shape preservation [4]. After that, we
collapse edges of faces whose textures generated from multiple-view images are in-
consistent with each other. An ordinary method of mesh reduction generally collapses
redundant edges and does not apply to those inconsistent regions, because this opera-
tion increases differences between the original and the reduced meshes. Our approach,
on the other hand, eliminates such inconsistent regions in order to represent them by
larger faces. Although it may seem to be contradictory, this is the point of our mesh
reduction.

In the region of large texture inconsistency, the shape is not accurately recovered
mainly because of concavities. This is because concave regions are not recovered by
a silhouette intersection method and stereo-based methods may fail due to the wide-
baseline between camera views. Furthermore, inaccurate camera parameters will result
in texture inconsistencies as there may be no surface that correctly aligns all views. In
order to generate consistent textures for such regions, we need to deform textures more
dynamically than in the consistent regions. For more dynamic texture deformation, we
need larger faces, and therefore, we eliminate such inconsistent regions and represent
them by larger faces.

As a consequence, our mesh reduction method enables us to adaptively reduce a
mesh with respect to both shape preservation and texture consistency.

After the mesh reduction, we refine the mesh by adding vertices, i.e., texture coor-
dinates where textures are inconsistent. Through this refinement process, we compute
texture coordinate complements (TCC). This is also a key data for the consistent texture
deformation in the succeeding phase.

3.1.1 Mesh Reduction

Pseudo code of the mesh reduction is shown in Alg. 1. In the first step, we reduce
the number of faces in order to have faces large enough to have sufficient image fea-
tures. We then make the size of texture-inconsistent faces larger in order to deform the
textures more dynamically (See the second step of Alg. 1).

3.1.2 Mesh Refinement and Texture Coordinate Complements

After the mesh reduction, we refine the mesh by adding texture coordinates and texture
coordinate complements (TCC). Alg. 2 shows the procedure of the mesh refinement
and TCC computation.

In the first step, we compute ‘image segment (vertex)’ matching for obtaining TCC.
Fig. 2 illustrates the projection of ’image segment (vertex)’ matching and TCC for a
single vertex of a mesh. The vertex is projected to image planes of cameras from the
object surface using the camera parameters shown as dashed lines. Each projected
vertex has its own ‘image segment (vertex)’ on the image plane, as shown by small
rectangles on the image planes. We then find matched points between an image of a

5

Algorithm 1: Mesh reduction.
repeat

Mesh reduction by edge collapse with respect to shape preservation.
until average size of faces > threshold.
repeat

foreach face f in M do
D f ← Compute difference of f .

f? ← Find a face that has the maximum D and its size < threshold.
if f? is empty then

continue← false
else

Find one edge of f which preserves the shape most when it is removed, and collapse it.

until continue is false.

certain projected vertex and image segments (see Alg. 3). If the shape and the cam-
era parameters are perfectly accurate, the matched points are the same position as the
projected vertex. However, the matched points are located around the projected vertex
due to the inaccuracy of the shape and camera parameters, and the differences between
these points is the reason of the blurring and ghosting artifacts. Hence correcting these
differences is the key object of harmonised texture mapping, and the matched points
are recorded as the texture coordinate complements.

After obtaining TCC, we compute differences of textures (Alg. 41, Fig. 3), which
are generated using corrected texture coordinates with TCC (Alg. 5). We then evaluate
the TCC using the difference (Alg. 6). A small value of the difference denotes that the
computed TCC is good enough to compensate the inconsistency. Most object regions
have small values because the shape and camera parameters are almost accurate. We
can reduce the artifacts by simply using TCC in most cases. The problem is, therefore,
regions with large values. Most of the regions are concave regions of the true shape,
because these regions are hard to reconstruct by silhouette and wide-baseline stereo
methods. Although a stereo based refinement is applied, it is still difficult because the
camera parameters are not perfectly accurate and there is a wide-baseline.

In such region with large differences, we subdivide faces by adding vertices (i.e.,
texture coordinates) and repeat Alg. 3. This means that our refinement method enables
us to apply non-linear texture deformation to such regions adaptively.

The faces are subdivided into four triangles by adding vertices to the centre of each
edge. To preserve the topology of the mesh, we first find the faces that are required to
be subdivided, then assign an ID to all the faces based on the adjacent faces as shown
in Fig. 4, and finally subdivide them all at the same time (see Alg. 7).

3.2 View-dependent Texture Deformation and Rendering
With the optimised mesh and TCC, we dynamically deform textures depending on a
virtual viewpoint. Fig. 5 shows a sketch of generating harmonised textures with TCC.
When we specify a viewing direction to the object, we can compute weighting fac-
tors and then compute harmonised texture coordinates using TCC (Fig. 6). These har-

1Values of α and γ1 are heuristically defined as 0.3 and 10, respectively.

6

Algorithm 2: Mesh refinement and TCC computation.
repeat

TCC← Computing image segment (vertex) matching (see Alg. 3).
Computing differences of extracted textures with TCC (see Alg. 4).
continue← Evaluation and subdivision (see Alg. 6).

until continue is false.

Texture coord
complements

Projection

Image segment matching

Object

Vertex
Image plane

Figure 2: Sketch of projection, image segment matching and texture coordinate com-
plements.

monised texture coordinates enable us to generate textures from each captured image
by deforming them to be consistent with each other (see Alg. 8).

In the algorithm, the weighting factor, w, is computed using a dot product be-
tween the camera’s viewing direction and the virtual one, i.e., a larger value means
they are closer. This controls how much of a texture generated from a camera is de-
formed. A larger value of the weighting factor forces deformation of textures with
smaller weights. That is, a texture generated from a camera with a larger value is not
deformed much and preserves the captured image. This enables us to generate a tex-
ture without deformation from the camera whose viewing direction is the same as the
virtual one2.

After generating harmonised texture coordinates, we generate deformed textures
with them. We then blend them with the weighting factors that are computed in Alg. 8,
and finally we can render an image with few blurring and ghosting artifacts (Alg. 9).

4 Experimental Results
We evaluate our method, Harmonised texture mapping, with two 3D videos of Maiko
and Kung fu data. The configuration of capturing and the details of the data are the
following.

2We utilise a coefficient, γ2, for controlling the weighting factor, which is heuristically defined as γ2 = 50.
With this value, the normalised weighting factor (in Eq. (6)) of the camera that has the same viewing direction
as the virtual one becomes almost 1 and the others 0.

7

Algorithm 3: Computing image segment (vertex) matching.
M̂ =

{
M̂i |i = 1, 2, . . . , n

}
← Compute projected meshes with M and a set of C.

foreach projected mesh M̂i in M̂ do
foreach vertex v in M do

foreach projected mesh M̂ j in M̂ do

v̂
M̂i←M̂ j
v ← Search corresponding point with template matching by projecting image

segment Iv
M̂i←M̂ j

to Ii.

Algorithm 4: Computing differences of textures of each face f .
foreach face f in M do

We define a best camera as a camera that captures face f from its front and larger.
Find best camera C? that has the highest value of e defined by

ek = αd̄Ck + (1 − α)s̄ f , (2)

where

d̄Ck =
dCk∑C
i dCi

, dCk =

 ~VCk ·
~N f + 1
2

γ1

, s̄ f =
s f∑C
i s fi

, (3)

• ~VCk : viewing vector of camera Ck ,

• ~N f : surface normal of face f ,
• s f : size of face f , and
• α, γ1: weighting coefficient.

Compute differences by

D f =
1

nC − 1

∑
k,k,?

ek ||I
f ′

M̂k←M̂?
− Ik ||, (4)

where

• nC : number of cameras in which the face is projected, and,

• ||I
f ′

M̂k←M̂?
− Ik ||: difference computed by Eq. (1).

• Studio: a dodecagonal prism whose diameter and height are 4 m and 2.5 m, respectively
(Fig. 7).

• Camera: 15 cameras (Sony XCD-710CR; XGA, 25 fps). The cameras have the same
lenses except three cameras, i.e., frontal and ceiling cameras. An example of captured
images are shown in Fig. 8.

• Maiko data: a maiko woman wearing kimono. Both of her sides and a part of the broad
sash are concave but not perfectly reconstructed. The sash on her back is reconstructed
thicker than the actual size, and thus the patterns on it extracted from multiple cameras
are not consistent with each other.

• Kung fu data: a man performing kung fu. The cloths are simpler than maiko.

4.1 Mesh Optimisation
Fig. 9 shows meshes that are generated through the optimisation process. Fig. 9a shows
the original mesh that has 107,971 vertices and 215,946 faces. Fig. 9b shows the

8

Algorithm 5: Obtaining warped image segment of face.
Suppose the vertices of f as {v1, v2, v3}, adjusted texture coordinates of f is given by

v̂
M̂i
v′k
= v̂

M̂i←M̂ j
vk , k = 1, 2, 3.

With these texture coordinates, we obtain warped image segment of face, I f ′

M̂i←M̂ j
.

I jIi

v̂M̂i←M̂ j
v2

v̂M̂i←M̂ j
v3

v̂M̂i←M̂ j
v1

Figure 3: Projection of image segment (face) for computing difference.

reduced mesh that have large enough faces to have sufficient features for matching.
Fig. 9e shows the differences computed by Alg. 4 with the colour of high value: red
and low value: blue. We can find that large differences appear on the side of the body,
sash, sleeves and hem of the kimono. The inconsistency of the side and sash is caused
by concavities, and the others are mainly due to the self- occlusions seen from the ceil-
ing cameras. The latter case is not easy to compensate by texture deformation because
the textures are completely different. For example, a part of the hem (a lower part of
the mesh, which shows a larger difference than the other area) has a texture of a part of
the head projected from the ceiling camera. This causes an artifact of texture switching
when the virtual camera moves between the ceiling cameras the others. Fig. 9c shows
a reduced mesh with regard to texture consistency, and Fig. 9f shows that the inconsis-
tent faces become larger by the reduction. Fig. 9d and g shows the final result of the
mesh optimisation. Through this process, the inconsistent areas first become large to
be deformed dynamically and then they shrink to limited areas. This result shows that
the input mesh is adaptively optimised with regard to the texture consistency and shape
preservation.

4.2 Quantitative Evaluation
We place a virtual camera that has the same parameters of camera, Ci, and render an
image, I′i , without using the image of camera, Ci. We then evaluate the quality of the
harmonised texture mapping by computing PSNR between Ii and I′i . For comparison,
we also show PSNR of existing methods of view- dependent vertex based method (VD-
VBM) and view- dependent texture blending method (VDTBM)3 in Fig. 10. We utilised
all cameras in the studio except the frontal and ceiling cameras for this evaluation, i.e.,

3The textures are blended depending on the virtual viewpoint, but not deformed.

9

Algorithm 6: Evaluation and Subdivision.
Evaluate differences D =

{
D f | f = 1, 2, . . . ,m

}
.

if average(D) > threshold or Requires subdivision for self-occluded patches then
Subdivide faces of M (See Alg. 7).
return true.

else
return false.

Algorithm 7: Subdivision of faces.
foreach face f in M do

if E f > threshold then
typeOfFace f ← 4

foreach face f in M do
if typeOfFace f , 4 then

typeOfFace f ← 0
foreach adjacent face af of f do

if typeOfFacea f = 4 then
typeOfFace f ← typeOfFace f + 1

foreach face f in M do
if typeOfFace f > 0 then

Subdivide face f as shown in Fig. 4 by typeOfFace f .

12 cameras from the top-left in Fig. 8. Our method shows higher values than the other
methods as shown in the figure.

4.3 Qualitative Evaluation
We show captured images and images that are rendered with VDVBM, VDTBM and
our method (HTM) in Fig. 11 for the qualitative evaluation. We can easily find differ-
ence of quality between VDVBM and HTM from the figures. The images generated
by VDVBM contain blurring artifacts due to both of interpolation of vertex colors and
the inaccuracy of the camera parameters and the 3D shape. While VDTBM generates
textures with almost the same quality to the captured images, blurring and ghosting ar-
tifacts appear on the broad sash and the sleeves (Fig. 11e). The artifacts also appear on
the designs of the sash (Fig. 11f). On the other hand, our method can obviously reduces
such artifacts and render high quality images as shown in Fig. 11g and Fig. 11h.

4.4 Real-time Rendering
Lastly, we show a result of computational time for rendering one frame in Tbl. 1. The
number of faces of optimised Maiko and Kung fu data are approximately 5,000. The
specification of the PC that we utilised for the evaluation is CPU: Core2Duo 2.4 GHz,
Memory: 4 GB, GPU: GeForce 8800 GTX and VRAM: 750 MB, and the software

10

(a) Type 0 (b) Type 1 (c) Type 2 (d) Type 3 (e) Type 4

Figure 4: Types of face subdivisions.

Projection ObjectVertex

Virtual view

Harmonised
texture coordinate

Harmonised texture

Figure 5: Sketch of generating harmonised textures with texture coordinate comple-
ments.

is built with C# and Managed DirectX with Pixel shader 2.0. Fig. 12 shows rendered
images of the kung fu sequence. Our method can render these high quality images in
real time (≥ 30 fps) using 15 multiple viewpoint images.

5 Conclusion
We have presented a novel rendering method for 3D video, Harmonised texture map-
ping, which can render with few blurring and ghosting artifacts that are caused by the
inaccuracy of the camera parameters and the reconstructed 3D shape. Our method op-
timises the 3D mesh of an object with regard to texture consistency and shape preserva-
tion, and compensates for the inconsistency of the textures by dynamically deforming
multiple- viewpoint textures. The experimental results have shown that our method can
reduce the artifacts effectively, and render the optimised 3D video in real time.

Our method, however, failed to compute harmonised texture coordinates for re-
gions which are grossly different to the true surface and whose textures are completely
inconsistent. To cope with this issue, we need a framework to reject such completely
different textures.

11

Algorithm 8: Computing harmonized texture coordinates with TCC.
Set viewing direction, ~Veye.
foreach projected mesh M̂i in M̂ do

Compute weighting factor by

wM̂i
=

 ~Veye · ~VCi + 1
2

γ2

, (5)

where γ2 denotes a weighting coefficient.

foreach vertex v in M do
Compute point for extracting texture, i.e., harmonized texture coordinates, v̄

M̂i
v , with the

weighting factors and the TCC by

v̄
M̂i
v =

∑
j

wM̂ j∑
k wM̂k

v̂
M̂i←M̂ j
v . (6)

Ii
v̂M̂i←M̂1

v̂M̂i←M̂ j

v̂M̂i←M̂ i

v̂M̂i←M̂2

v̄M̂i

Figure 6: Computing harmonised texture coordinates.

References
[1] J. Allard, J.- S. Franco, C. Ménier, and E. Boyer. The GrImage Platform: A Mixed Reality Environment

for Interactions. In 4th IEEE International Conference on Computer Vision Systems, 2006.
[2] D. Cobzas, K. Yerex, and M. Jägersand. Dynamic textures for image- based rendering of fine- scale 3d

structure and animation of non- rigid motion. In Eurographics, volume 21, pages 1067–7055, 2002.
[3] M. Eisemann, B. D. Decker, M. Magnor, P. Bekaert, E. de Aguiar, N. Ahmed, C. Theobalt, and A. Sel-

lent. Floating textures. Eurographics ’08, 27(2), 2008.
[4] H. Hoppe. Progressive meshes. In SIGGRAPH ’96: Proceedings of the 23rd annual conference on

Computer graphics and interactive techniques, pages 99–108. ACM, 1996.
[5] i3DPost. Intelligent 3D content extraction and manipulation for film and games.

http://www.i3dpost.eu/.
[6] R. Ichikari, R. Tenmoku, F. Shibata, T. Ohshima, and H. Tamura. Mixed reality pre- visualization

for filmmaking: On- set camera- work authoring and action rehearsal. International Journal of Virtual
Reality, 7(4):25–32, December 2008.

[7] T. Kanade, P. Rander, and P. Narayanan. Virtualized reality: Constructing virtual worlds from real
scenes. IEEE Multimedia, Immersive Telepresence, 4(1):34–47, 1997.

[8] T. Matsuyama, X. jun Wu, T. Takai, and S. Nobuhara. Real- Time 3D Shape Reconstruction, Dynamic
3D Mesh Deformation, and High Fidelity Visualization for 3D Video. Computer Vision and Image
Understanding, 96(3):393–434, 2004.

12

Algorithm 9: Output image rendering.
foreach pixel p in a rendered image do

foreach projected mesh M̂i in M̂ do
if T p

M̂i
.Alpha = 0 then

w̄M̂i
← 0

else
w̄M̂i
← wM̂i

Compute colour by

Colp =
∑

i

w̄M̂i∑
j w̄M̂ j

T p
M̂i
, (7)

where T p
M̂i

denotes a colour value for pixel p extracted from Ii with v̄
M̂i
v .

Figure 7: Studio and cameras (CG model).

[9] S. Moezzi, L.-C. Tai, and P. Gerard. Virtual view generation for 3d digital video. IEEE Multimedia,
Immersive Telepresence, 4(1):18–26, 1997.

[10] J. Starck and A. Hilton. Surface capture for performance-based animation. IEEE Computer Graphics
and Applications, pages 21–31, 2007.

[11] T. Tomiyama, M. Katayama, Y. Orihara, and Y. Iwadate. Arbitrary viewpoint images for performances
of japanese traditional art. In 2nd Conference on Visual Media Production, pages 70–77, 2005.

[12] T. Tung, S. Nobuhara, and T. Matsuyama. Simultaneous super-resolution and 3d video using graph-
cuts. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 2008.

13

Figure 8: Example of captured images.

Table 1: Computational time for rendering one frame (ms).
Maiko Kung fu

Weighting factors (Eq. (5)) < 1 < 1
Harmonised texture coordinates (Eq. (6)) 27.2 15.8
Texture generation and rasterisation (Alg. 9) < 1 < 1

14

(a) Original 215,946 faces (b) Reduced- S 1,500 faces (c) Reduced- T 1,486
faces

(d) Refined 4,406 faces

(e) Reduced- S (f) Reduced- T (g) Refined

Figure 9: Mesh optimisation results.
Images a–d show meshes generated by the optimisation process. Images e–g show the texture inconsis-
tency of each mesh, where the colour of high value (inconsistent): red and low value (consistent): blue.
‘Reduced- S’ and ‘Reduced- T’ denote reduced meshes with respect to shape preservation and texture consis-
tency, respectively.

15

Harmonised Texture Mapping
Simple Texture Blending

Vertex Colouring

Figure 10: Quantitative evaluation of various methods.

(a) Captured image (front). (b) Captured image (back). (c) VDVBM (front) (d) VDVBM (back)

(e) VDTBM (front) (f) VDTBM (back) (g) HTM (front) (h) HTM (back)

Figure 11: Images for qualitative evaluation.

16

Figure 12: Examples of 3D video sequence.

17

