動的環境における頑健な背景差分の実現法

波部 斉 大矢 崇 松山 隆司 京都大学大学院情報学研究科 知能情報学専攻

Abstract: In this paper, we propose a robust background subtraction method for non-stationary scenes. The non-stationarities modeled by the method are (1) variations of overall lighting conditions and (2) local image pattern fluctuations caused by soughing leaves, fluttering flags, flickering CRTs and so on. First we propose a novel correlation measure between two blocks in images (SMNVD) to realize the robust background subtraction against varying illuminations. Then, to characterize local image pattern fluctuations, we propose a two dimensional histogram (TNVDCM), where the distribution representing the temporal fluctuation pattern in a block is recorded. Experimental results of the background subtraction using SMNVD and TNVDCM demonstrate their robustness and effectiveness for real world scenes.

1 はじめに

動画像からシーン内の移動物体の検出や追跡を行う際に用いられる手法の一つとして、背景差分が挙げられる.背景差分は観測画像と背景画像とを比較することで、効率よく移動物体を検出する手法であるが、背景シーンが静止していなければならないという厳しい制約が課せられる.それに対して、現実世界では屋内、屋外を問わず背景の物体が完全に静止していることはなく、日光などの照明条件も刻々と変化するので、常にこの制約を満すことは困難である.

そのような動的に変化する環境において背景差分 を実現するために、これまで次のような方法が提案さ れてきた.1)各画素における輝度値の変化を確率分布 でモデル化し、その分布に対する尤度を求めることで、 移動物体に相当する画素を検出する手法[1]-[4].2)照 明条件の変化や新たな背景物体の出現を検知し、適応 的に背景を更新する手法[5]-[7].前者では確率分布を 仮定するために、それに当てはまらないような変化に 対応できないという問題があり、後者では背景の変化 が検知されるまでは誤検出が多くなってしまうという 問題が生じる.これらの要因により、動的環境に幅広く 適応可能な検出法の実現には至っていない.

本論文では、背景の変動を

- 照明条件の変化による変動.ここでは照明条件の変化は画素値の一様な変化を引き起こすものとする.
- 木の葉の揺らぎ、旗のはためき、ディスプレイのちらつきなどによる画像上の変化.

Hitoshi Habe, Takashi Ohya, Takashi Matsuyama

Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University

の二つに類別し,前者に対しては一様な画素値の変化 に不変な特徴量を導入し,後者に対しては局所的な時 間的変動をモデル化することによって,様々な種類の シーンの変化に対して,安定に移動物体を検出する手 法を提案する.

ー様な画素変化の影響を受けず, 頑健な侵入物体検 出を実現するためには, 画像ブロックの空間的な構造 特徴に着目する. [6] では画像ベクトル間の正規化距 離を用いることで画像の構造変化と一様な明度分布変 化との区別を試みているが, 照明が暗いときにはノイ ズの影響が大きくなってしまい, 安定な検出ができな いという問題がある. それに対し我々は, 正規化距離 に画像の空間的な構造特徴を加味した特徴量として, spatially modulated normalized vector distance (以降 では SMNVD と略する)を提案する. 実験結果からも 照明が暗いときの SMNVD の優位性が示されており, 画像の特徴を評価する上で, 空間的な構造特徴が有効 であることが分かる.

画像上の局所的な時間的変動を特徴づけるためには 相関共起行列を提案する.相関共起行列は各ブロック に対して定義される2次元のヒストグラムであり,そ の(*i*, *j*) 要素は,時間間隔 Δ*t*離れた観測データ間の 正規化距離が*i*と*j*となる共起頻度を表している.行 列の頻度分布を相関共起分布と呼び,その形状を解析 することで,ブロックにおける時間変動パターンを特 徴づけることができる.本論文では,時間変動パターン を5つのクラスに分け,それぞれのクラスについて最 適な差分演算を定義することにより,動的なシーンに 対して移動物体の検出が行えることを示す.現段階で は実験結果の中でクラスの類別が不十分な部分がある が,それでも変動する背景に対して十分効果的に対象 が検出できることが示されている.

A Robust Background Subtraction Method for Non-Stationary Scenes

2 空間的な構造特徴の利用

本節では、照明条件の変化に代表されるような、背 景の画像値が一様に変化する環境で、移動物体を検出 する手法について述べる.

2.1 正規化距離

本論文で述べるすべての手法は、あらかじめ背景 画像系列 $B(X, Y, \tau)$ ($\tau = 1, ..., T_B$)から基準画像* R(X, Y)をはじめとする背景モデルを生成しておき、 処理の対象となる観測画像 I(X, Y, t) (t = 1, ..., T)と R(X, Y)とを比較することで移動物体の検出を行う.

以降では以下のような表記を用いる.まず,各画像 $B, R, I \in N \times N$ のブロックに分割したものをそれぞ れ $B_i(x, y, \tau), R_i(x, y), I_i(x, y, t)$ とする.添字 iは ブロックの番号を表し、ブロック番号と画像内のブロッ クの位置の関係はすべての画像で同一とする.画像間 の比較はブロック単位で比較を行うこととし、画像領 域間の構造的な変化を検出できるようにする.

さらに、画像ブロックの各画素をベクトルの各要素 としたときのベクトルをそれぞれ $b_i(\tau)$, r_i , $i_i(t)$ とす る (図 1). このベクトルは画像内の局所的なパターン を表す. ベクトル表記を用いた場合、プロック間の類 似度を求める問題は、ベクトル間の距離を求める問題 に帰着できる. [6] では距離の尺度として、以下で定義 される正規化距離 (normalized vector distance; NVD) を用いている.

$$NVD(\boldsymbol{a}_i, \, \boldsymbol{b}_i) = \left| \frac{\boldsymbol{a}_i}{|\boldsymbol{a}_i|} - \frac{\boldsymbol{b}_i}{|\boldsymbol{b}_i|} \right|. \tag{1}$$

ここで, *a_i*, *b_i* は共に画像ブロックを表すベクトルとす る. 正規化距離はベクトルの大きさの変化には不変な 量であるので, 一様な画素値の変化の影響は受けない. 照明条件の変化が画素値の一様な変化を引き起こすと モデル化できるならば, 正規化距離を用いて照明条件 の変化以外の移動物体による画素変化の検出を行うこ とができる[†].

以上の事項はノイズがない理想的な環境では明ら かであるが、実際には撮像系に起因する様々なノイズ が *I*(*X*, *Y*, *t*) に含まれることになる. 各画素に含まれ るノイズは互いに独立に正規分布に従うとすると、そ れらの影響について以下のような定理が得られる(証 明過程は略).

- [定理 1] I(X, Y, t) として $B(X, Y, \tau)$ と同じ画像系 列を用いたときに、 $NVD(i_i(t), r_i)$ の平均値は零 ではなく、近似的に $|\overline{i_i}|$ に反比例する. $\overline{i_i}$ は $i_i(t)$ の各要素の平均をとったベクトルである.
- [定理 2] 定理 1 と同じ条件で $NVD(i_i(t), r_i)$ の分散 は近似的に $|\overline{i_i}|^2$ に反比例する.

 $B(X, Y, \tau)(= I(X, Y, t))$ として、照明条件を4段 階に変化させて撮影した動画像を用意し、その中のある ブロック(静止背景)に着目して、正規化距離のヒスト グラムを作成すると図2のようになる.この図からも 上に挙げた正規化距離の性質を確かめることができる.

2.2 空間的構造特徴との統合

定理1および2により,正規化距離を画像ブロック 間の相関値として用いれば,照明が暗いときに背景を 移動物体と誤検出することが多くなり,信頼性が低下 することになる.これは正規化距離だけの問題ではな く,色の情報を用いて照明条件に依存しない検出や認 識を行う際[8]にも,本質的に同じ要因によって照明が 暗いときに信頼性が低下することが知られている.

我々は、この問題が生じる原因として、画像が本来 持っている空間的な構造特徴を無視していることに着 目する.つまり、N×Nの画像ブロックを N²次元の ベクトルとするときに失われている情報に着目するの である.実際、移動物体による画素値の変化は画像ブ ロック内で集中して起こることが多く、ノイズや照明 変化による画素値の変化は一様に起こることが多いと することができる.しかし、正規化距離では空間的な構 造特徴を反映できないのでこれらを区別することがで きず、誤検出が多くなってしまう.

そこで,正規化距離に回素変化の空間的構造を表す 特徴量 $SP_i(t)$ を加味することで頑健な検出の実現を 試みる. つまり, $a_i \ge b_i$ の間の SMNVD を,

$$S_i(t) = F(NVD(\boldsymbol{a}_i, \boldsymbol{b}_i), SP_i(t)), \qquad (2)$$

^{*}本論文の実験では背景画像系列の各ピクセル毎のメディアンを 計算し,基準画像としている.

[†]ベクトル同士がなす角 θ も大きさに独立であるが、実際に計算 に用いることになる $\cos \theta$ には θ が小さいときに分解能が悪くなる という問題がある.

図 3: ブロック *i* の空間的な特徴

と定義する. ここで, *F* は正規化距離に空間的構造特 徴量を統合する関数である. 以降に SMNVD を具体的 に実現するアルゴリズムの一例について述べる.

2.3 SMNVD の実現例

ここでのアルゴリズムは非常に直感的で簡単なも のであるが、4.1 節 に示す実験結果ではこのアルゴリ ズムでも十分有効であることが示されている.

1. 背景画像系列と基準画像の各ブロック間の正規化 距離 $D_i(\tau) = NVD(\mathbf{b}_i(\tau), \mathbf{r})$ を求め、その平均 $\overline{D_i}$ と分散 σ_{D_i} を背景モデルとして保持する.正 規化距離は正規分布に従うとすると、その確率密 度関数 $P_{\text{NVD}}(D_i(\tau))$ は以下のようになる.

$$P_{\text{NVD}}(D_i(\tau)) = \frac{1}{\sqrt{2\pi\sigma_{D_i}}} \exp\left\{-\frac{(D_i(\tau) - \overline{D_i})^2}{2\sigma_{D_i}^2}\right\}$$
(3)

- 2. 基準画像中のブロック R_i の中に小ブロック $W_{R_i}^k$ (k = 1, ..., n)を設け、そのベクトル表現を $w_{R_i}^k$ とする. ここで、n は小ブロックの数である (図 3 では 5 つの小ブロックを考えている). 背景画像系 列中にも同様に小ブロック $W_{B_i}^k(\tau)$ を設ける (ベ クトル表現を $w_{B_i}^k(\tau)$ とする). この小ブロック 同士で正規化距離 $C_i^k(\tau) = NVD(w_{B_i}^k(\tau), w_{R_i}^k)$ を求め、その平均 $\overline{C_i^k}$ を背景モデルとして保持す る. ここまでが背景画像系列に対して行う前処理 である.
- 3. 観測画像系列 I(X, Y, t) と基準画像の間で、各プロ ック i の正規化距離 $D_i(t) = NVD(i_i(t), r_i)$ とプ ロック内の小プロック $W_{I_i}^k$ (ベクトル表現を $w_{I_i}^k$ と する) の正規化距離 $C_i^k(t) = NVD(w_{I_i}^k(t), w_{R_i}^k)$ (k = 1, ..., n) を求める.

 図 3 に示すように、ブロック i における背景と移 動物体の相互関係は(1)静止背景のみの場合、(2) 背景と移動物体が混在する場合、(3)移動物体の みの場合の 3 つに場合分けすることができる.こ れらを区別するために正規化距離の空間的な分散 V_i(t)を定義する.

$$V_i(t) = \frac{1}{n} \sum_{k=1}^{n} (C_i^k(t) - \overline{C_i^k})^2.$$
(4)

(1) 静止背景のみの場合 通常の照明条件では, 各 $C_i^k(t)$ (k = 1, ..., n) の値は零に近くなり互いに ほぼ等しくなる.よって空間的分散 $V_i(t)$ も同様 に零に近くなる.照明を変化させたときに $V_i(t)$ が受ける影響については, 各画素のノイズが独立 な正規分布に従うとし, $|\boldsymbol{w}_{I_i}^k(t)|$ の平均値を $|\boldsymbol{w}_{I_i}^k|$ とおくことで,以下の定理が証明できる (証明過程 は略).

[定理 3]
$$V_i(t)$$
の平均値は近似的に $rac{1}{n}\sum_{k=1}^n rac{1}{|m{w}_{I_i}^k|^2}$ に比例する.

[定理 4] $V_i(t)$ の分散は近似的に $\frac{1}{n^2} \sum_{k=1}^n \frac{1}{|\boldsymbol{w}_{I_i}^k|^4}$ に 比例する.

これらの定理より、照明が暗くなったときの $V_i(t)$ の分散の増加の度合いは $D_i(t)$ の分散の増加の度合いは $D_i(t)$ の分散の増加の度合いより小さく、その信頼性が高いことが分かる.

(2) 背景と移動物体が混在する場合 移動物体が存 在する小ブロックでは正規化距離 $C_i^k(t)$ の値は際 立って大きくなる. よって, $V_i(t)$ は大きくなる. (3) 移動物体のみの場合 移動物体が背景と全く同 じテクスチャを持っていない限り, 各々の $C_i^k(t)$ はランダムな値をとる. 従って $V_i(t)$ は大きくな る.

以上のことをまとめると、空間的分散 $V_i(t)$ はブ ロック i の変化の空間的な散らばり方を表し、こ れによって移動物体の検出がある程度可能である ことが分かる.よって、式 (2) 中の $SP_i(t)$ を $V_i(t)$ で定義する.

SP_i(t) と D_i(t) を統合させることで、S_i(t) が得られる.ここでは、式 (2) 中の F は次式で定義するものとする.

$$F(D_{i}(t), SP_{i}(t)) = \begin{cases} 1 & if \quad P_{\text{NVD}}(D_{i}(t)) < Th 1 \\ & and \quad SP_{i}(t) > Th 2 \\ 0 & otherwise. \end{cases}$$
(5)

Th1 と Th2 は閾値である.

 F(D_i(t), SP_i(t)) が1であるならば、ブロック i に は移動物体が検出されたとする.

図 4: 相関共起分布の一例

3 背景の変動のモデル化

実世界のシーンでは、木の葉の揺らぎ、旗のはため き、ディスプレイのちらつきなどの様々な種類の局所 的な変動がある.それらは画像上の画素の変動を引き 起こすが、移動物体の検出の際には背景として処理さ れなくてはならない.従って、背景差分を行うための背 景モデルと差分演算を、それらの局所的変動と移動物 体を区別できるように拡張する必要がある.我々はそ のような局所的な変動を、各ブロックにおける時間間 隔 Δt をもつ正規化距離対の共起頻度の分布でモデル 化し、動的に変動する背景に対しても適応できる背景 差分を実現することを試みる.

本節では、そのための手法として相関共起分布を導入する.相関共起分布は相関値としての正規化距離の時間的な共起確率を表しており、その分布形状を解析すれば画像上の局所的な変動を5つのクラスに分類できる.各々のクラスに適応した背景差分を用いれば動的に変化するシーンに対しても移動物体検出が可能になることが期待される.

3.1 相関共起分布

背景画像系列と基準画像の間の正規化距離 $D_i(\tau) = NVD(\mathbf{b}_i(\tau), \mathbf{r}_i)$ は連続的な値であるとみなしてよい が、適当な量子化間隔で量子化し、1 から M までの整数値をとる $D'_i(\tau)$ を得る. その上で、 $M \times M$ の行列 $A_i = \{a^i_{ik}\}(j, k = 1, \dots, M)$ を以下のように定義する.

$$a_{jk}^{i} = \frac{1}{T_{\rm B} - \Delta \tau} \sum_{\tau=1}^{T_{\rm B} - \Delta \tau} P(i, j, k, \tau).$$
(6)

ここで,

$$P(i, j, k, \tau) = \begin{cases} 1 & if \quad D'_i(\tau) = j \text{ and } D'_i(\tau + \Delta \tau) = k, \\ 0 & otherwise. \end{cases}$$
(7)

であり、 $\Delta \tau$ は時間間隔である. 我々はこの行列を 相関共起行列 (temporal NVD co-occurrence matrix; TNVDCM) と呼び、行列内の頻度分布を相関共起分布 と呼ぶ. 相関共起分布の一例を図 4 に示す.

3.2 相関共起分布のパターン

相関共起分布のパターンは動的な背景の変動パター ンを反映している. そのパターンは以下に示す5つに 分類することができる (図 5).

- (1)単一の峰相関共起分布が単一の峰のみを含んでいる場合、そのブロックは正規化距離が変化しない静止背景領域に相当する.
- (2) 周期的 ブロック中の変動が周期的である場合,相 関共起分布の対角線まわりのモーメント $M_{\rm d}$ [‡]は $\Delta \tau$ の変化に伴い変化する. $\Delta \tau$ が周期の整数倍 に等しいときにモーメントは極小になる. この性 質を使えば,変動が周期的であるかどうかを確か めることができ,もし周期的であればその周期 ω_i も求めることができる.
- (3) 複数の峰 画像のパターンの変動がコントラストの 高いエッジの振動のように、状態遷移モデルによっ てモデル化できるとき、相関共起行列には複数の 峰があらわれる.図5(3a)(3b)は2状態の状態遷 移モデルから得られる分布パターンを表している.
- (4) 対角線上の尾根状の分布 揺らいでいる木の葉や枝のような場合,正規化距離は徐々にだが大きな範囲で変化する.したがって相関共起分布には対角線上に滑らかな尾根があらわれる.
- (5) 不規則な分布 風にはためく旗のように、不規則に 動く物体の場合、相関共起分布は他のどのクラス にも分類できない不規則な分布になる.

3.3 背景の変動パターンに応じた背景差分

時間的に変動するシーンに対して背景差分を行う ために、まず相関共起分布を用いてブロック *i* が先に 述べた 5 つのクラスのどれに属するかを判断する. そ の後で観測画像の各ブロックに対して、クラス分けの 結果に最適化された差分演算を適用する.

3.3.1 動的背景のクラス分け

変動する背景のクラス分けは、図 6 に示される決定 木にしたがって行われる. その中で、 $M_{\rm c}, M_{\rm d}, C_{\rm t}, C_{\rm b}$

$‡$
対角線まわりのモーメントは $M_{
m d} = \sum_{j,k} a_{jk} |j-k|$ で定義する.

はそれぞれ重心まわりのモーメント[§],対角線まわりの モーメント,2 状態の状態遷移の検出結果[¶],周期性の 検出結果を表している.状態遷移の検出は相関共起分 布に対してクラスタリングを行うことで実現し,周期 性の検出は相関共起行列作成時の時間間隔 $\Delta \tau$ を変化 させたときの $M_{\rm d}$ の変化をみることで行っている.

3.3.2 最適化された背景差分

前節のクラス分けの結果の各クラスに最適化され た背景差分は以下のようになる.

- (1) 単一の峰 背景画像系列と基準画像よりブロック i の正規化距離が従う確率密度関数が正規分布の形 で得られる(式(3)). それにより,観測画像のブ ロック i での正規化距離 D_i(t) = NVD(i_i(t), r) に対する尤度が計算でき,閾値処理を行うことで 移動物体の検出ができる.
- (2) 周期的 クラス分けを行う際に、変動の周期 ω_i が 推定できる. その周期 ω_i だけ離れた時刻での正 規化距離の値の差 $D_i(t - \omega_i) - D_i(t)$ は正規分布 に従うものとし、その値に対する閾値処理を行う ことで検出を行う.
- (3) 複数の峰 状態遷移を隠れマルコフモデルによって モデル化する. 観測画像から計算される, ある時 間幅の正規化距離の系列 $D_i(t-l)(l = L, \dots, 0)$ がそのモデルより生成される確率が計算でき, そ れに対する閾値処理を行えばよい. (現在未実装)

 (4) 対角線上の尾根状の分布 相関共起分布そのものが 一組の正規化距離の生起確率を表しているとし、観 測画像から得られた一組の正規化距離 D_i(t - Δt) と D_i(t) の生起確率を求め、閾値処理を行う.

(5) 不規則な分布 (4) と同様.

4 実験

本節では、SMNVD と相関共起分布を実装したアル ゴリズムによる実験結果を示し、それらの有効性を明 らかにする.用いたアルゴリズムは今までに述べたよ うに非常に簡単なものであるが、以下に示す実験結果 はそれらが十分有効であることを示している.

4.1 実験 1

ここでは、SMNVD を用いると正規化距離に比べて 照明条件の変化に対して頑健に移動物体を検出できる ことを確かめる.用いた画像は256 階調の濃淡画像で あり、固定されたカメラから撮影した.まず背景画像系 列から基準画像(図7(a))を求めた.検出対象の動画 像は背景画像系列より暗い照明下で撮影し、シーン中 に移動物体として人が歩いている(図7(b)).

図 7 (c),(d),(e) はそれぞれ通常のピクセル毎の背 景差分, 正規化距離の確率密度関数に対する閾値処理, そして 2.3 節に示した SMNVD を用いた検出の結果を 示している. さらに閾値の影響を受けない評価を行う ために正解領域をあらかじめ与えて求めた ROC 曲線 を (f) に示す. これらの結果から,本論文で提案された SMNVD を用いた背景差分は照明変化に対して頑健で あることが分かる.

4.2 実験 2

次に、3.3 節で述べた相関共起分布を用いた背景差 分を実際の映像に適用する.その目的はディスプレイ のちらつきや木の葉の揺らぎ,旗のはためきや電線の 揺れなどを含んだ屋外,屋内を問わないシーンから移 動物体を検出することであった.いくつかのシーンに 対する解析結果が得られているが、ここではそのうち 二つの例を図 8 に示す.(1)では木の枝と電線が揺ら いでおり,旗が不規則にはためいている背景の中を車 が右から左に移動している.(2)ではディスプレイのフ リッカが観測されている中を人が歩いている.

図 8 (1-d), (2-d) は背景に対するブロックのクラス 分けの結果である. 左から順に明度が高い部分が"単 一の峰","対角線上の尾根","不規則な分布","周期的" に分類された画像ブロックを表している.

図 8 (1-c), (2-c) はブロックの分類に基づく最適化 された背景差分の結果を示している.本来検出される べき領域が検出されていないことはあるが,その逆は ほとんどないことが分かる.このことから,背景に変動

[§]重心まわりのモーメントは、 (c_x, c_y) を相関共起分布の重心として、 $M_c = \sum a_{jk}(|j - c_x| + |k - c_y|)$ で定義する.

[¶]現在の実装では、状態遷移モデルは2状態のみを持つものとしている.

図 7: 実験結果 1. (c) では白い画素が検出された領域を表し, (d) と (e) では四角形の領域が検出されたブロック を表す.

(1-a) Reference Image (1-b) Observed Image(1-c) Detection Result

One Peak Diagonal Ridge Random Distribution Periodicity (1-d) Categorization Result

(2-a) Reference Image (2-b) Observed Image (2-c) Detection Result

One Peak Diagonal Ridg (2-d) Categor

Diagonal Ridge Random Distribution Periodicity (2-d) Categorization Result

図 8: 実験結果 2

する物体があるシーンに対する背景差分として、この 手法が十分有効であることが分かる.

5 まとめ

本論文では、動的な変動をするシーンに対する背景 差分を基本とする移動物体検出法を提案した.背景の 変動を照明変化のような一様な画素変化と、背景に存 在する物体が動くことによる変動に分類し、前者につ いては SMNVD を、後者については相関共起分布を用 いることで安定な移動物体検出を実現した.

本論文で述べた各々のアルゴリズムは非常に簡単な ものであるが、実験結果はその有効性を十分示してい る. SMNVD と相関共起分布はそれぞれ別個に実装さ れているが、それらを統合することによって、実世界に 適応できる背景差分が実現できると考えられる.

今後の課題としては、SMNVD の定義の見直しや相 関共起分布のクラス分けの妥当性の検証などがあげら れる.

本研究を行うにあたり、日本学術振興会未来開拓学 術研究推進事業 (JSPS-RFTF 96P00501) の補助を受 けた.

参考文献

- 中井 宏章: "事後確率を用いた移動物体検出手法", 情処 研報, 94-CV-90, 1994
- [2] 和田 俊和,松山 隆司: "動的背景モデルを用いた移動領 域の抽出",情報処理学会第49回全国大会講演論文集(2), pp.141-142,1994
- [3] E.Grimson: "A Forest of Sensors", Proc. of VSAM Workshop, 1997.11
- [4] L.Davis: "Visual Surveillance and Monitoring", Proc. of VSAM Workshop, 1997.11
- [5] 影広 達彦,大田 友一: "動画像からの背景画像の自動生 成と適応的更新",画像の認識・理解シンポジウム MIRU '94, Vol.II, pp. 263-270, 1994
- [6] 長屋 茂喜, 宮武 孝文, 藤田 武洋, 伊藤 渡, 上田 博唯: "時 間相関型背景判定法による移動物体検出", 信学論 D-II, Vol. J79-D-II, No. 4, pp. 568-576, 1996
- [7] 高藤 政雄,北村 忠明,小林 芳樹: "空間微分および差分
 処理を用いた車両抽出法",信学論 D-II, Vol. J80-D-II, No. 11, pp.2976-2985, 1997
- [8] K.Ohba, Y.Sato, and K.Ikeuchi: "Appearance Based Object Recognition with Illumination Invariance", In Proc. DARPA Image Understanding Workshop, pp. 1229-1236, 1997