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Abstract—Computation of plane normal is crucial for single 
view based vision computation, such as metrology, pose 
estimation, localization, motion analysis, etc. While most of 
existing algorithms are based some specific scene constraints, 
e.g., parallel lines, control points or lines, specific shape, 
texture, etc., it is difficult to combine all possible geometric 
constraints into one framework. This paper presents a novel 
generalized computation model to recover plane normal by 
incorporating different geometric constraints. In this paper, we 
formulate the problem of plane normal computation from a set 
of geometric constraints as to maximize the likelihood that 
these constraints are satisfied. The likelihood that each 
constraint is satisfied is modeled by using the Gaussian 
function to follow four basic rules that we define. Computing 
of the maximum likelihood is accomplished by searching on the 
Gaussian hemisphere. The proposed algorithm has been tested 
with both simulation data and real image data. The 
experimental results from both simulation and real image data 
show that the proposed algorithm is accurate and reliable, 
which demonstrate that the proposed computation model is 
very practical and useful for many single view based vision 
computation applications. 

Keywords- Plane normal recovery, generalized computation 
model, Gaussian model, Gaussian hemisphere  

I.  INTRODUCTION 
Plane scenes are widely available in the scenes and vision 

computation based on planar scene is widely investigated for 
the past three decades. According to stratified reconstruction 
theories, vanishing line or the normal of a plane is crucial for 
affine reconstruction of a plane [1]. As a result, plane normal 
or its corresponding vanishing line on the image plane is 
important for a lot of single view based vision computation, 
such as metrology, localization, motion analysis, etc. It is 
well known that a single image doesn’t provide enough 
information the above vision computation tasks, since the 
depth information of the scene is lost during the 3-D to 2-D 
imaging process. However, from some prior knowledge on 
the scene, or with sufficient geometric constraints, it is 
possible to perform some vision computation from a single 
image, e.g., computation of plane normal. 

For the past three decades, a number of algorithms have 
been developed based on different types of scene constraints 
for plane normal recovery. For example, texture can be an 
important clue for plane normal computation. Yuchi et al and 

Witkan developed different algorithms to compute plane 
normal by using deterministic and statistical textures, 
respectively [2, 3]. Plane normal can also be computed from 
control points or lines [4, 5], designed landmarks [6, 7], 
planar conics [8], and other scene constraints [9, 10]. It is 
well known that plane normal and vanishing line can be 
computed from each other via the camera calibration matrix. 
Vanishing line or points can be computed by exploiting the 
parallel information in the scene [1]. Some automatic 
vanishing line computation algorithms can be found in [11]. 
Other planar constraints, like planar conics, line and conics, 
can also be used for vanishing line computation, which are 
mainly based on the circular point geometry and the absolute 
conic theory [1, 8~10, 12]. In practice, some geometric 
constraints are not always available in the scene for some 
specific algorithms. Moreover, some geometric constraints 
available in the scene can not be exploited by the type-
specific algorithm. Therefore, it is important to develop a 
generalized computation model that can work in more 
general situations. 

In this paper, we aim at developing a novel and 
generalized computation model for planar normal recovery, 
which can deal with different types of geometric constraints 
to work in more general situations. We formulate the plane 
normal computation problem as to maximize the likelihood 
that how a set of geometric constraints from the plane in the 
scene are satisfied. The likelihood that each constraint is 
satisfied is modeled by using the Gaussian model. A 
searching approach is then proposed to compute the plane 
normal by using the Gaussian hemisphere. As a result, the 
proposed computation model is expected to deal with 
different types of geometric scene constraints and is a 
generalized model for plane normal recovery. 

II. PLANE RECTIFICATION FROM HOMOGRAPHY 
Under the pin-hole camera model, a 3D point 

[ ]TZYXM 1=  in the world coordinate system is 
projected onto an image plane, with the image 

[ ]Tvum 1=  given by [1] 

 [ ] [ ] [ ]TT ZYXtRKvu 11 ×≅     (1) 
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where the operator ≅  means equal up to a scale, the 
matrix, K  represents the camera’s intrinsic parameters, also 
called the camera calibration matrix [1]. R and t are the 
rotation matrix and the translation vector between the camera 
and the world coordinate systems. 

From camera model and the projective geometry, we can 
derive the 2D projective geometry for a plane. Without loss 
of generality, Assume the reference plane is on 0=Z  of the 
world coordinate system. We can establish the relationship 
of a 2D point [ ]TYXM 1= on 0=Z and its image 
m  from Eq. (1) as follows [1, 5] 

[ ] [ ]T
H

YXtrrKm 121 ×≅          (2) 

where ir  is the ith column of the rotation matrix R . 
Hence, M and m are related by a 3×3 full-rank matrix, 
called homography, in Eq. (2). The homography is a 3×3 
matrix and has eight degrees of freedom. It is possible to 
reconstruct the homography from the vanishing line or plane 
normal and camera calibration matrix, according to the 
stratified reconstruction theory. The computation details are 
well investigated by in [1, 12]. Once the homography is 
determined, we can use it to rectify the plane, therefore to 
rectify the geometric attributes on the plane. Note that some 
image features, such as line, point, shape, etc, need to be 
extracted for planar geometric attribute computation.  

III. THE PROPOSED ALGORITHM FOR PLANE NORMAL 
REOCVERY 

A. Algorithm Formulation 
We formulate the problem of plane normal computation 

from a set of geometric constraints as to maximize the 
conditional probability, which is given in the following 
equation 

 ( )M
N

CCCNP ,,|maxarg 21          (3) 

where N  is the normal, and ( )MiCi ,2,1=  is a set 
of geometric constraints., which are expressed as follow 

{ }( )MiuSCC iii ,2,1| ===             (4) 

where iS is the ith geometric attribute, iu is the 
deterministic value, associated to the ith geometric attribute. 
Because geometric constraints can be represented in a lot of 
forms, such as angle, length, ratio, shape area, curvature, etc.  
Without loss of generality, we mainly discuss two types of 
fundamental geometric attributes of length ratio and angle as 
the geometric constraints. 

Actually, it is difficult to solve Eq. (3) to compute the 
plane normal directly. By using Bayes’ rule, we can re-
arrange Eq. (3) as follows 

( ) ( ) ( )
( )M

M
M CCCP

NPNCCCPCCCNP
,,

|,,,,|
21

21
21 =    (5) 

where ( )NCCCP M |,, 11  is the likelihood, ( )NP  

and ( )MCCCP ,, 21  are the prior probabilities for the 

normal and geometric constraints, respectively. Assume that 

( )MiCi ,2,1=  are conditionally independent to each 

other, given the normal N , and ( )NP  is constraint, e.g., a 

uniform distribution of N , we can derive the following equation 

from Eq. (5) 

( ) ( )∏
=

∝
M

i
iM NCPCCCNP

1
21 |,,|        (6) 

Hence, it shows that solving Eq. (3) is equivalent to 
compute the maximum likelihood in Eq. (6), given the 
normal direction. In other word, the solution to the normal is 
the one, which generates the maximum likelihood in Eq. (6). 

B. Definition of Likelihood for the Constraint 

We define ( )NCP i |  as the likelihood or probability 
that the ith constraint is satisfied, given the plane normal N . 
To model for the likelihood, four rules are defined:  

1)  The maximum probability should be obtained, where 
the distortion is totally removed;  

2)  More distortions lead to low likelihoods;  
3)  All geometric constraints should contribute equally to 

solve Eq. (6) for normal computation;  
4) Geometric attributes may be in different units or 

different scales, which should be minimized. 
To serve these purposes, we proposed using a normalized 

Gaussian distribution function with unit standard deviation to 
model the likelihood, which can meet the requirements, as 
specified in the four rules above. It is given as follows 

( ) ( )( ) ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−∝= 2/exp|

2

i

ii
ii u

uNx
NxGNCP      (7) 

where iu the deterministic value of the ith geometric 

constraint, as specified in Eq. (4), ( )Nxi  is the rectified 
geometric attributes, given the plane normal N . 
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C. Searching for normal on Gaussian Hemisphere 
Substitution Eq. (7) into Eq. (6) yields 

( ) ( )( )∏
=

∝
M

i
iiM uNxGCCCNP

1
21 |,,|  

 
( )∏

= ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−∝

M

i i

i

u
Nx

1

2

2/1exp   (8) 

It is well known that all the normal directions lies on the 
surface of Gaussian sphere, with a point representing a 
normal direction. For the pin-hole camera, only half of the 
Gaussian sphere surface, namely Gaussian hemisphere, 
encodes the normal directions of visible planes. In order to 
search the normal direction on Gaussian hemisphere, we 
need to first partition the Gaussian sphere into patches, with 
each patch representing a sampled normal. The likelihood for 
each sampled normal is therefore computed by using Eq. (8) 
based on a set of geometric constraints, as specified in Eq. 
(4). The maximum likelihood is thereafter searched on the 
Gaussian hemisphere. As a result, the corresponding normal 
is the final normal that we derive.  

IV. EXPERIMENTAL RESULTS 

A. Experimental Results with Simulation Data 
We first tested the performance of the proposed 

algorithm with simulation data. A simulated camera was 
used to generate all the images. The camera calibration 
matrix is as follows 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
100018000
80001800

K  

Six length ratios and six angles were used as the basic 
geometric constraints to recover the plane normal direction. 
Among them, the six length ratios were derived from four 
lengths, which are 10.0, 20.0, 22.4, and 14.1 (unit in cm) on 
the 3D physical plane. From these four lengths, sex length 
ratios are obtained as 0.500, 0.447, 0.894, 0.707, 1.414, and 
1.581. The six angles have the degrees of 10, 20, 30, 45, 60, 
and 80. A physical plane in 3D space with a normal direction 
of [ ]T9231.01580.03506.0− in the camera coordinate 
system is used to test the proposed algorithm. A reference 
frame is established from the plane with the origin at the 
position of [ ]T0.1000.100.12 (in cm) in the camera 
coordinate system.  

We define eN  as the estimated normal with the proposed 
algorithm. 0N  is the actual normal and rN  is the optimal 
normal, which has the minimum angle with 0N . And we 
define two types of error angles to calculate the normal 
computation error: 

( )00 cos NNaE ee •= , ( )reer NNaE •= cos  

In the test, random Gaussian noises with zero mean and 
standard deviation of 0.5 pixels were added to the image 
coordinates to model the practical image noises. The 
Gaussian hemisphere was partitioned into three resolutions 
of 100×200, 200×400, and 250×500. For each partition 
resolution, we ran one hundred trials. For each trial, we 
computed the plane normal and calculated 0eE  and erE , 
respectively. Afterwards, the means and standard deviations 
were calculated from the computation results of the one 
hundred trials. The results are shown in TABLE 1 below.  

It can be observed from TABLE 1 that the standard 
deviations of 0eE  and erE  decrease when the resolution 
increases, which means that high resolution can yield more 
reliable and robust results. Moreover, the means of 0eE  and 

erE  also decrease with the partition resolutions. It can be 
observed from TABLE 1 that the computation results with 
the proposed model are very accurate and reliable. Actually, 
the partition resolution determines not only the accuracy of 
the computation results but also the computational 
complexity. For example, high resolution leads to good 
accuracy but high computational complexity. Hence, there 
should be a trade-off between them to meet the application 
requirements in practice. 

TABLE I.  NORMAL COMPUTATION ERRORS  (UNIT IN DEGREE) 
UNDER DIFFERENT PARTITION RESOLUTIONS 

Resolution 100×200 200×400 250×500 

Mean of 0eE  0.4929 0.3271 0.3086 

Std Dev of 0eE  0.2531 0.2271 0.1881 

Mean of erE  0.4152 0.3004 0.2883 

Std Dev of erE  0.4562 0.2846 0.2302 

Minimum Angle 0.3475 0.1145 0.1089 

We also presented the individual errors of each trial by 
using a partition resolution of 200×400. The results are 
presented in Figure 1 below. For each trial, we plotted two 
errors of 0eE  and erE  (in degree). It can be observed that 
the recovered normal is equal to rN  for 30 trials, which 
means it gave the optimal solution ( rN ) for 30 trials. It can 

be also observed from Figure 1 below, both 0eE  and erE for 
each trial are less than 1.2 degrees. Moreover, the majority 
(more than 90%) of 0eE  and erE is less than 0.6 degrees. 
The results demonstrate that the algorithm is very accurate 
and reliable. 
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B. Experimental Results with Real Image Data 
The proposed algorithm was further tested using the 

actual image data, taken in the office, as shown in Figure 2 
below. The image has a resolution of 2248×1712 (in pixel). 
The plane, where the white board lies (see Figure 2 below), 
is used as the subject for the proposed algorithm. The 
distance of the plane to the camera is about 6.5 meters and 
the height of the white board is 1.2 meters. The camera was 
calibrated in advance with Zhang’s calibration algorithm [5]. 
The camera calibration matrix is as follows 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
8.9357.23560
0.116507.2356

K  

We used three angles and three length ratios as the basic 
geometric constraints to recover the plane normal. The three 
angles are 90, 90, and 0 degrees, which were derived from 
the three visible edges of the white board (see Figure 2). The 
lengths are defined by the four points on the plane (see 
triangles in Figure 2). From these lengths, we chose three 
unit length ratios as the geometric constraints. From these 
geometric constraints, the searching approach was then 
applied to compute the likelihood of each normal on the 
Gaussian hemisphere by using a partition resolution of 
200×40. As a result, a likelihood map was generated from 
the computation results for all normal directions (see Figure 
3). The image intensity represents the probability for each 
normal direction, with the darker intensity for higher 
likelihood. The plane normal was recovered by finding the 
maximum likelihood, which is [ ]T857.0112.0503.0 −− . 
The corresponding position in the likelihood map is marked 
with a cross (see Figure 3). The actual normal was computed 
by using the parallel lines in the image with the algorithm 
proposed in [11] and the camera calibration matrix, and it is 
[ ]T861.0092.0500.0 −− . It can be calculated that the 
computed normal has an error of 1.2 degrees with the actual 
one. The results demonstrate that the algorithm is very 
accurate and practical. 

V. CONCLUSIONS 
Planar scenes are commonly found in daily life. 

Computation of plane normal is useful for a lot of vision 
computation applications, such as vision based metrology, 
measurement, localization, and camera calibration, etc. For 
the past three decades, a lot of algorithms have been 
developed to compute plane normal based on different types 
of geometric scene constraints. In this paper, we presented a 
novel and generalized computation model to recover plane 
normal by incorporating different types of geometric 
constraints. In this computation model, we formulated the 
problem of plane normal recovery from a set of geometric 
constraints as to maximize the likelihood that how these 
geometric constraints are satisfied by using the Bayes’ rule. 

The likelihood that a geometric constraint is satisfied is 
modeled by Gaussian distribution function to follow the four 
basic rules that we defined. As a result, the maximum 
likelihood is computed by searching on the Gaussian 
hemisphere and the corresponding plane normal is the 
solution that we derive. The algorithm was first validated by 
using simulation data. The results show that the algorithm is 
accurate and reliable. The algorithm was further validated by 
using real image data, taken in an indoor office situation. It 
successfully computed the plane normal by using the basic 
constraints of length ratios and angles. The computed normal 
has a 1.2 degree angle with the actual normal, which 
demonstrates that the algorithm is accurate and practical. 
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Figure 1. Plane normal computation errors with a partition resolution of 200×400 

 

 
Figure 2. Recover the normal of the plane of the white board from an indoor office image 

 

 
Figure 3. The likelihood map on the Gaussian hemisphere, with the computed normal marked with a cross (“+”) 
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