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Abstract: The "perspective-plane" problem proposed in this paper is similar to the "perspective-n-point (PnP)" or 
"perspective-n-line (PnL)" problems, yet with broader applications and potentials, since planar scenes are 
more widely available than control points or lines in practice. We address this problem in the Bayesian 
framework and propose the "Bayesian perspective-plane (BPP)" algorithm, which can deal with more 
generalized constraints rather than type-specific ones to determine the plane for localization. Computation 
of the plane normal is formulated as a maximum likelihood problem, and is solved by using the Maximum 
Likelihood Searching Model (MLS-M). Two searching modes of 2D and 1D are presented. With the 
computed normal, the plane distance and the position of the object or camera can be computed readily. The 
BPP algorithm has been tested with real image data by using different types of scene constraints. The 2D 
and 1D searching modes were illustrated for plane normal computation. The results demonstrate that the 
algorithm is accurate and generalized for object localization. 

1 INTRODUCTION 

Vision-based localization has many applications in 
computer vision, robotics, augmented reality (AR), 
simultaneous localization and mapping (SLAM), 
and photogrammetric communities (Hartley & 
Zisserman, 2004; Desouza et al., 2002; Durrant-
Whyte & Bailey, 2006; Cham et al., 2010). The 
basic objective is to compute the position of the 
object or the camera in a reference coordinate 
system by using either multiple (two or more) or 
single image(s). For example, stereo vision is a 
commonly used approach for localization from two 
images, which can retrieve the 3D coordinates or 
position of an object in the scene from image 
disparity, baseline width, and camera focal length 
(Hartley & Zisserman, 2004). Localization from 
single view usually relies on "prior knowledge" of 
the scene. In the literatures, many localization 
algorithms were developed by utilizing specific 
scene constraints, such as well-defined landmarks, 
natural or artificial objects, and the abstract points or 
lines, etc. For example, landmarks are commonly 
used for localization (Adan, 2010). Face position can 
be computed by referring to a 3D face model (Sun et 
al., 2008). Single image of a window in the street is 
possible to localize the camera (Johansson & 
Cipolla, 2002). Camera pose can also be computed 

from corner structure (Shi et al., 2004). Besides 
these particular objects, many researches investigate 
the localization problem from a set of abstract points 
or lines, namely known as the perspective-n-point 
(PnP) and perspective-n-line (PnL) problems (Wolfe 
et al., 1991; Kneip et al., 2011; Hu & Matsuyama, 
2011). Besides points and lines, the position can also 
be computed from a plane or planar object. Planar 
structure, i.e., the plane normal and distance, can be 
computed from parallel lines, homography, conics, 
control points, textures, etc. For example, Hu et al 
determine the support plane from the geometric 
constraints of three control points (Hu & 
Matsuyama, 2011). With four or more planar points, 
we can compute the homography and determine the 
plane position by decomposition (Zhang, 2000). The 
plane normal is also computed from vanishing line, 
if two sets of parallel lines are available in the scene 
(Lee et al., 2009). Other methods to compute the 
plane by using conics, reference lengths, textures, 
etc., are also reported in (Hartley & Zisserman, 
2004; Guo & Chellappa, 2010; Witkin, 1981). 

Existing methods for localization and planar 
structure computation from single view are mostly 
based on specific scene constraints. These methods 
are not generalized or practical enough. On the one 
hand,  some  strict constraints, which are required by 
the  type-specific  algorithm,  are not available in the 
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scene. On the other hand, some constraints, which 
are present in the scene, are difficulty to be utilized 
by the type-specific algorithm. In this paper, we 
propose the "perspective-plane" problem and 
address it by the Bayesian perspective-plane (BPP) 
algorithm. The proposed algorithm can utilize more 
generalized planar and out-of-plane constraints to 
determine the plane for localization.  

2 FORMULATION OF 
GEOMETRIC CONSTRAINTS 

From projective geometry, a physical plane and its 
image are related by a 3×3 homography matrix H as 
follows (Hartley & Zisserman, 2004; Zhang, 2000)  

xHX 1−≅  (1) 

where ≅  means equal up to a scale, x and X are the 
coordinates for the image and physical point, 
respectively. The homography is computed from the 
plane normal and distance according to stratified 
reconstruction theories (Hartley & Zisserman, 2004). 
With the recovered 2D coordinates, more planar 
geometric attributes, such as coordinate, distance, 
angle, length ratio, curvature, shape area, etc., are 
calculated readily. A metric reconstruction of the 
plane is also feasible with known plane normal and 
unknown distance. However, the absolute geometric 
attributes, such as coordinates, distance, etc., are 
equal to the actual ones up to a common scale. And 
non-absolute geometric attributes, such as length 
ratio, angle, etc., are equal to the actual ones.  

Some out-of-plane geometric attributes can also 
be computed with a reference plane. For example, an 
orthogonal plane can be measured by referring to a 
known plane (Wang et al., 2005). If the vanishing 
line of a reference plane and one vanishing point 
along a reference direction are known, object height, 
distance, length ratio, angle, and shape area on the 
parallel planes etc., are readily computed (Criminisi 
et al., 2000). From projective geometry, both the 
vanishing line and the vanishing point along the 
normal are computed from the plane normal and the 
calibration matrix. Also, if the plane distance is 
unknown, those absolute out-of-plane geometric 
attributes are computed up to a common scale, while 
the non-absolute ones are equal to the actual ones.  

Hence, we use ( )NQi  to denote the ith geometric 
attribute, computed from the plane normal N. Scene 
prior knowledge can be formulated into constraints 
on plane normal. Let iu  be the deterministic value 
of  the  geometric attribute that we know a prior. The 

measurement error is defined as 

( ) ( ) iii uNQNd −=  (2) 

By forcing zero measurement error, we can derive 
one geometric constraint on the plane normal 

( ) ( ) 0: =−= iiii uNQNdC  (3) 

Eq. (3) holds for both planar and out-of-plane 
constraints. Planar constraints are derived from prior 
knowledge of planar features, while the out-of-plane 
constraints are from the out-of-plane ones. The 
planar features are those that lie on the plane, such 
as the point, line, angle, curve, shape, etc., while the 
other are defined as out-of-plane features, such as an 
orthogonal line, an angle on another plane, etc. In a 
similar way, we can derive a set of geometric 
constraints as follow 

( ) ( ){ }( )MiuNQNdCC iiii ,,2,10| ==−==  (4) 

3 BAYESIAN 
PERSPECTIVE-PLANE (BPP)  

3.1 Localization from a Known Plane  

An arbitrary planar point can be localized from a 
known plane as follows 

⎪⎩

⎪
⎨
⎧

=

= −

dXN
xKX

T

1λ  (5) 

The first equation in Eq. (5) defines the back-
projection ray, where the 3D point X lies (Hartley & 
Zisserman, 2004). It can be determined from the 
camera calibration matrix and the image point. The 
second one is the plane equation with the normal N 
and distance d. If we use the plane to expand a 
reference coordinate system, the camera can be 
localized as well (Zhang, 2000). 

3.2 Plane Normal from MLS-M 

3.2.1 Maximum Likelihood Formulation 

The plane normal is assumed uniform distribution if 
there are no geometric constraint. The distribution 
changes from uniform to non-uniform, given one 
constrain. Distribution from a set of constraints is 
expected to have a dominant peak, from which the 
plane normal is solved. Therefore, computation of 
the plane normal N is formulated as to maximize the 
following conditional probability 
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( )M
N

CCCNP ,,,|maxarg 21
 (6) 

By using Bayes’ rule, Eq. (6) is transformed as 

( ) ( ) ( )
( )M

M
M CCCP

NPNCCCP
CCCNP

,,,
|,,,

,,,|
21

21
21 =  (7) 

Assume that all the constraints are conditionally 
independent to each other so that we can derive 

( ) ( )∏
=

=
M

i
iM NCPNCCCP

1
21 ||,,,  (8) 

Assume uniform distribution of plane normal and 
we can substitute Eq. (8) into Eq. (7) to derive 

( ) ( )∏
=

∝
M

i
iM NCPCCCNP

1
21 |,,,|  (9) 

In order to solve Eq. (6), we need to model 
( )NCP i | , which is defined as the likelihood that the 

ith constraint is satisfied, given the plane normal N. 
We set the following rules to develop the model: 1) 
the likelihood is determined by the measurement 
error. More absolute measurement error yields lower 
likelihood. The maximum likelihood is reached if 
the measurement error is zero; 2) the maximum 
likelihoods (for zero measurement errors) for 
different constraints should be equal so that all 
constraints contribute equally; 3) the measurement 
error should be normalized to deal with the 
geometric attributes in different forms, units, and 
scales, etc. To meet these requirements, the 
normalized Gaussian function was proposed to 
model the likelihood as follows 

( )( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 22

2

2
exp

2
1,|

ii

i

i
iii u

NduNdG
σσπ

σ  (10) 

The measurement error is normalized by iu  from 
Eq. (3). Obviously, Eq. (10) satisfies the first rule. 
The likelihood also decreases with the absolute 
measurement errors. The maximum likelihood is 
reached at zero measurement error. In order to 
satisfy the second rule, the standard deviations for 
all Gaussian models should be equal: σσσ == ji . 
Hence, the likelihood model is derived as 

( ) ( )( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−== 22

2

2
exp

2
1|

σσπ i

i
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Substitution Eq. (11) into Eq. (9) yields 
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=
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The plane normal is thus computed as 

( )
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3.2.2 Searching for Maximum Likelihood 

A maximum likelihood searching model (MLS-M) 
is used to solve Eq. (13). Two searching modes of 
2D and 1D are proposed in the following. 

a. 2D searching mode 
A unit normal corresponds to a point on the 

Gaussian sphere surface so that the searching space 
is defined. In practice, we search on the Gaussian 
hemisphere to reduce the searching space into half, 
because only the planes in front of the camera are 
visible in the image. A uniform sampling is realized 
by evenly partition Gaussian hemisphere, which can 
be solved by using the recursive zonal equal area 
sphere partitioning algorithm (Leopardi, 2004). The 
likelihood for each sample is computed so that the 
maximum likelihood is calculated by sorting, the 
corresponding plane normal is then determined. 
Since Gaussian sphere in 3D space is 2D, we call it a 
2D searching mode. 

b. 1D searching mode 
1D searching mode is feasible if one linear 

constraint is available in the scene. In practice, some 
linear constraints can be derived from parallel lines, 
orthogonal lines or planes, etc. We introduced the 
1D searching mode by using orthogonal line as an 
example. Let L  be the orthogonal line, with the 
image l . Because L is parallel to the plane normal, 
the vanishing point NV  along the normal lies on l  
and satisfy the following equation 

( ) ( ) 0=== NlKKNlVl TTT
N

T  (14) 

The normal N also lies on Gaussian sphere so that 

( )
⎪⎩

⎪
⎨
⎧

=

=

1
0

NN
NlK

T

TT
 (15) 

Eq. (15) defines a circle in 3D space, which is the 
intersection of the plane with the Gaussian sphere. 
Therefore, we need to search on the circle (actually 
half of the circle). Similarly, a uniform sampling on 
the circle is required. The likelihood for each sample 
is computed. And the maximum likelihood is finally 
searched to solve the plane normal. 

3.3 Plane Distance Computation and 
Localization 

Assume  unit  plane  distance  and re-write Eq. (5) as 
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⎪⎩

⎪
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=′

′=′ −

1

1

XN
xKX

T

λ  (16) 

Compared to Eq. (5), it can be derived that XX ≅′ . 
Hence, we can localize all the planar points in the 
camera coordinate system up to a common scale. In 
order to compute the actual coordinates, a reference 
length or distance is required. For example, the scale 
can be determined from the actual length ABL  
between two points A and B as follows 

BA

AB

XX
L

′−′
=β  (17) 

where AX ′  and BX′  are the 3D coordinates of two 
points that are computed from Eq. (16). With the 
computed scale factor, the actual plane distance is 

β=d . And the actual 3D position is 

XX ′= β (18) 

4 EXPERIMENTAL RESULTS  

The proposed algorithm was tested with two real 
image experiments. A Nikon D700 camera was used 
to generate the real images of 2218×1416 (pixel) 
resolution. It was calibrated with Zhang's calibration 
algorithm (Zhang, 2000) with 1369.2-pixel focal 
length and principle point at [1079, 720]T (pixel). 
The calibration results were used for planar structure 
computation and localization. As there are various 
scene constraints in practice, it is difficult to discuss 
all of them. We chose two representative constraint 
types of known angle and length ratios to validate 
the proposed model in the experiments. 

 
Figure 1: Three planar constrains (two known angles and 
one length ratio) from lines and points for localization.  

The algorithm was tested with planar constraints 
first. Figure 1 shows an image of a white paper 
attached  on  the wall. Six line segments were drawn 

   

   

  
Figure 2: From upper left to lower right: (a) (b) (c) 
likelihoods from three geometric constraints, (d) the joint 
likelihood, (e) positions of the 30 normal of the highest 
likelihoods; (f) the computed normal marked by ‘+’. 

on the paper. We derived two angles (34.1 and 126.6 
degrees) from L1-L2 and L3-L4, and one length 
ratio between the distances of M1-M2 and M3-M4 
to derive three planar constraints. The 2D searching 
mode was applied then. The likelihoods from 
different geometric constraints are shown in Figure 
2(a)~(c), where the non-uniform distributions of the 
plane normal are observed. The joint likelihood is 
shown in Figure 2(d), where a bright area on the 
bottom is observed. Figure 2(e) shows the 30 plane 
normal with the highest likelihoods. The plane 
normal computed from the joint likelihood map is 
marked by '+' (see Figure 2(f)), with the result 
[0.0993 0.1679 0.9808]T.  

 
Figure 3: Localize points and lines in the camera 
coordinate system (unit in mm). 

The plane distance was computed by using the 
reference length of the white paper (297mm). The 
points on the plane were localized. Figure 3 shows 
3D positions of the points on the six line segments, 
and the four corners (A1~A4 marked by 'o'), all in 
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the camera coordinate system. The computation 
results were validated as follow. The lengths of A2-
A3, A3-A4, and A1-A4 were computed from the 
recovered 3D coordinates as 206.7, 294.6, and 211.8 
(mm), respectively. Compared to ground truth data 
(the size of the white paper), the absolute errors are 
3.3, 2.4, and 1.8 (mm), corresponding to 1.6%, 
0.8%, and 0.9% relative errors. It demonstrates that 
the proposed model is accurate. 

 
Figure 4: Localization from 3D corner constraints. 

The algorithm was further tested with both planar 
and out-of-plane constraints by using 1D searching 
mode. As shown in Figure 4, a 3D corner structure 
of a book is defined by the three orthogonal lines of 
L1, L2, and L3. From these three lines, three planes 
are defined as L1-L2, L1-L3, L2-L3. For each plane, 
we derived two constraints: 1) one orthogonal line to 
the plane; 2) one right angle between the other two 
lines on the plane, as shown in Figure 4. They were 
used to localize each plane. 

 
Figure 5: From left to right: likelihoods of the normal of 
the planes defined by: a) L1-L2, b) L1-L3, c) L2-L3. 

The 1D searching mode was applied. The 
searching circles were defined from the orthogonal 
line constraints, on which 10,000 points were 
uniformly sampled, respectively. The likelihoods for 
each normal of the three planes were computed 
afterwards (see Figure 5(a)~(c)). For each plane, two 
peaks are observed from the likelihood curve, which 
indicates two solutions (also see multiple solutions 
in (Shi et al., 2004)). Hence, eight combinations for 
the normal of the three planes are derived, two of 
which satisfy the mutually orthogonality constraints. 
In order to eliminate the ambiguity, we utilized one 
more constraint from the ratio of the length (M0-

M1) to the width (M0-M2) to uniquely determine 
the normal of the plane L1-L2. The likelihood from 
such constraint and the joint likelihood are 
illustrated in Figure 6. In the joint likelihood, a 
unique peak is observed (see Figure 6(b)). From the 
joint likelihood, the maximum likelihood was 
searched and the normal to the L1-L2 plane was 
computed as [-0.0022 0.8425 0.5387]T. With the 
computed L1-L2 normal, the normal for the other 
two planes were also uniquely determined. 

 
Figure 6: From left to right: a) likelihood from the length 
ratio constraint; b) joint likelihood from all constraints. 

We used one actual length to compute the plane 
distance and localize the corner points in the camera 
coordinate system. Their 3D positions are shown in 
Figure 7. The camera was also localized in the 
reference coordinate system, defined by the corner 
structure, with M0 as the origin, and L1, L2, L3 as 
the three axes, where the camera position is [-21.64, 
-23.82, -12.26]T (in cm). Hence, the object and the 
camera were localized from each other. We 
validated the results as follows. The calculated 3D 
coordinates were used to fit the three lines. The lines 
are mutually orthogonal and have an angle of 90 
degrees in between, which are used as ground truth. 
The computed angles in-between are 89.4, 88.1, and 
94.1 degrees, respectively, with the absolute errors 
of 0.6, 1.9, and 4.1 degrees. The relative errors are 
0.7%, 2.1%, and 4.6%, with the average 2.4%. The 
results demonstrate that the algorithm is accurate. 

 
Figure 7: Localize the four corner points in the camera 
coordinate system (unit in cm) 

5 CONCLUSIONS 

In this paper, we proposed the Bayesian perspective- 
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plane (BPP) algorithm to address the "perspective-
plane" problem, which can localize object/camera by 
determining planar structure from more generalized 
planar and out-of-plane constraints. Computation of 
the plane normal is formulated as a maximum 
likelihood problem and is solved by MLS-M. Both 
2D and 1D searching modes were presented. The 
BPP algorithm has been tested with real image data. 
The results show that the proposed algorithm is 
generalized to utilize different types of constraints 
for accurate localization.  
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