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Abstract

Eye movements can be an important cue to reveal con-
sumer decision processes. Findings from existing studies
suggest that the consumer decision process consists of a
few different browsing states such as screening and eval-
uation. To reveal the characteristics and temporal changes
of browsing states in catalog browsing situations, this study
proposes a hidden semi-Markov-based gaze model, where
the states in consumer decision processes are explicitly
modeled as hidden states. To achieve a better understand-
ing of consumer decision processes, eye movements are
first encoded to a sequence of gaze features using semantic
structure of digital catalogs. The proposed gaze model is
trained and evaluated using gaze data which was collected
from eight participants in an experimentally controlled cat-
alog browsing situation. We analyze the estimated browsing
states and demonstrate that the states can contribute to im-
prove the performance of viewer interest estimation.

1. Introduction

Observing the behavior of consumers is fundamental to
understanding their decision processes. Eye movements
have been considered a good indicator of the processing
states of the decision process since they directly represent
how humans process information about displayed items
[8, 3]. From the observation of eye movements, Russo et
al. insist that choice processes start from an orientation
stage, followed by an evaluation stage, and finally a veri-
fication stage [8]. They define the orientation stage to be
the stage that occurs before the first comparison pattern (the
re-fixation pattern of the form X-Y-X...) appears, the evalu-
ation stage is to be between the first and the last comparison
pattern, and the verification stage to be after the last com-
parison pattern. However, their three-stage model cannot al-
ways be applied to real-world environments since consumer
decision processes can be affected by their individual goals

or tasks [3]. Moreover, the transitions among stages are
not always one-way; for example, it is more likely for con-
sumers to go back to the orientation stage to re-input item
information after the evaluation stage.

Unlike previous approaches, we model consumers’ de-
cision process with probabilistic transitions among the pro-
cessing states and estimate the processing states from eye
movements in a bottom-up manner. To deal with com-
plex eye-mind link, probabilistic approaches are often in-
troduced in previous gaze models [11, 6]. Simola et al.
[10] take a similar approach to ours: they apply a hid-
den Markov model (HMM) to sequences of motion features
of eye movements (e.g., saccade lengths) to uncover pro-
cessing states of information-search in sentence reading.
Three HMMs were built corresponding to three different
information-search tasks: simple word search, finding the
answer to a question, and selecting an interesting title from
a list. Their results showed that the tasks can be estimated
from a newly observed sequence of eye movements by com-
paring the likelihood of each model.

Although Simola’s model is effective for analyzing
information-search behavior, it cannot be directly applied
to consumer decision processes. We are particularly in-
terested in the interpretation of gaze behavior that corre-
sponds to the processing states of decision processes, which
we call browsing states. In this paper, we assume the sit-
uation where a viewer is browsing a digital catalog on a
computer display, and we address the problem of building a
gaze model whose states can be associated with the findings
from existing studies. We make two key observations: se-
mantic information of digital catalogs influences viewers’
eye movements, and the amount of time a viewer spends
in a state is an important feature of that state [8]. There-
fore, we incorporate (1) information about catalog content
and (2) the duration of browsing states into our model. To
incorporate (1), we use the designed structure of digital cat-
alogs to encode eye movements into a sequence of gaze fea-
tures. Designed structure, as proposed in [4], is high-level
content structure that reflects the designer’s point of view,
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(b) Layout of digital catalogs

Figure 1. Experimental setting.

such as groupings of items. Instead of using semantic at-
tributes of items, the designed structure employs embedded
semantic information as a content layout. To incorporate
(2), this study introduces the use of a hidden semi-Markov
model (HSMM, [12]) to represent the relationships between
browsing states and encoded gaze features. HSMM is an
extended model of HMM that each state has a duration dis-
tribution explicitly, which is often used to model human
behavior in various context [1]. Understanding viewers’
browsing states from their behavior has rich potential for
various applications, such as interactive information sys-
tems that provide information with proper timing.

To evaluate how the proposed model estimates meaning-
ful hidden browsing states behind the gaze sequences, we
collected gaze data in a catalog browsing situation with a
procedure explained in Sec. 2. The data is later used for the
training of the model (Sec. 3) and its evaluation (Sec. 4).

2. Collection of gaze data
Eight participants took part in the experiment. Each par-

ticipant was asked to sit in front of a screen showing a dig-
ital catalog (see Fig. 1 (a)). Gaze data of the participants
were acquired as 2D points on the screen by using an eye
tracker 1 installed below the screen.

2.1. Digital catalogs

For each participant, eight digital catalogs were pre-
pared. Each digital catalog contained the description (im-
ages and text) of 16 items (see Fig. 1 (b)). The semantic
attributes and attribute values of items that were considered
in this study are listed in Table 1. The semantic information
was explicitly described in text on the catalogs so that view-
ers could understand it without prior knowledge. The items

1Tobii X120 (freedom of head movement: 400x220x300 mm, sampling
rate: 60 Hz, accuracy: 0.5 degrees)

in each catalog were grouped by either price or category at-
tribute. The item positions within a group were randomized
every time the catalog was shown to a participant.

Table 1. The attributes and attribute values used in the experiments.
Category Price (yen) Ranking Review

Delicatessen 1001-3000 1-4th 1-star
Sweets 3001-5000 11-14th 2-star
Alcohol 5001-7000 21-24th 3-star

Household goods 7001- 31-34th 4-star
5-star

2.2. Procedure

Participants were asked to select an item from a cata-
log as a seasonal gift. The situation of selection can vary
based on participants’ preference and products in catalogs.
For example, it is possible that participants make a decision
among multiple candidates, or perhaps they can find only
one product that satisfies their criteria. Since it is difficult
to obtain such information about the situations, we gave par-
ticipants a request that specified the requirements for items
to select for each trial, for example: “Select an item in Alco-
hol category and with more than 4-star review.” The request
was controlled for the number of items that the participants
considered as alternatives. As noted in [7], goal-directed
search behavior can be induced in participants during in-
store experiments by fixing requests so that only one item in
the store satisfies all of the conditions. We take a similar ap-
proach here, however, we change the number of items that
satisfy the requests to be between 0 to 3 to induce browsing
behavior where a decision must be made among multiple
alternatives.

The participants were instructed to follow the request to
the best of their ability. During catalog browsing, partici-
pants were able to refer to the request by pressing the space
key on a keyboard that was provided. The gaze data dur-
ing catalog browsing were registered together with the time
stamps when the space key was pressed. After deciding an
item, participants were asked to submit any items they con-
sidered as candidates alongside their final selection.

2.3. Examples of gaze data

Eye trackers sometimes contain noise or miss viewers’
gaze points. Therefore, the sequence of gaze points was first
smoothed by applying a median filter 2. For the analysis, a
sequence of gaze points were first converted to a sequence
of item regions being looked at. In gaze region sequences, if
successive intervals with the same item ID were interrupted
by a blink, the intervals were combined to a longer inter-
val. The gaze region sequences were also modified by dis-

2In this paper, the window size of the median filter was 5 sampling
points at 60 Hz (corresponding to about 83 msec).
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Figure 2. Example of gaze region sequences (the 4th trial of the 8th
participant). In the top row, the color corresponds to the color of
regions in Fig. 1 (b). In the bottom row, the selected item and can-
didates are shown by light gray and gray highlights respectively
(corresponding to the color used in Fig. 7).
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Figure 3. Overview of the proposed method.

carding intervals shorter than a threshold (100 msec). Any
interval in which the participant was referring to the require-
ments of the request was also discarded.

An example of gaze region sequences is shown in Fig. 2.
Re-fixation patterns of the form X-Y-X... and screening pat-
terns of the form X-Y-Z... appear alternatively in the exam-
ple. This example highlights the importance of considering
probabilistic transitions between browsing states to repre-
sent catalog browsing behavior.

3. Hidden semi-Markov-based gaze model
The overview of the proposed model is shown in Fig. 3.

The eye movements are first encoded using the designed
structure of digital catalogs (Sec. 3.1), then a HSMM is ap-
plied to the sequence of encoded gaze features (Sec. 3.2).

3.1. Sequence of gaze feature

3.1.1 Modeling the content structure

We employ designed structure proposed in [4] to encode
eye movements into gaze features. The designed structure
can be represented as follows. Suppose a catalog contains
information of a set of items IAll = {1, . . . , K}. Each
item has a set of P attributes PAll = {1, . . . , P}, where p-
th attribute can take a value of Ap possible attribute values
A(p) = {1, . . . , Ap}. Here, let us introduce a function fp :
IAll → A(p), where fp(i) indicates the attribute value of
the p-th attribute that the i-th item has. In the content layout
used in the experiment, the designer aims to emphasize a

specific attribute (e.g., category), then all items in the same
category are regarded as “in the same group” and allocated
based on their category type. To represent this process, a
set of the emphasized attributes is described as PE ⊂ PAll.
Using PE , the relations among items in the digital catalogs
can be determined as follows.

Parallel relation. Two different items i and j have this
relation when the items share one or more emphasized
attributes; that is, fp(i) = fp(j), ∃p ∈ PE .

Contrast relation. Two different items i and j have this
relation when the items do not share any emphasized
attributes; that is, fp(i) 6= fp(j), ∀p ∈ PE .

In [4], the versatility of the use of designed structure is con-
firmed by using multiple types of layouts. In this paper,
we focus on analysis of the sequence of encoded gaze fea-
tures. Therefore, we only use catalogs with category-based
layout that can be simply described by the above two rela-
tions. We represent the relations among items as a directed
graph for the encoding of eye movements (see Sec. 3.1.2).
Let us denote a set of nodes VI = {v(k)

I | k = 1, . . . , K}
corresponding to the K items. Here, design-relation edges
are defined as ED ⊆ VI × VI , where each edge ed ∈ ED

has either label parallel or contrast. Finally, the designed
structure is defined by a directed graph GD = (VI , ED) (as
shown in Fig. 4 (a)).

3.1.2 Encoding eye movements into gaze features

Gaze data are obtained as sequences of gaze points on the
screen. Let us denote item regions in a digital catalog as
R = {R1, . . . , RK}. A sequence of gaze points is first
converted to a sequence of item regions being looked at r =
(r0, . . . , rJ ) (rj 6= rj+1, rj ∈ R).

The gaze region sequence, r = (r0, . . . , rJ), is associ-
ated with design relation labels derived from the graph of

contrast	
  

parallel	
  
vI(1)	

 vI(2)	



vI(3)	

 vI(4)	



vI(5)	



vI(8)	

vI(7)	



vI(6)	



vI(9)	

 vI(10)	



vI(11)	

 vI(12)	



vI(13)	



vI(15)	

 vI(16)	



vI(14)	



(a) Designed structure of digital catalogs
used in the experiment.
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Figure 4. Encoding of eye movements. (a) Edges between dotted
frames indicate that every node in the frame is connected to every
node in the other frame. (b) Six patterns of tri-gram paths in the
graph GD . The two bottom features correspond to re-fixations.



the designed structure, GD. For each tri-gram of gaze re-
gions (rj−1, rj , rj+1)(j ∈ [1, J − 1]) in a gaze region se-
quence, a path of corresponding item nodes in the graph GD

is obtained. By considering only the labels of edges of each
path, we can categorize the paths into six patterns as shown
in Fig. 4 (b). Note that the four top features in Fig. 4 (b)
correspond to tri-grams with three different gaze regions,
that is, rj−1 6= rj+1, and the two bottom ones correspond
to re-fixations, that is, rj−1 = rj+1.

3.2. Learning the model parameters

HSMM (also known as explicit duration hidden Markov
model) is an extension of HMM that considers an additional
parameter for explicitly modeling the duration of states. Let
us denote the original HMM as λ = (Q,O,A, B, π), where
O is a set of possible observations O = {o1, . . . , oN}, Q is
a set of hidden states Q = {q1, . . . , qM}, A is the M × M
state transition probability matrix, B is M × N emission
probability matrix, and π is the initial probability of the
states. Note that, in this study, the set O corresponds to
the set of gaze feature labels (Fig. 4 (b)).

HSMM can be represented as λ = (Q,O,A, B, P, π)
by adding the M × D duration distribution matrix P to
the original HMM, where D is the maximum state dura-
tion and pm,d ∈ C indicates the probability that the m-th
state last for d-time units. For learning the model parame-
ters, this study uses the efficient EM algorithm proposed in
[12]. Since the data is limited, the duration distribution, P ,
is approximated by a Gaussian distribution.

In the EM iteration, for the initial values of A and π in
HMM and A, P , and π in HSMM, uniform distributions are
used. For the initial values of B in both HMM and HSMM,
distributions of the gaze features are first obtained by apply-
ing a sliding window of size 20. Then, each mean point of
M clusters of the distributions obtained by k-means clus-
tering are used.

To decide the number of states M for HSMM and HMM,
we utilized Akaike Information Criterion (AIC) since the
sample size is limited against the model complexity [2].
AIC can be represented as AIC = −2 log L(λ̂)+2h, where
log L(λ̂) is the likelihood of the model with the estimated
parameters λ̂, and h is the degree of freedom of model pa-
rameters. The best number of states can be decided by find-
ing M that minimizes the value of AIC.

4. Evaluation

Ideally, the ground truth about the viewers’ browsing
state could be used to evaluate the validity of the proposed
model. However, since such ground-truth data are not avail-
able, we instead use an estimation of the viewers’ interest
to evaluate the trained models. First, we discuss the inter-
pretation of estimated states using the collected gaze data
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Figure 5. The topology of the trained HSMM.

in Sec. 2. Then, we show how the states can be used for
viewer’s interest estimation.

4.1. Interpretation of estimated browsing states

Using all the collected gaze data, we trained an HSMM,
where M = 4 was selected with AIC (Sec.3.2). The topol-
ogy of the trained HSMM, and emission probabilities are
shown in Fig. 5 and Fig. 6, respectively. Fig. 5 suggests
that a viewer tends to start in state q1 or q3, then shift to
state q2 and q4. Fig. 7 shows which kind of items are more
likely to be looked at in each estimated state. The items
are categorized into selected items, candidates, and others
(non-selected).

From Fig. 6, state q1 or q3 can be interpreted as a
state in which a viewer is more likely to look at items in
the same group. From Fig. 7, viewers look at fewer se-
lected items/candidates in these states. Meanwhile, in state
q2 and q4, viewers are more likely to shift their gaze ac-
tively among items in different groups and look at selected
items/candidates. To associate the obtained states with the
three-stage model [8], we can consider state q1 or q3 to be
orientation or verification (these two stages share a similar
pattern, but can be discriminated based on context), while
state q2 and q4 can be interpreted as evaluation.

The posterior probabilities of browsing states can be
calculated with a newly observed gaze sequence and the
trained HSMM. An example timeline of browsing states
is shown in Fig. 8. The average durations of states in
HSMM were q1: 11.75, q2: 4.39, q3: 9.18, and q4: 4.80,
which are longer than the average durations of states in
HMM (q1: 1.81, q2: 2.72, q3: 1.00, q4: 1.00, q5: 1.77).
Note that the lengths correspond to the number of gaze fea-
tures, that is, the number of item regions looked at (refer to
Sec. 3.1.2). The results show that the duration distributions
of hidden states of an HSMM contribute to estimate reason-
able browsing states since the processing states in consumer
decision processes do not change frequently [8].

4.2. Estimation of viewers’ interest

According to the findings from gaze analysis on choice
behavior, visual attention to competing items increases sig-
nificantly when a consumer is close to making a deci-



Figure 6. Emission probabilities of each state in HSMM. The color
of the bars corresponds to the color of gaze features in Fig. 4 (b).

Figure 7. The probability of selected items, candidates, and others
being looked at in each browsing state.

Figure 8. An example timeline of browsing states estimated by the
trained HSMM for the gaze region sequence of the 4th trial of the
8th participants (refer to Fig. 2).

sion [9]. Therefore, we hypothesize that the estimation of
viewer’s interest can be improved by identifying when the
viewer enters the evaluation state, and we propose an es-
timation method of viewers’ interest from eye movements,
simply by finding items that the viewer looked at for the
longest duration during evaluation states (q2 and q4).

We evaluated our proposed model against three methods:
HMM, Sliding window, and Baseline. Leave-one-subject-
out cross validation was used; that is, gaze data of one par-
ticipant was used as test data and the remaining of the data
was used to train the model. By comparing the results of
HSMM with HMM, we can evaluate the effectiveness of the
duration distribution of browsing states. As for the number
of states, M = 5 was the best for HMM. In Sliding win-
dow, a sliding window of size 20 is first applied to gaze fea-
ture sequences. The browsing state at j-th gaze region was
determined by finding the nearest point in the distributions
used as initial values of B for training HSMM to the dis-
tribution of gaze features of interval [rj−9, rj+10]. As with
HSMM, evaluation states estimated by HMM and Sliding
window were identified based on which kind of items were
more likely to be looked at in each estimated state. In the

Table 2. The estimation of the selected item.
HSMM HMM Sliding window Baseline
0.4844 0.4688 0.3281 0.4375

Table 3. The estimation of the set of considered items (selected
items and candidates).

Precision Recall F1 score
HSMM 0.3315 0.8264 0.4732
HMM 0.3651 0.7986 0.5011

Sliding window 0.1876 0.6944 0.2954

Baseline method, the entire gaze sequence was considered
when finding the item with the longest duration, and was
taken to be the selected item. Tab. 2 shows that the use of
browsing states estimated by our proposed model enables
the estimation of selected items with the highest accuracy.

In addition to the previous analysis, we also conducted
an estimation of the set of considered items (selected items
and candidates). This is because gaze behavior on se-
lected items and candidates can be very similar in a situ-
ation where there are multiple attractive candidates in the
catalog. For the estimation of considered items, we find all
items looked at during evaluation states. Thus, the estima-
tion results of the items of interest using Baseline method is
omitted. Tab. 3 shows that the recall is the highest with our
proposed model, meanwhile, the precision and F1 score is
the highest with HMM.

4.3. Discussion

The results from the interpretation of estimated brows-
ing states show that the proposed model can automatically
estimate browsing states that can be interpreted as the pro-
cessing states defined in existing studies.

The results from the estimation of the selected items
show that considering both duration distributions and prob-
abilistic transitions among browsing states are effective to
represent gaze behavior in consumer decision processes.
The results from the estimation of considered items indi-
cate that HSMM and HMM have advantages and disad-
vantages for estimating considered items. This is because,
evaluation states in HSMM have wider intervals due to the
state duration distributions, therefore, the possibility of non-
considered items being in the evaluation state can be higher.
However, HSMM can detect considered items even if they
do not directly relate to re-fixation patterns.

5. Conclusion

In this paper, a gaze model based on hidden semi-
Markov model is proposed to understand browsing states in
consumer decision processes. The proposed model enables
estimation of browsing states in a bottom-up manner. We
confirm the validity of estimated states through estimation



of viewers’ interest based on estimated states. For future
work, we are considering to investigate further detailed and
various viewers’ states, such as consumers’ strategies [5].
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