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Abstract

This paper presents an underwater active stereo system that realizes 3D capture of dy-
namic objects in water such as swimming fish. The key idea on realizing a practical
underwater 3D sensing is to model the refraction process by our pixel-wise varifo-
cal camera model that provides efficient forward (3D to 2D) projections as well as
an underwater projector-camera calibration. Evaluations demonstrate that our method
achieves reasonable calibration accuracy using off-the-shelf cameras and projectors,
and provides a 3D capture of real swimming fish in water.

Key words: Underwater active stereo, 3D shape reconstruction, Refraction,
Calibration

1. Introduction

Image-based 3D shape modeling has been a fundamental research goal in com-
puter vision for decades, and recent advances realized practical solutions for capturing
dynamic objects such as human[1, 2, 3]. Today it provides nonconstrained and non-
invasive measurements of its 3D shape and motion, and widely used as a marker-less5

motion capture[4, 5, 6, 7] for movie production, medical analysis, and so forth. The
goal of this paper is to realize such an image-based 3D acquisition for underwater ob-
jects as shown in Figure 1. We believe that providing an automated quantitative 3D
sensing of underwater objects will help advancing studies in oceanography, marine
biology, aquaculture, etc.10

Realizing an image-based underwater 3D capture is not a trivial problem even
though many algorithms have been developed for objects in the air. The difficulty
can be found in the environment and the object. Capturing images in water inevitably
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Figure 1: Dynamic 3D capture of swimming fish by underwater active stereo. Left: our capture system
consisting of cameras and projectors observing the fish via flat surfaces. Right: reconstructed 3D shape.

involves refractive image distortions by housings[8, 9], and image noise and intensity
attenuations by unclear media[10]. Also the objects to be captured in water are likely15

to show poorly-textured surfaces with transparency and specularity. These properties
are not dominant in 3D capture in the air, and hence should be handled explicitly for
underwater 3D capture.

The key problem addressed in this paper is the refraction by water-proof housings
that lead to incorrect 3D reasoning unless modeled correctly. That is, if the refraction20

is ignored and the ray is wrongly modeled as a straight line passing through the camera
center as in the air, 3D measurement by stereo cannot return the correct triangulation
point obviously since the ray passing through the camera center and the pixel should
be refracted by the housing.

The refraction is well described by Snell’s law. The motivation of this paper is25

not to introduce another law, but to introduce a new practical representation of the
refraction described by Snell’s law. We show that our representation provides a faster
computation of 3D-to-2D forward projection as well as a linear calibration of projector-
camera systems in water.

The key idea of our approach is to introduce a virtual camera model that defines a30

focal length on a per-pixel basis, and is to exploit a radial structure of such pixel-wise
focal lengths to realize a compact and efficient representation of the refraction. As is
well known, the refraction by the housing result in a caustic structure of rays as shown
in Figure 2(a), and this structure deforms depending on the relative pose of the housing
and the camera. We show that our model can model cameras and projectors behind flat35

housings regardless of their poses, and that each of them can be converted to a virtual
camera or a projector having radially-symmetric pixel-wise focal lengths (Figure 2(b)).

Based on this new camera model, this paper shows that we can realize a linear
calibration of projectors and cameras in water, and can realize a practical 3D capture
of underwater objects such as swimming fish.40

Notice that earlier versions of this paper are partially reported in [11] and [12].
The contribution of this paper is twofold. We evaluate the accuracy of our underwater
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Figure 2: Refraction caused by flat housing. (a) Refraction process (red dashed lines). Ignoring the refrac-
tion results in a caustic structure of the rays originating from optical centers on a line (green lines). (b)
Distribution of the pixel-wise focal length showing a radially-symmetric structure about the housing normal.
The color encodes the virtual focal length for each point (Figure 6).

projector-camera system using a real dataset, and also provide a practical system that
realizes underwater 3D capture by active stereo.

2. Related Works45

Computer vision techniques has been realized successful image-based 3D shape ac-
quisition of various kind of objects in the air, such as humans[2] and buildings[13, 14],
and in particular algorithms utilizing active illuminations are known to be a practical
solution for real environments[15, 16].

Towards realizing 3D shape estimation in water, many studies have been proposed50

for underwater vision[17, 18, 19, 20, 21, 22, 10, 23, 24]. Most of them do not explicitly
model refractions by housings because such refractive distortions can be compensated
by using dome-shaped housings. This is a straightforward solution, but dome housings
require the projection center physically coincide with the dome center[23]. Flat surface
housings are also popular because of the cost, and also because of the fact that under-55

water cameras with flat surface housings is equivalent to capturing objects in a water
tank via its flat surface. In this paper, we focus on the case of flat housings.

In the context of refraction modeling, Agrawal et al. [25] have proposed a novel
calibration technique based on the axial camera model which estimates the exact model
parameters of the refraction such as the thickness and refractive indices of each media.60

By knowing these parameters, Snell’s law allows computing the light path passing
through the flat housing analytically. However, the computation of forward (3D-to-2D)
projection requires solving a 12th degree equation for each projection[25], hence can
be intractable if used for 3D sensing in water in practice.

Another approach to handle projection with refraction is use of the raxel camera65

model[26, 10, 27] that explicitly associates a ray in water for each camera pixel. They

3



HousingAir Water

pp

ℓa
ℓg

ℓwpa pg

og

µa µg µw

τa τg

n

Sa Sg

fc
oc

oao0

pw

C

p
p

p

Figure 3: Measurement model of a single camera

employed a two-plane method which learns mappings between two planes in water
and their projections in order to represent each 3D ray in water by connecting two
distinctive points on the planes corresponding to a single 2D pixel. While this method
can be applied for arbitrary housings without explicit housing-to-camera calibrations,70

this model does not provide a practical solution for the forward (3D-to-2D) projection.
In the context of 3D measurement for underwater object, Treibitz et al. have pro-

posed a method that estimates underwater object sizes, under assumption that the cam-
era, the flat housing and the object are all parallel[8, 9]. Sedlazeck and Koch have
proposed a virtual camera model of which camera center forms the 3D caustic[28].75

They have proposed an underwater structure-from-motion (SfM) technique which ac-
counts for the refraction caused by a flat housing in computing the reprojection error
minimization. However SfM requires rich textures on the target in general while un-
derwater objects are not always well-textured.

Another underwater 3D shape reconstruction based on shape-from-silhouette (SfS)80

has been proposed in [29]. They avoid computing forward (3D-to-2D) projections,
and implemented a real-time image-based SfS for underwater object. This method can
compute the visual hull of the object as a reasonable initial guess, but their method
cannot provide further refinement based on texture matching.

Compared with these studies we propose a new virtual camera model to realize an85

efficient forward projection and an underwater projector-camera calibration to capture
poorly-textured objects in water in practice.

3. Measurement Model

3.1. Underwater Camera

Figure 3 illustrates the measurement model of a single underwater camera. A pin-90

hole camera C at o0 observes the underwater scene via a flat housing surface of τg
thick at τa distance from o0. A point pw in water is projected to pp and o0 along the
segment `wp -`gp-`ap. The intersections on the housing boundary Sg and Sa are denoted
by the point pg and the point pa respectively.

Here we assume the two surfaces Sa and Sg of the housing are flat and parallel,95

but the camera is not necessarily front-parallel to them. Instead, we employ the axial
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Figure 4: Axial measurement model

o0

HousingAir

pp
ℓa

pa

τa Sa

oc oafc
r

z C

p

n

a
pd

r pp

r pda

HousingAir Water

ℓa

ℓg
ℓwpa

pg

og

µa µg µw

τgSa Sg

oa

r

pw

z

p

p p

r pda
r pdg

r ap r gp

r pdw
a
pd

a
pd

a
pd

Figure 5: Light path in Axial measurement model. Left : `ap is derived from the observed point pp. Right :
The light path `ap − `

g
p − `wp is derived from `ap with Snell’s law.

camera concept proposed by Agrawal et al. [25] to simplify this model without loss of
generality.

Consider a virtual camera Cn such that its projection center is placed at o0 and its
optical axis is directed along the normal vector n of the flat housing (Figure 4). Also100

let Cn and C share a same intrinsic parameter A calibrated beforehand. By using the
calibration proposed by [25], the poses of C and Cn w.r.t. the housing surface can be
estimated explicitly. Hence the mapping from a pixel of C to a corresponding pixel of
Cn sharing a same `ap is given by a homography matrix trivially.

Since this homography is bijective, we can use Cn instead of C without loss of105

generality. In addition, the light paths described using Cn have a radially symmet-
ric structure about the Z-axis by definition. That is, `wp -`gp-`ap for each pixel of Cn
is always on a single plane of refraction, and they are identical to each other for all
the pixels sharing a same distance r from the image center oc as well as oa and og
consequently (Figure 4). Hence we employ the (r, z)> coordinate system hereafter.110

Let rα and zα denote the r and z elements of vector α in general. For example,
point pp is described as pp = (rpp , zpp)>. Also let dXp = (rdXp , zdXp )> denote the
direction vector of line `Xp towards the water from the camera, whereX is each medium
(Figure 5). Snell’s law is expressed as µardap = µgrdgp = µwrdwp , where µa, µg , and
µw are the refractive indices of the air, housing and water. Using Snell’s law the light
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path `ap − `gp − `wp is given as

dap =
(
rpp/

√
r2
pp + f2

c , fc/
√
r2
pp + f2

c

)>
, (1)

pa =
τa
fc
dap, (2)

dgp =

(
µa
µg
rdap ,

√
1− r2

dgp

)>
, (3)

pg = pa +
τg
zdgp
dgp, (4)

dwp =

(
µg
µw

rdgp ,
√

1− r2
dwp

)>
, (5)

where fc is the focal length of the camera. These equations allow computing direction
of a ray in water dwp and a position pg , given a pixel pp on the image plane. Similarly,
computing pp from dwp can be done by applying Snell’s law inversely.

This suggests that knowing the correct direction of the projection is crucial in com-
puting the projection of a point pw in water. If dwp is available, Snell’s law simply pro-115

vides the analytical solution to find pg , pa, and pp. Otherwise, i.e., if dwp is not given,
it requires solving a 12th degree equation, and becomes a time-consuming process[25].

To realize a practical underwater image-based 3D acquisition, we propose a new
approach that exploits the radial structure of the rays in Cn based on the raxel camera
model[26].120

3.2. Underwater Projector
Based on the principle of reversibility of light, an underwater projector is equivalent

to an underwater camera, and hence we can model the rays emitted by the projector
using the measurement model for the underwater camera (Section 3.1). Hence we first
introduce our model for the camera, and then introduce a projector-specific calibration125

process later.

4. The Pixel-wise Varifocal Camera Model

Suppose all the model parameters in the previous section including the homography
between C and Cn have been calibrated beforehand by a conventional method[25].
The goal of this section is to introduce a new virtual camera model which realizes a130

simple and efficient computation scheme of the projections in water by compiling the
calibrated parameters into another representation.

To this end, we introduce a new virtual camera model named pixel-wise varifocal
camera model (PVCM) defined as follows (Figure 6).

• The virtual image screen coincides with the housing surface Sg . The virtual pixel135

pg is associated with a real pixel pp of C by Eq (4) and the homography between
C and Cn.

• The virtual optical axis (Z-axis) is identical to the housing normal n.
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Table 1: Pixel-ray mapping for general raxel model.
pixel pp0 pp1 · · · ppN
ray (pg0,d

w
p0) (pg1,d

w
p1) · · · (pgN ,d

w
pN )

• The virtual pixel pg has a pixel-wise projection center opg defined simply by
connecting `w to the virtual optical axis (Figure 6, the green straight line). The140

distance between the pixel-wise projection center opg and the virtual image
screen Sg is denoted as the pixel-wise focal length f(pg).

As shown in Figure 6, the green dashed line is the actual path of the measurement
model in Section 3 satisfying Snell’s law. If we ignore the refraction and project it
perspectively, the pixel-wise projection center moves from o0 to opg along Z-axis145

according to the position of each pixel pg on Sg by definition.
Here the direction of the ray `w is parameterized by the virtual focal length f(pg),

and the axial structure suggests that the virtual focal length depends only on the radial
distance rpg

from the virtual image center og to pg (Figure 6). That is, f(pg) =
f(rpg

). This fact indicates that a simple rpg
-f(rpg

) mapping (Table 2) is sufficient to150

describe the 3D ray `w in water emitted from the pixel pg .
This representation is a kind of the raxel model[26] that associates a 3D line on a

per-pixel basis, but has two advantages compared with the general raxel representation.
As shown in Table 1, the general raxel model associates a fully-described 3D ray for
each pixel. Compared with our model (Table 2) storing focal lengths for each radial dis-155

tance in a 1D array, it requires a quadric order of memory footprint than ours. Also, our
representation elucidates an ordered structure of the virtual focal lengths that benefits
for an efficient forward projection computation while the general raxel representation
cannot exploit such structure (Section 4.3).

4.1. The Pixel-wise Focal Length160

Given a pixel pg = (rpg , τa + τg)
> of the virtual camera Cv as shown in Table

2, consider representing the ray `wp incident at pg as if Cv is a pinhole camera and its
projection center is on the Z-axis. For this description, let us use qX and `Xq expression
instead of pX and `Xp when we set the origin as og(0, 0). Obviously its projection
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Table 2: Pixel-ray mapping for our virtual camera model.
pixel rpg0 rpg1 · · · rpgn
ray f(rpg0

) f(rpg1
) · · · f(rpgn

)

center oqg = (0,−f(qg))
> is given as the intersection of the Z-axis and the line `wq as

illustrated in Figure 6. Hence by solving oqg = tdwq + qg using Eq (5), we have(
0

−f(qg)

)
= t

( µg

µw
rdgq√

1− r2
dwq

)
+

(
rqg
0

)
, (6)

t = −µw
µg

rqg
rdgq

, (7)

f(qg) =
µw
µg

rqg
rdgq

√
1− r2

dwq
, (8)

=
µw
µg

rqg
rdgq

√
1− (

µg
µw

rdgq )2, (9)

=
µw
µa

rqg
rdaq

√
1− (

µa
µw

rdaq )2. (10)

Once obtained f(qg) for each radial distance of the virtual camera Cv , we can
compute `wq for each rqg

without tracing the refraction inside the housing, and can
compute the forward (3D-to-2D) and backward (2D-to-3D) projection computations
as follows.

4.2. Backward Projection using Pixel-wise Focal Length165

The backward projection using our varifocal camera model can be done straight-
forwardly. If a point qg on Sg is the projection of a 3D point qw in water, then the
viewing ray `wq connecting qg and qw is given as

`wq : (0,−f(qg))
> + tdwp , (11)

using a scale parameter t representing the depth. Notice that the mapping in Table 2
provides f(qg) for qg , and dwp by connecting oqg = (0,−f(qg))

> and qg .170

4.3. Forward Projection using Pixel-wise Focal Length
Consider a 3D point qw in water, and a 3D line `q passing through qw and inter-

secting with Sg and Z-axis at qg and oqg = (0,−fqg )> as illustrated in Figure 7. Then
the following proposition holds.

Proposition 4.1. f(qg), the pixel-wise focal length stored at qg , is equal to fqg if and175

only if `q is identical to the ray imaged by the camera C.

Proof. The definition of the varifocal camera model ensures that the line passing through
qg on Sg and oqg = (0,−f(qg))

> represents a 3D ray which is projected onto a single
pixel of the camera C. On the other hand, the principle of the reversibility of light and
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the definition of the pinhole imaging ensure that there exists only a ray incident at qg180

which can be imaged by the camera C. Hence it is only the case making f(qg) = fqg
that `q is identical to the ray imaged by C.

This proposition indicates that we can obtain the projection of qw on Sg , the image
screen of the varifocal camera, by seeking qg which minimizes the difference between
fqg , the focal length used to project qw perspectively along `w, and f(qg), the focal185

length stored at the intersection qg . To this end, we first introduce a simple method
using a recurrence relation, and then introduce a faster algorithm based on the Newton’s
method utilizing the recurrence relation.

Forward Projection by a Recurrence Relation. As illustrated in Figure 8, suppose the
3D point qw in question is first projected perspectively to q0 on Sg , the virtual screen of
Cv , by using an initial (or tentative) focal length fq0 (the green line). By the definition
of the pixel-wise varifocal model, the pixel q0 has the correct focal length fq1 = f(q0)
given as shown in Table 2. That is, oq1 = (0,−fq1)> is the correct virtual projec-
tion center for q0 instead of oq0 = (0,−fq0)>. By iteratively applying perspective
projections using (0,−fq0), (0,−fq1), . . . , we have

rqk+1
=

rqwf(qk)

(zqw + f(qk))
. (12)
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By Snell’s law and the fact rqk
> rqk′ ⇔ f(qk) > f(qk′) from Eqs (1), (2), (3),

(4) and (10), the following monotonicity conditions hold:

rq1 > rq0 ⇒ rqk+1
≥ rqk , rq1 < rq0 ⇒ rqk+1

≤ rqk . (13)

Also, the definition of the pixel-wise varifocal model ensures

rqk+1
= rqk ⇔ f(qk+1) = fqk , (14)

and, since µa < µg and µa < µw,

τa + τg ≤ ∀fqk . (15)

Since Proposition 4.1 ensures that there exists only one rqk which satisfies Eq (14),
starting the recurrence from fq0 = τa + τg always converges to the correct value190

satisfying Eq (14) as shown in Figure 11 later.
However, the rate of the convergence becomes slower and slower by iteration, be-

cause the lines by oqk and oqk+1
(the green and the red lines of Figure 8) become nearly

parallel. To overcome this difficulty, we propose a method based on the Newton’s al-
gorithm which utilizes this recurrence relation.195

Forward Projection by a Quadratically and Globally Convergent Optimization. We
can describe the 3D point qw in question as

rqw =
rdap
zdap

τa +
rdgp
zdgp

τg +
rdwp
zdwp

zqw . (16)

By using Eqs (1), (3) and (5), we can rewrite this as

rqw =
µwrdwp τa√
µ2
a − µ2

wr
2
dwp

+
µwrdwp τg√
µ2
g − µ2

wr
2
dwp

+
rdwp zqw√
1− r2

dwp

. (17)

From this equation, we can formulate the forward projection computation as a prob-
lem finding rdwp which makes the following E(rdwp ) be zero.

E(rdwp ) = rq −
rdwp zq√
1− r2

dwp

−
µwrdwp τa√
µ2
a − µ2

wr
2
dwp

−
µwrdwp τg√
µ2
g − µ2

wr
2
dwp

. (18)

The best rdwp which makes E(rdwp ) = 0 can be computed by the Newton’s method
efficiently, and moreover, it converges globally regardless of the initial value.

Proof. The theorem on Newton’s method for a convex function ensures that if the
objective function is twice continuously differentiable, increasing, convex and has a
zero, then the zero is unique, and the Newton’s method will converge to it from any200

initial value[30].
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In case of Eq (18), the first and the second derivatives of E(rdwp ) are given as

dE(rdwp )

drdwp
=
zq
E1

+
zq r

2
dwp

E3
1

+
τgµw
E2

+
τg µ

3
w r

2
dwp

E3
2

+
τaµw
E3

+
τa µ

3
w r

2
dwp

E3
3

, (19)

d2E

dr2
dwp

=
3 zq rdwp
E3

1

+
3 zq r

3
dwp

E5
1

+
3 τg µ

3
w rdwp
E3

2

+
3 τg µ

5
w r

3
dwp

E5
2

+
3 τa µ

3
w rdwp
E3

3

+
3 τa µ

5
w r

3
dwp

E5
3

, (20)

where E1 = 1/
√

1− r2
dwp

, E2 = 1/
√
µg2 − µw2 r2

dwp
, and E3 = 1/

√
µa2 − µw2 r2

dwp
.

Since rdwp is non-negative by definition,
d2E(rdwp )

dr2
dwp

≥ 0 holds andE(rdwp ) is a convex

function. Obviously E(rdwp ) is twice continuously differentiable, increasing, and has a
zero for rdwp ≥ 0, then the Newton’s method converges globally.205

In addition, while this global convergence allows us to start finding rdwp from any
value in [0, µw/µg], notice that the recurrence relation of Eq (12) can provide a rea-
sonable initial guess of rdwp by projecting first by a tentative virtual focal length with a
smaller computational cost as shown in Table 3 later.

5. Camera and Projector Calibration in Water210

Up to this point, we introduced our underwater camera model that allows a compact
and efficient representation of 3D-to-2D forward projection. This section introduces a
practical method for calibrating underwater cameras by PVCM (pixel-wise varifocal
camera model) and underwater projectors by PVPM (pixel-wise varifocal projector
model) to realize our underwater active stereo system.215

Notice that our calibration requires reference objects of known geometry in water,
such as a chessboard. That is, as long as such reference objects are available, our
calibration can be conducted in water.

5.1. Camera Calibration in Water

Modeling a single underwater camera by PVCM itself is a trivial process. By cal-220

ibrating the relative pose of the camera w.r.t. the housing based on a conventional
method using a reference object in water[25], we can compute the table associating
the virtual focal length and the radial distance (Table 2) as described earlier.

Based on this single PVCM calibration, we propose a linear extrinsic calibration
for multiple underwater cameras.225
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5.1.1. Linear Extrinsic Calibration of Underwater Cameras
Suppose we have two pixel-wise varifocal cameras Cv and C ′v . The goal of the

extrinsic calibration is to estimate the relative pose R, T of these cameras from a set of
corresponding points in their images. Since our virtual camera is a kind of axial models,
its extrinsic calibration can be seen as a special form of the one for axial cameras[31].230

Given a pixel pp′ in the real image, we can obtain the corresponding position pg
on Sg without loss of generality as illustrated by Figures 3 and 6. Therefore, given a
pair of corresponding points, we can represent the 3D point in water as

qw = tqwd
w
p + qg = λqwd

w
p + oqg ,

= R(λ′qwd
′w
p + o′qg ) + T,

⇔ λqwd
w
p − λ′qwRd

′w
p = Ro′qg + T − oqg ,

(21)

where λqw and λ′qw denote the unknown depths of the 3D point from oqg and o′qg .
This equation indicates that dwp , Rd′wp and Ro′qg + T − oqg are on a single plane.

In other words, they satisfy:

dwp
>
((
Ro′qg + T − oqg

)
×
(
Rd′wp

))
= 0. (22)

By rewriting this as an element-wise formula, we have

l>wEvl
′
w = 0,

lw =
(
xdwp ydwp zdwp fqgxdwp fqgydwp

)>
,

l′w =
(
x′dwp y′dwp z′dwp f ′qgx

′
dwp

f ′qgy
′
dwp

)>
,

Ev =

 r31yt−r21zt r32yt−r22zt r33yt−r23zt −r12 r11
r11zt−r31xt r12zt−r32xt r13zt−r33xt −r22 r21
r21xt−r11yt r22xt−r12yt r23xt−r13yt −r32 r31
−r21 −r22 −r23 0 0
r11 r12 r13 0 0

 ,

(23)

where rij is the (i, j) element of R and T = (xt, yt, zt)
>. (xdwp , ydwp , zdwp ) and

(x′dwp , y
′
dwp
, z′dwp ) represent x, y, z elements of dwp and d′wp expressed in their camera

coordinate systems respectively.
Since l and l′ are given by each of corresponding pairs, we can linearly estimate 17235

unknown elements of Ev up to a scale, by using 16 or more corresponding pairs. Once
Ev is given, R and T can be obtained linearly from Ev consequently.

Notice that Eq (22) has a trivial solution Ro′qg + T − oqg = 0. This indicates
Ro′qg + T = oqg and the two virtual optical centers coincide. In this case two lines
`w and `′w should either be intersecting at the virtual optical center or be identical to240

each other. The former case suggests that the two lines never intersect in water and
violates the assumption where the cameras captured a 3D point in water. The latter
case suggests that the two cameras are identical. Hence this trivial solution should be
rejected.

Besides, the rotation matrix estimated linearly may not be an SO(3) matrix. To245

enforce the orthogonality constraint, we modify the matrix as R′ = UV > where U
and V are the left and the right singular matrices of R[32].
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5.2. Calibration of Projector-Camera System in Water

This section describes our underwater projector-camera calibration. Notice that
this is originally presented in [12], but we include this in order to keep this paper self-250

contained.
As illustrated in Figure 9, suppose we have an underwater projector C and an un-

derwater camera C ′. Π is a flat calibration panel in water. Here we assume that a 2D
pattern U of a known geometry is printed on Π, and the camera C ′ is calibrated as
PVCM Cv

′ beforehand. Notice that we use X ′ to denote a parameter of PVCM which255

corresponds to X of PVPM, and xX , yX , and zX to denote the x, y, and z element of
a vectorX respectively, and dYX to denote the direction of the line `YX .

Similarly to PVCM, we model the rays emitted by the projector using pixel-wise
varifocal lengths. We denote this as pixel-wise varifocal projector model (PVPM) here-
after (Figure 10). This section first introduces a PVPM calibration and then the extrin-260

13



sic calibration of a PVCM-PVPM pair.
Our calibration is based on estimating the 3D geometry of patterns projected onto

the plane Π. As done in the air[33], we use a 2D pattern U printed on Π as well as a
2D pattern V projected by C onto Π, to provide a set of 2D-3D correspondences for
the projector to calibrate it as a PVPM. Our calibration consists of the following steps.265

Step 1. Camera Cv ′ pose estimation w.r.t. Π by capturing pattern U .

Step 2. Estimation of 3D geometry of a pattern V projected by C on Π using Cv ′.

Step 3. PVPM calibration of Cv and its pose estimation w.r.t. Π using 2D-3D correspon-
dence of pattern V .

As a result, both the camera and the projector poses are estimated w.r.t. Π.270

In what follows, we denote parameter X in underwater camera coordinate system
by {Cv

′}X and X in the plane coordinate system by {Π}X in order to clarify the coor-
dinate system.

Step 1. Pose Estimation of PVCM using Planner Pattern in Water. Estimation of the
camera poseRc′ and tc′ w.r.t. Π can be done by using the flat refraction constraint[25].
That is, the direction dw

′

u of the ray `w
′

u to a known point u of U is identical to the
vector from the incident point ug ′ to uw′, where the known point u = (xu, yu, 0)> is
described as uw′ in the coordinate system of PVCM Cv

′ (Figure 9).

{Cv
′}dw

′

u ×
(
{Cv

′}uw
′ − {Cv

′}ug
′
)

= 0,

⇔ {Cv
′}dw

′

u ×
((
Rc
′{Π}u+ tc

′
)
− {Cv

′}ug
′
)

= 0,

⇔
(
xu[dw

′

u ]× yu[dw
′

u ]× [dw
′

u ]×

)( rc,1
′

rc,2
′

tc
′

)
= [dw

′

u ]×ug
′,

(24)

where rX,i denotes the ith column vector of RX , and [X]× denotes the 3 × 3 skew-
symmetric matrix defined by a 3D vector X . Since this equation provides three con-275

straints for 9 unknowns rc,1′, rc,2′, and tc′, we can solve this system of equations
linearly by using at least three points. Once rc,1′ and rc,2′ are obtained, rc,3′ is given
by their cross product.

Step 2. Estimation of 3D Geometry of Projected Pattern. Suppose the projectorC casts
a known pattern V onto Π which consists of feature points such that their projections280

can be identified in the captured image of Cv ′ even under refractions. Let v denote a
3D feature point on Π projected from a pixel vp of projector C. The goal here is to
estimate {Π}v = (xv, yv, 0)> from its projection vw′ in the camera Cv ′ image in order
to establish 2D-3D correspondences between 2D projector pixels vp and 3D points v
on Π.285

Since v is on `w
′

v , we can represent its 3D position to Cv ′ with a scale parameter
λv
′ as

{Π}v = Rc
′>({Cv

′}vw
′ − tc′) = Rc

′>(λv
′{Cv

′}dw
′

v + ovg

′ − tc′). (25)

Here we know that zv = 0 because of the fact that V is on Π, and it is trivial to
determine the other unknown parameters λv ′, xv and yv .
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Step 3. Calibration of Pixel-wise Varifocal Projector Model using 2D-3D Correspon-
dences. Given a set of correspondences between 2D projector pixels vp and 3D points
v on Π in the previous step, the pose of the real projector RΠ and tΠ w.r.t. Π, and its290

housing parameters can be calibrated by the conventional method[25]. Once obtained
these parameters, we can build a table representing the virtual projector focal length as
done for PVCM.

Notice that the 3D points v are not necessarily from a single Π. In fact by capturing
the panel Π with different poses in water, they can cover a larger area of the scene295

and contribute to improve the accuracy and robustness of the parameter estimation as
pointed out in [25].

6. Underwater Active Stereo

Up to this point, we have introduced our underwater projector-camera calibration
that can handle projections in water in a compact and efficient manner. This section in-300

troduces our underwater active stereo system that utilizes projectors as reverse cameras
as done in the Kinect sensor[34] in order to improve the stereo matching for poorly-
textured underwater objects by attaching artificial texture onto the target surface.

Apart from the texture, the main difficulty of underwater stereo is its depth-dependent
image distortion caused by refraction. It deforms the epipolar line according to the305

pixel-wise depth, and invalidates stereo methods that work on 2D image domain by
template matching with slanted local supports[35]. Also stereo methods that work on
3D domain by projecting small patches to 2D images[2] can be intractable due to the
refraction computation.

In this section we introduce two practical systems that can be realized by our un-310

derwater projector-camera calibration and efficient 3D-to-2D projection.

6.1. Structured Lighting in Water

For static objects, our underwater projector-camera calibration allows implement-
ing a structured light technique. Suppose calibrated underwater projectors cast struc-
tured light patterns such as Gray codes to the object. By capturing the object using315

underwater cameras, we can establish dense per-pixel correspondences by decoding
the pattern images[33]:

1. Project structured light patterns to the object.

2. Capture the images and establish correspondences between projector and camera
pixels.320

3. Estimate the depth by triangulating the rays in water computed by PVCM and
PVPM.

This provides an accurate 3D geometry since it does not need to estimate the corre-
spondences, but requires the object to be kept static.

15



6.2. Underwater Active Stereo using Random Dot Pattern325

As done in the Kinect sensor[34], casting a random dot pattern onto the object can
enhance the stereo matching quality for poorly-textured surfaces in practice, and allows
a oneshot capture of dynamic object in the scene.

Our underwater projector-camera calibration allows projectors to be used as reverse
cameras, and our efficient forward projection allows explicit handling of the refraction330

by projecting 3D sample points (voxels) to images for photo-consistency evaluation as
done in space carving[36]:

1. Capture the background image for each camera without the object beforehand.

2. Capture the foreground image for each camera with the object while projecting
a known pseudo-random-dot pattern from projectors.335

3. Estimate the object silhouette for each camera by the background subtraction.

4. Apply the shape-from-silhouette[37, 29] to estimate the maximum object volume
by the visual hull.

5. Carve photo-inconsistent voxels from the visual hull until all the outmost voxels
be photo-consistent.340

Notice that projectors contribute to the photo-consistency evaluation in 5. as reverse
cameras by utilizing the knowledge about the projected pattern.

7. Evaluation

7.1. Efficiency of Forward projection

This section evaluates our forward projection computation in terms of efficiency,345

since the proposed model does not improve the accuracy by definition.

Rate of convergence. To evaluate the rate of convergence of our iterative methods for
the forward projection in Section 4.3, Figure 11 shows the projection error Ep against
the number of iterations k. By using a synthesized data set, the reprojection error is
defined as

Ep = |P ′(r̂q)− P ′(rqk)|, (26)

where r̂q is the ground-truth and rqk is the value returned by the algorithm at the k-th
iteration in Cv . P ′(rqk) denotes the pixel position in the original image of C ′ corre-
sponding to rqk in Cv . Notice that P ′(·) is employed only for evaluating Ep in pixels,
and is not required for the forward projection to Cv .350

From these results, we can observe that (1) the rates of convergence of the recur-
rence relation and the Newton-based ones are linear and quadratic respectively, and (2)
our Newton-based algorithm with 3 times iterations achieve a sub-pixel accuracy.

16



R
ep

ro
je

ct
io

n 
er

ro
r  

 lo
g 10

E p
Reccurence (θ=15°)

Reccurence (θ=30°)

Reccurence (θ=70°)

Newton (θ=15°)

Newton (θ=30°)

Newton (θ=70°)

Number of iterations k
0 2 4 6 8 10−15

−10

−5

0

5

 

 

Figure 11: Comparison of the rate of convergence. Notice that errors are lower bounded by 10−12, the
default precision of the floating-point computations in our implementation.

Table 3: Average computational costs of single forward projections
Analytical[25] By Recurrence By Newton

Runtime 1.39 msec 0.14 msec 0.27 msec
FLOPS 1512 113 250

Computational efficiency. Table 3 reports computational costs of our methods com-
puting up to the subpixel accuracy and the state-of-the-art solving the 12th degree of355

equation analytically[25]. They are the average values of 6400 forward projections run
in Matlab on an Intel Core-i5 2.5GHz PC. The FLOPS are counted using Lightspeed
Matlab toolbox[38].

From these results, we can conclude that our method runs much faster than the
analytical method while maintaining the sub-pixel accuracy. In other words, the our360

method achieves the equivalent accuracy as other methods in practical image-based
analysis.

Discussion. The linear rate of convergence by the recurrence relation method and the
quadratic rate by the Newton-based method (Section 4.3) shown by Figure 11 do not
immediately indicate that the Newton-based method is always the better option, be-365

cause of the difference on their computation costs for a single iteration reported in
Table 3. In particular, if we represent the pixel-wise focal lengths f(rg) by a LUT of a
certain resolution of rg , then the recurrent computation of Eq (12) can be done just by
obtaining the value f(rqi) from it. Hence if the total computation cost is limited, then
combining these two methods by updating with the recurrence relation method first and370

then by switching to the Newton-based one for fine tuning can be a better option.
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Figure 12: Quantitative evaluations of our underwater projector-camera calibration

7.2. Calibration

7.2.1. Quantitative Evaluation using Synthesized Data
Figure 12 shows calibration errors under different noise levels. Given a set of

160 points synthesized in water, we randomly select 16 points for each trial, and add375

Gaussian noise with zero-mean and standard deviation σ = 0.1, 0.2, . . . , 2.0 to their
2D projections. The three plots report the average errors of 100 trials at each noise
level. Here the estimation error of R is described as the quaternion distance to the
ground truth, and the estimation error of T is defined as the RMS error normalized by
|T |. These results indicate that our linear method performs robustly against observation380

noise. Notice that since the projector serves as a reverse camera, this applies both to
projectors and cameras.

7.2.2. Quantitative Evaluation using Real Data
Figure 13 shows our environment. We used four SXGA cameras (Pointgrey CMLN-

13S2C-CS) and one 1080p projector (BenQ MH680) around an octagonal water tank385

of 900 mm diameter. The capture target is a flat panel having two chess patterns on it:
a colored pattern in water and a black pattern in the air. Their relative pose is calibrated
by capturing them in the air beforehand.

The two cameras Camera1, Camera2 and the projector observe the object (col-
ored chess pattern) in water via the flat acrylic tank surface of about 30 mm thick. This390

is optically-equivalent to having an underwater projector and cameras with flat hous-
ings of the same thickness. Camera3 and Camera4 are used as reference cameras to
provide the ground truth of the colored chess-pattern 3D geometry in water by captur-
ing the black chess pattern in the air and their relative pose. The ground truth of the
camera poses are calibrated beforehand, by capturing reference objects in the air[39]395

for evaluation purpose.

Underwater Cameras. Based on the calibration given in Figure 13, Figure 14(a) shows
the estimated 3D geometry of 40 chess corners in water on five panels at different dis-
tances: the distance between the nearest and the farthest panels was roughly 400 mm.
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Figure 13: Evaluation environment of underwater projector-camera system. (a) Two cameras and one pro-
jector observing the target (colored chess pattern) in water via a flat housing, and two cameras capturing
the reference object (black chess pattern) in the air to provide the ground truth position of the colored chess
pattern based on their relative posture calibrated beforehand. (b) Calibration result of evaluation system.
Camera1 and Camera2 define our underwater camera system. Camera1 and Projector define our underwater
projector-camera system. Camera1, Camera2, and Projector are calibrated only by detecting the colored
chess pattern (cyan points) from their images.

The blue points are the ground truth calculated by the cameras in the air (Camera3,400

Camera4). The cyan ones are the points by our underwater camera system (Camera1,
Camera2). The average error of these 200 points was 2.43 mm. The red ones are
points calculated by assuming the perspective projection without refraction, and its
average error was 31.11 mm.

Underwater Projector and Camera. Figures 14(b) and (c) show the estimated chess405

corner positions on three panels at every 200 mm. The blue dots denote the points
by our underwater projector and camera system (Camera1, Projector) using the
structured-light method (Section 6). The red dots denote the points by assuming the
perspective projection without refraction. Notice that we used only Camera1 and the
projector as a reverse camera in order to evaluate the underwater projector-camera cal-410

ibration accuracy sorely. These figures qualitatively visualize that our method better
reconstructs the 3D points of different distances from the camera and the projector.

The quality of the calibration is assessed by measuring the distance from the panel
to the estimated 3D points. Here the geometry of the each panel surface is esti-
mated using the 3D positions of the chess corners in the air captured by Camera3415

and Camera4. The average errors of the blue points on the three panels were, from
near to far, 1.90 mm, 1.59 mm, and 4.01 mm respectively. Those of the red ones were
34.36 mm, 9.53 mm, and 89.06 mm respectively.

From these results we can conclude that our method realized a practical underwater
projector-camera calibration in a reasonable accuracy for a wide range of distance from420

the cameras.
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Figure 14: Evaluation result. (a) 3D points estimated by the underwater camera pair. The blue points are
ground truth of colored chess patterns provided by capturing black chess patterns by Camera3 and Camera4
in the air. The cyan points are estimated by Camera1 and Camera2 with our refraction modeling, and the
red points are estimated by Camera1 and Camera2 with perspective projection without refraction. (b) 3D
points estimated by the underwater projector-camera pair. The panel planes are defined by the yellow points
calibrated by Camera3 and Camera4 in the air as the ground truth. The blue points are estimated by our
underwater projector and camera system. The red points are estimated by assuming perspective projection
without refraction. (c) Top view of (b).

7.3. Underwater 3D Shape Estimation

To demonstrate the performance of the proposed camera model, this section shows
two 3D reconstruction results: one for an underwater camera system corresponding to
Section 5.1, and the other for an underwater projector-camera system corresponding to425

Section 5.2.

Underwater Camera System. Figure 15 illustrates our underwater camera system. Given
8 images as shown in Figure 16 left and 2.5 mm voxel resolution, a space carving[36]
with our refraction modeling returns a 3D shape shown in Figure 16 right. The recon-
struction cost about 1 minute in Matlab on an Intel Core-i5 2.5GHz PC. This result430

demonstrates the validity of our refraction modeling for underwater cameras qualita-
tively.

Underwater Projector-Camera System. Figure 18 shows a result of our dynamic 3D
shape capture of a swimming goldfish, in order to demonstrate the performance of our
underwater projector-camera calibration. We used the system as illustrated in Figure435

17 and the same PC used above. Each of the projectors casts pattern in different color
channels (red and blue) for avoiding interference. The system ran at 15 fps in recording,
and took about 30 sec per frame to reconstruct the 3D shape by our underwater space
carving using 4 mm voxel resolution.

The three columns in the left of Figure 18 show the captured images, and the three440

columns in the right show rendered images of the reconstructed 3D shapes by our
method and by the conventional space carving with perspective projection[36]. As the
left column of the rendered images shows, we can virtually observe the object appear-
ance even from the top-side of the object where the real camera does not exist. This
well demonstrates the accuracy of our 3D shape estimation quality. On the other hand,445
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Figure 15: Setup for 3D shape capture of seashell with 8 cameras surrounding the same octagonal tank used
in Figure 13 without projector.

the conventional space carving cannot produce a comparable result since it ignores re-
fraction and results in poor 3D estimations due to wrong photo-consistency evaluation.
These points prove the concept of our image-based full 3D shape reconstruction of
underwater dynamic objects.

Notice that the blue colors are a result of projected pattern that can be eliminated if450

implemented with IR projectors and cameras for example.

8. Conclusion

Towards realizing a 3D shape capture of underwater objects, this paper proposed an
underwater projector-camera system which explicitly handles the refraction caused by
the flat housings. The evaluations using synthesized and real datasets demonstrated the455

robustness and accuracy of our underwater projector-camera calibration quantitatively.
We demonstrated our proposed algorithm by implementing an underwater multi-view
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Figure 16: Result of 3D shape estimation of seashell.

projector-camera system that captured the dynamic 3D shape of a swimming goldfish
successfully.

We believe this work brings us one step closer to realizing a practical 3D sensing460

of underwater objects. Our future work includes real-time full 3D capture, 3D mo-
tion estimation, and extension to semi-transparent targets. Furthermore, extending our
method to allow self-calibrating the cameras and projectors without known reference
objects in water will help applying our method in environments where calibration pa-
rameters change dynamically due to pressure[24].465
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Figure 18: Result of 3D shape estimation of goldfish. Each row shows images of the frame indicated in the
left most column.
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