
A Pixel-wise Varifocal Camera Model for Efficient Forward Projection and
Linear Extrinsic Calibration of Underwater Cameras with Flat Housings

Abstract

This paper is aimed at presenting a new virtual camera
model which can efficiently model refraction through flat
housings in underwater photography. The key idea is to em-
ploy a pixel-wise virtual focal length concept to encode the
refractive projection inside the flat housing. The radially-
symmetric structure of the varifocal length around the nor-
mal of the housing surface allows us to encode the refractive
projection with a compact representation. We show that this
model realizes an efficient forward projection computation
and a linear extrinsic calibration in water. Evaluations us-
ing synthesized and real data demonstrate the performance
quantitatively and qualitatively.

1. Introduction

The successful development of image-based 3D sensing
techniques in computer vision is based on the well-studied
perspective camera model and the multiple-view geometry
in which light rays are supposed to be straight lines [9].

However, this modeling is not valid for environments
with more than one media such as underwater photography.
In particular, the forward projection via flat housings which
computes the projection of 3D points in water to the image
is known to be a time-consuming process involving highly
non-linear computations [1]. This fact makes applying con-
ventional vision techniques into underwater scenario diffi-
cult, since such inefficiency makes all the algorithms on top
of 3D-to-2D projections impractical.

To solve this problem, this paper proposes a new virtual
camera model which encodes the refractive projection pro-
cess inside a flat housing by a simple representation, and re-
alizes an efficient forward (3D-to-2D) refractive projection
computation and a linear extrinsic calibration. We believe
it will open possibilities for applying computer vision tech-
niques into underwater scene, and its applications include
education and entertainment such as free-viewpoint 3D vi-
sualization of underwater scenes for digital aquariums, and
3D analysis of underwater objects and events such as fertil-
ized eggs and their development.

The key idea on modeling the refraction by flat housing
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Figure 1. Overview of the setup. (a) Two cameras observing a
chessboard in an octagonal water tank. (b) Calibration result by
our method.

is to employ a pixel-wise virtual focal length which encodes
the refraction process inside the flat housing. By exploit-
ing a radially symmetric structure of the pixel-wise focal
lengths, we can describe them with a compact representa-
tion.

The contribution of this paper is twofold. Firstly, our
pixel-wise varifocal camera model realizes a compact and
efficient representation of the refractive projection via flat
housings. Secondly our model realizes a linear extrinsic
calibration of cameras in water. To the best of our knowl-
edge, this is the first paper which proposes a linear extrinsic
calibration of cameras with flat housings in water.

The rest of this paper is organized as follows. Section 2
reviews related studies. Section 3 defines our measurement
model, and Section 4 introduces our pixel-wise varifocal
camera model and a linear extrinsic calibration algorithm.
Section 5 provides qualitative and quantitative evaluations
to demonstrate the advantage of our method. Section 6 con-
cludes this paper with discussions on future work.

2. Related work

While many studies have been proposed for underwater
vision [2–4,7,12,16], most of them do not explicitly model
refractions by housings. This is mainly because such refrac-
tive distortions can be compensated by using dome-shaped
housings carefully tailored for each of the cameras. How-
ever, flat surface housings are also popular because of the
cost, and also because of the fact that regular cameras cap-
turing objects in a water tank via its flat surface are equiva-
lent to underwater cameras with flat surface housings.
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Figure3. Axial measurement model

In the context of refractions by flat surfaces [1, 6, 10],
Agrawal et al. [1] have proposed a novel calibration tech-
nique based on the axial camera model which estimates the
exact model parameters of the refraction such as the thick-
ness of the refractive surface and its refractive indices w.r.t.
water and the air,etc. By knowing these parameters, Snell’s
law allows computing the light path passing through the re-
fractive media. However, projecting a 3D point in water
to the image involves highly non-linear computations, and
hence can be intractable if used for 3D sensing in water
in practice. We solve this problem by introducing a new
virtual camera model utilizing a pixel-wise varifocal length
concept to improve computational efficiency.

Our pixel-wise varifocal length concept defines an inci-
dent ray direction for each pixel. Hence it can be seen as
a special case of theraxel concept [8] in general. In this
sense, our contribution is to provide (1) a computationally
efficient forward projection algorithm and (2) a linear ex-
trinsic calibration on top of the raxel concept by specializ-
ing it as the pixel-wise focal length.

Our extrinsic calibration also allows the flat housing sur-
faces of the cameras to be located arbitrary in water, while
conventional multi-camera systems with flat refractive sur-
faces [5] assume the cameras to share a single flat surface.

3. Measurement model

Figure2 illustrates the measurement model of this paper.
A pinhole cameraC′ at o0 observes the underwater scene
via a flat housing surface (e.g. glass) ofdg thick at da dis-
tance fromo0. A point pw in water is projected topg on
the refraction boundarySg along the segmentℓw. pg is pro-
jected topa on the refraction boundarySa along the segment
ℓg, and thenpa is imaged by the pixel atpc′ along the rayℓa

connectingpa ando0.
Notice that we assume the two surfacesSa andSg of the

housing are flat and parallel, but the camera is not neces-

sarily front-parallel to them. Instead, we employ the axial
camera concept proposed by Agrawalet al. [1] to simplify
this model without loss of generality.

Consider a virtual cameraC such that its projection cen-
ter is placed ato0 and its optical axis is directed alongn,
the normal vector ofSa andSg (Figure3). Also letC andC′

share a same intrinsic parameterA calibrated beforehand.
Then the relationship between 2D pixels of these two cam-
eras is expressed by a homography matrix which projects
pixels fromC′ to C, and the projected point is on the line
connectingo0 andpc′ by definition.

Since this homography is bijective, we can useC instead
of C′ without loss of generality. In addition the light paths
described usingC have a radially symmetric structure about
theZ-axis by definition. Hence we utilize the(r,z)⊤ coor-
dinate system hereafter.

Let rα andzα be ther andzelements ofα. Also letvX =
(rvX ,zvX )

⊤ denote the direction vector of lineℓX towards
the water from the camera. Since Snell’s law is expressed
asµarva = µgrvg = µwrvw by using the refractive indicesµa,
µg, andµw of the air, housing and water, we can trace the
light pathℓa− ℓg− ℓw as

va =
(

rpa/
√

r2
pa
+d2

a, fc/
√

r2
pa
+d2

a

)⊤
, pa =

da

fc
va, (1)
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vg
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dg

zvg

vg, (2)
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(
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µw
rvg,

√
1− r2

vw

)⊤
, (3)

where fc is the focal length of the camera.
These equations allow computingℓw, i.e.vw andpg, from

pc. Similarly, computingpc from ℓw can be done by apply-
ing Snell’s law inversely. Moreover, since onlyℓw can be the
line of the backprojection ofℓa, the principle of reversibil-
ity of light and the definition of the pinhole imaging ensure
that onlyℓw can be imaged byC among other rays incident
at pw onSg with different angles.

This suggests that knowing the correct direction of pro-
jection is crucial in computing the projection of a pointqw

in water. If vw is available, Snell’s law simply provides the
analytical solution to findpg, pa, and pc. Otherwise,i.e.,
if vw is not given, it requires solving a 12th degree equa-
tion, and becomes a time-consuming process [1]. Our goal
is to provide a new virtual camera model which realizes an
efficient computation of the forward projection of the latter
case.

4. The pixel-wise varifocal camera model

Suppose all the model parameters in the previous section
including the homography betweenC′ andC have been cal-
ibrated beforehand by conventional methods [1]. The goal
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Figure 4. Pixel-wise varifocal camera model. The dashed lines
illustrate the correct refractive paths while the straight lines illus-
trate the perspective projections. In order to represent the correct
incident angles of rays in water by a perspective manner, the pro-
jection centeropg moves onZ-axis per pixel (pg) basis.

of this section is to introduce a new virtual camera model
which realizes a simple and efficient computation scheme
of the refractive forward and backward projections by com-
piling the calibrated parameters of Figure3 into another rep-
resentation.

To this end, we employpixel-wise virtual focal lengths
and introduce a virtual cameraCv such that the image screen
coincides withSg and the focal length changes per pixel ba-
sis as shown in Figure4. That is, we make the projection
center move byf (pcv) alongZ-axis according to the posi-
tion of each pixelpcv so that the rayℓw in water passing
through a pixelpg of Cv, pa and pc (Figure 4, the green
dashed line) can be represented simply by connectingpg in
question and the pixel-wise projection center (Figure4, the
green straight line).

4.1. The pixelwise focal length

Given a pixelpg = (rpg,da+dg)
⊤ of the virtual camera

Cv, consider representing the rayℓw incident atpg as if Cv

is a pinhole camera and its projection center is onZ-axis.
Obviously its projection centeropg = (0,− f (pg))

⊤ is given
as the intersection of theZ-axis and the lineℓw as illustrated
in Figure4. Hence by solvingopg = tvw+ pg using Eq (3),
we have (

0
− f (pg)

)
= t

( µg
µw

rvg√
1− r2

vw

)
+

(
rpg

0

)
, (4)
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Onceobtainedf (pg) for each radial distance of the vir-
tual cameraCv, we can computeℓw for eachrg without trac-
ing the refraction inside the housing, and can compute the
forward (3D-to-2D) and backward (2D-to-3D) projection
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Figure5. Forward projection by quadratically and globally con-
vergent optimization

computations (details are given later). Hence we can con-
siderCv as a virtual camera which models the refractions
inside the housing without loss of generality.

4.2. Backward projection using pixelwise focal
length

The backward projection using our varifocal camera
model can be done straightforwardly. If a pointqg on Sg

is the projection of a 3D pointqw in water, then the viewing
ray ℓw connectingqg andqw is given as

ℓw : (0,− f (qg))
⊤+ tvw, (9)

using a parametert.

4.3. Forward projection using pixelwise focal
length

Consider a 3D pointqw in water, and a 3D lineℓq pass-
ing throughqw and intersecting withSg and Z-axis at qg

and oqg = (0,− fqg)
⊤ as illustrated in Figure5. Then the

following proposition holds.

Proposition 4.1. f (qg), the pixel-wise focal length stored
at qg, is equal to fqg if and only ifℓq is identical to the ray
imaged by the camera C.

Proof. The definition of the varifocal camera model en-
sures that the line passing throughpg on Sg and opg =

(0,− f (pg))
⊤ represents a 3D ray which is projected onto

a single pixel of the cameraC. On the other hand, the prin-
ciple of reversibility of light and the definition of the pin-
hole imaging ensure that there exists only a ray incident at
pg which can be imaged by the cameraC. Hence it is only
the case makingf (qg) = fqg that ℓq is identical to the ray
imaged byC.

This proposition indicates that we can obtain the projec-
tion of qw on Sg, the image screen of the varifocal camera,
by seekingqg which minimizes the difference betweenfq
and f (qg).

4.3.1 Forward projection by a recurrence relation

As illustrated in Figure6, suppose the 3D pointqw in
question is first projected perspectively toq0 on Sg, the
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virtual screen ofCv, by using an initial (or tentative) fo-
cal length fq0 (the green line). By the definition of the
pixel-wise varifocal model, the pixelq0 stores its own focal
length fq1 = f (q0) given at the calibration stage. That is,
oq1 = (0,− fq1)

⊤ is the correct virtual projection center for
q0 instead ofoq0 = (0,− fq0)

⊤. By iteratively applying per-
spective projections using(0,− fq0),(0,− fq1), . . . , we have

rqk+1 = rqw f (qk)
/
(zqw + f (qk)) . (10)

By Snell’s law and the factrqk > rqk′ ⇔ f (qk)> f (qk′),
the following monotonicity conditions hold:

rq1 > rq0 ⇒ rqk+1 ≥ rqk, rq1 < rq0 ⇒ rqk+1 ≤ rqk. (11)

Also, the definition of the pixel-wise varifocal model en-
sures

rqk+1 = rqk ⇔ f (qk+1) = fqk, (12)

and, sinceµa < µg andµa < µw,

da+dg ≤ ∀ fqk. (13)

SinceProposition4.1 ensures that there exists only one
rqk which satisfies Eq (12), starting the recurrence from
fq0 = da + dg always converges to the correct value satis-
fying Eq (12) as shown in Figure8.

However, the rate of the convergence becomes slower
and slower by iteration, because the lines byoqk andoqk+1

(the green and the red lines of Figure6) become nearly par-
allel. To solve this problem, we propose a method based on
the Newton’s algorithm which utilizes this recurrence rela-
tion.

4.3.2 Forward projection by a quadratically and glob-
ally convergent optimization

Using the 3D pointqw in question, we can describerqg as

rqg = Ef (rvw) = rq−
rvw

zvw

zq = rq−
rvw√

1− r2
vw

zq, (14)

as shown in Figure5. On the other hand, the back-
projection of the original corresponding pixel inC gives

rqg = Eb(rvw) =
rva√
1− r2

va

da+
rvg√
1− r2

vg

dg

= µwrvw

(
da

/√
µ2

a −µ2
wr2

vw
+ dg

/√
µ2

g −µ2
wr2

vw

)
,

(15)

as shown in Figure3. Since these tworqg should be equal to
each other, we can formulate this as a problem findingrvw

which makes the followingE(rvw) be zero.

E(rvw) = Eb(rvw)−Ef (rvw). (16)

The bestrvw which makesE(rvw) = 0 can be computed
by the Newton’s method efficiently, and moreover, it con-
verges globally regardless of the initial value.

Proof. The theorem on Newton’s method for a convex func-
tion ensures that if a function is twice continuously differ-
entiable, increasing, convex and has a zero, then the zero is
unique, and the Newton’s method will converge to it from
any initial value [11].

In case of Eq (16), the first and the second derivatives of
E(rvw) are given as

dE(rvw)

drvw

=zqE1+zq r2
vw

E3
1 +dgµwE2

+dg µ3
w r2

vw
E3

2 +daµwE3+da µ3
w r2

vw
E3

3, (17)

d2E
dr2

vw

=3zq rvwE3
1 +3zq r3

vw
E5

1 +3dg µ3
w rvwE3

2

+3dg µ5
w r3

vw
E5

2 +3da µ3
w rvwE3

3 +3da µ5
w r3

vw
E5

3,

(18)

whereE1 = 1/(1− r2
vw
)1/2, E2 = 1/(µg

2−µw
2 r2

vw
)1/2, and

E3 = 1/(µa
2 − µw

2 r2
vw
)1/2. Sincervw is non-negative by

definition, d2E(rvw)

dr2
vw

≥ 0 holds andE(rvw) is a convex func-

tion. ObviouslyE(rvw) is twice continuously differentiable,
increasing, and has a zero forrvw ≥ 0, then the Newton’s
method converges globally.

In addition, while this global convergence allows us to
start findingrvw from any value in[0,µw/µg], the recurrence
relation of Eq (10)can provide a reasonable initial guess of
rvw by projecting first by a tentative virtual focal length with
a smaller computational cost as shown in Table1.

5. Linear Extrinsic Calibration Using 16 Points

Suppose we have two pixel-wise varifocal camerasCv

andC′
v. The goal of the extrinsic calibration is to estimate

the relative poseR,T of these cameras from a set of corre-
sponding points in their images. Since our virtual camera
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Figure7. Input images captured by the two cameras in Figure1(a).

is an axial model, its extrinsic calibration can be seen as a
special form of the one for axial cameras [13].

Given a pixelpc′ in the real image, we can obtain the
corresponding positionpg on Sg without loss of generality
as illustrated by Figures2 and4. Therefore, given a pair
of corresponding points, we can represent the 3D point in
water as

qw = tqwvw+ qg = λqwvw+ oqg,
= R(λ ′

qw
v′w+ o′qg

)+T,

⇔ λqwvw−λ ′
qw

Rv′w = Ro′qg
+T − oqg,

(19)

whereλqw andλ ′
qw

denote the unknown depths of the 3D
point fromoqg ando′qg

.
This equation indicates thatvw, Rv′w andRo′qg

+T − oqg

are on a single plane. In other words, they satisfy:

v⊤w
((

Ro′qg
+T − oqg

)
×
(
Rv′w

))
= 0. (20)

By rewriting this as an element-wise formula, we have

l⊤w Evl
′
w = 0,

lw =
(
xvw yvw zvw fqgxvw fqgyvw

)⊤
,

l ′w =
(
x′vw

y′vw
z′vw

f ′qg
x′vw

f ′qg
y′vw

)⊤
,

Ev =

 r31yt−r21zt r32yt−r22zt r33yt−r23zt −r12 r11
r11zt−r31xt r12zt−r32xt r13zt−r33xt −r22 r21
r21xt−r11yt r22xt−r12yt r23xt−r13yt −r32 r31

−r21 −r22 −r23 0 0
r11 r12 r13 0 0

 ,

(21)

where r i j is the (i, j) element ofR and T = (xt ,yt ,zt)
⊤.

(xvw,yvw,zvw) and (x′vw
,y′vw

,z′vw
) representx, y, z elements

of vw andv′w expressed in their camera coordinate systems
respectively.

Sincel and l ′ are given by each of corresponding pairs,
we can linearly estimate 17 unknown elements ofEv up to
a scale, by using 16 or more corresponding pairs. OnceEv

is given,R andT can be obtained linearly fromEv conse-
quently.

6. Evaluation

Figures1 and7 show the evaluation setup and a pair of
input images. We used two cameras (Pointgrey Chameleon)
in front of an octagonal water tank, and observe the scene
inside the tank via a flat acrylic surface tank of 35mm thick.
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Figure 8. Comparison of the rate of convergence. Notice that
errors are lower bounded by 10−12, the default precision of the
floating-point computations in our implementation.

Notice that this configuration is equivalent to having two
cameras with housings of 35mm thick in water. The model
parameters of Section3 are calibrated by [1] beforehand,
and we used the same parameters to synthesize data for
quantitative evaluation1.

6.1. Forward projection

The following evaluations focus on showing the effi-
ciency of the model rather than comparing the accuracy
with state-of-the-arts since the proposed model does not im-
prove the accuracy by definition.

Rate of convergence To evaluate the rate of convergence
of our iterative methods for the forward projection in Sec-
tion 4.3, Figure8 shows the projection errorEp against the
number of iterationsk. By using a synthesized data set, the
reprojection error is defined as

Ep = ∥P′(r̂q)−P′(rqk)∥, (22)

where ˆrq is the ground-truth andrqk is the value returned by
the algorithm at thek-th iteration inCv. P(rqk) denotes the
pixel position in the original image ofC′ corresponding to
rqk in Cv. Notice thatP(·) is employed only for evaluating
Ep in pixels, and is not required for the forward projection
to Cv.

From these results, we can observe that (1) the rates
of convergence of the recurrence relation and the Newton-
based one are linear and quadratic respectively, and (2) our
Newton-based algorithm with 3 times iterations achieve a
sub-pixel accuracy.

Computational efficiency Table1 reports computational
costs of our methods computing up to the subpixel accuracy
and the state-of-the-art solving the 12th degree of equation
analytically [1]. They are the average values of 6400 for-
ward projections run in Matlab on an Intel Core-i5 2.5GHz

1Our implementation is available online athttp://annonymous/ .

http://annonymous/


Table 1. Average computational costs of single forward projections
Analytical [1] By Recurrence By Newton

Runtime 1.39msec 0.14 msec 0.27 msec
FLOPS 1512 113 250
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Figure9. Quantitative evaluations of our extrinsic calibration

PC. The FLOPS are counted using Lightspeed Matlab tool-
box [14].

From these results, we can conclude that our method
runs much faster than the analytical method while main-
taining the sub-pixel accuracy.

Linear extrinsic calibration Figure9 shows calibration
errors under different noise levels. Given a set of 160 points
synthesized in water, we randomly select 16 points for each
trial, and add Gaussian noise with zero-mean and standard
deviationσ = 0.1,0.2, . . . ,2.0 to their 2D projections. The
three plots report the average errors of 100 trials at each
noise level. Here the estimation error ofR is defined as the
Riemannian distance to the ground truth [15], and the esti-
mation error ofT is defined as the RMS error normalized by
|T|. These results indicate that our linear method performs
robustly against observation noise.

Figure 1(b) shows the calibration result using the real
images shown in Figure7. In this calibration, the average
reprojection error was 0.3522 pixels, and the angle of the
refractive surfaces in front of the two cameras is estimated
as 134.7◦ while it is designed to be 135.0◦ because of its
octagonal structure. These numbers indicate that our cali-
bration method performs reasonably well in practice.

7. Conclusion

In this paper, we proposed a new camera model which
employs pixel-wise virtual focal length in order to encode
the refraction compactly. Based on the proposed varifocal
camera model, we proposed (1) an efficient algorithm for
the efficient forward (3D-to-2D) projection, and (2) a linear
extrinsic calibration for cameras in water. The evaluations
by synthesized and real data demonstrate that (1) our for-
ward computation requires only a few steps to achieve a
sub-pixel accuracy and reasonably robust against noise, and
(2) our extrinsic calibration well performs in practice.

We believe this method helps us to establish a robust and
practical 3D sensing of objects in water that depend on for-
ward (3D-to-2D) projections. Future work includes further
studies on the extrinsic calibration, in particular about its
degenerated cases, and also on the full 3D surface recovery
by multiple cameras in water, etc.
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