
The 17th Meeting on Image Recognition and Understanding

Underwater 3D Surface Capture Using Multi-view
Projectors and Cameras with Flat Housings
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1. Introduction
This paper is aimed at realizing a practical image-based 3D

surface capture system of underwater objects. Image-based 3D
shape acquisition of objects in water has a wide variety of aca-
demic and industrial applications because of its non-contact and
non-invasive sensing properties. For example, 3D shape capture
of fertilized eggs and young fish can provide a quantitative eval-
uation method for life-science and aquaculture.

On realizing such a system, we utilize fully-calibrated multi-
view projectors and cameras in water (Fig. 1). Underwater pro-
jectors serve as reverse cameras while providing additional tex-
tures on poorly-textured targets. To this end, this paper focuses
on the refraction caused by flat housings, while underwater pho-
tography involves other complex light events such as scattering
[3,16,17], specularity [4], and transparency [13]. This is because
one of the main difficulties in image-based 3D surface estima-
tion in water is to account for refractions caused by flat housings,
since flat housings cause epipolar lines to be curved and hence
the local support window for texture matching to be inconstant.

To cope with this issue, we can project 3D candidate points in
water to 2D image planes taking the refraction into account ex-
plicitly. However, projecting a 3D point in water to a camera via
a flat housing is known to be a time-consuming process which
requires solving a 12th degree equation for each projection [1].
This fact indicates that 3D shape estimation in water cannot be
practical as long as it is done by using the analytical projection
computation.

To solve this problem, we model both the projectors and cam-
eras with flat housings based on the pixel-wise varifocal model
[9]. Since this virtual camera model provides an efficient forward
(3D-to-2D) projection, we can make the 3D shape estimation pro-
cess feasible.

The key contribution of this paper is twofold. Firstly we pro-
pose a practical method to calibrate underwater projectors with
flat housings based on the pixel-wise varifocal model. Secondly
we show a system for underwater 3D surface capture based on
space carving principle [12] using multiple projectors and cam-
eras in water.
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Fig. 1 A projector-camera system for underwater 3D capture. An object in
an octagonal water tank is lit by a projector (center) and captured by
two cameras (left and right). This is optically-equivalent to capturing
the object in water by the projector and cameras with flat housings.

2. Related Work
Image-based 3D shape acquisition has been widely studied in

computer vision for objects in the air, such as humans [5] and
buildings [7, 20], and in particular algorithms utilizing active il-
luminations are known to be a practical solution for real environ-
ments [6, 10]. However, such methods cannot handle underwater
objects since they do not manage refractions caused by flat hous-
ings.

Towards realizing 3D shape estimation in water, Sedlazeck
and Koch have proposed an underwater structure-from-motion
(SfM) technique which accounts for the refraction caused by a
flat housing in computing the reprojection error [8]. However
SfM requires rich texture on the target in general while under-
water objects are not always well-textured. On the other hand,
our projector-camera solution can handle such a poorly-textured
environment in theory.

In the context of projector-camera calibrations [2, 11, 15, 18,
21], Narasimhan et al. have proposed a method for underwater
environments which utilizes a pair of flat calibration targets [17],
based on an assumption that both of their 3D positions in water
are known a priori. On the other hand, our approach does not re-
quire providing the pose of the calibration target in water. Hence
we can conclude that our method is more simple and practical.

3. Calibration of Underwater Projector-
Camera System

3.1 Measurement Model
As shown in Fig. 2, suppose we have an underwater projector

C and an underwater camera C′. We also have a flat calibration
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Fig. 2 Measurement model. A projector C and a camera C′ observe a point
u on a plane Π in water via flat housings.
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Fig. 3 Pixel-wise varifocal camera / projector model

panel Π in water. Here we assume that a 2D pattern U of known
geometry is printed on Π, and the camera C′ is calibrated by the
pixel-wise varifocal camera model as Cv′ beforehand [9] (Fig. 3).

Based on the principle of reversibility of light, an underwater
projector is equivalent to an underwater camera, and hence we
can model the rays emitted by the projector using pixel-wise var-
ifocal lengths (Fig. 3). That is, each ray in water is modeled by a
virtual pixel ug on S g and an associated virtual focal length fug on
the surface normal. We denote this as pixel-wise varifocal pro-
jector model (PVPM) hereafter. Notice that we use X′ to denote
a parameter of PVCM which corresponds to X of PVPM, and xX,
yX, and zX to denote the x, y, and z element of a vector X respec-
tively, and dY

X to denote the direction of the line ℓYX .
The goal of this section is,
• calibrating projector C by PVPM as Cv,
• estimating the relative pose R and t between Cv and Cv′.

For the calibration as done in the air [15], we use a 2D pattern U
printed on Π as well as a 2D pattern V projected by C onto Π, and
set a model coordinate system {K} for using two or more poses
of Π. That is, we first estimate the pose Rc

′, tc
′ of Cv′ w.r.t. Π by

capturing U. Then we project a pattern V on Π by C and estimate
the geometry of V on Π in {K} by capturing it by Cv′. Lastly we
estimate the PVPM parameters of Cv and its pose Rc, tc w.r.t. Π
using V with its estimated geometry on Π. As a result, we obtain
the relative pose R, t in {K} between Cv and Cv′ via Π.

3.2 Pose Estimation of PVCM using a Planner Pattern in
Water

Estimation of Rc
′ and tc

′ can be done by using the flat refrac-

tion constraint [1]. That is, the direction dw
′

u of the ray ℓw
′

u to a
known point u of U is identical to the vector from the incident
point ug′ to uw′, where the known point u = (xu, yu, 0)⊤ is de-
scribed as uw′ in the coordinate system of Cv′.

dw
′

u ×
(
uw′ − ug′

)
= dw

′

u ×
((

Rc
′u + tc

′) − ug′
)
= 0,

⇔
(
xu[dw

′

u ]× yu[dw
′

u ]× [dw
′

u ]×
) ( rc,1

′

rc,2
′

tc
′

)
= [dw

′

u ]×ug′,
(1)

where rX,i denotes the ith column vector of RX , and [X]× denotes
the 3×3 skew-symmetric matrix defined by a 3D vector X. Since
this equation provides three constraints for 9 unknowns rc,1

′, rc,2
′,

and tc
′, we can solve this system of equations linearly by using at

least three points. Once rc,1
′ and rc,2

′ are obtained, rc,3
′ is given

by their cross product.

3.3 3D Geometry Estimation of a Projected Pattern
The next step is to estimate the 3D positions of a projected pat-

tern V on Π in the model coordinate system {K}, in order to es-
tablish 2D-to-3D correspondences between projector pixels and
3D points on Π.

Suppose the projector C casts a known pattern onto Π which
consists of feature points such that their projections can be iden-
tified in the captured image of Cv′ even under refractions. Let u
denote a 3D feature point on Π projected from a pixel up of C.
The goal here is to estimate u = (xu, yu, 0)⊤ from its projection ug
in the camera Cv′ image.

Since u is on ℓw
′
u , we can represent its 3D position to Cv′ with a

scale parameter λu′ as

u = Rc
′⊤(uw′ − tc

′) = Rc
′⊤(λu′dw

′

u + oug
′ − tc

′). (2)

Here we know that zu = 0 because of the fact that V is on Π, and
it is trivial to determine the other unknown parameters λu′, xu and
yu. As a result, we obtain 3D points û on Π in {K} from u.

3.4 PVPM Calibration using 2D-to-3D Correspondences
Up to this point, we obtained a set of correspondences between

2D projector pixels up and 3D points û on Π in {K}. In order to
estimate the PVPM parameters, we first estimate the pose of the
projector RΠ and tΠ w.r.t. Π in {K} using the plane-of-refraction
constraint [1]:

u⊤p (n× (RΠû + tΠ)) = 0,

⇔
( xup
yup
fc

)⊤ (
E

( xû
yû
zû

)
+ s

)
= 0,

(3)

where n denotes the housing surface normal described in the lo-
cal coordinate system of C, E = n×RΠ and s = n× tΠ. As proven
in [1], E and s are given linearly by using 11 or more points, and
we can compute RΠ, tΠ, n from E and s. Then τa, and τg can be
computed based on Snell’s law.

Once the above parameters are obtained, the pose of PVPM
can be given as follows:

Rc = (Rh)⊤RΠ,

tc = (Rh)⊤ tΠ − (0, 0, τa + τg)⊤,
(4)

where Rh is an arbitrary rotation matrix which transforms the z-
axis of PVPM to be identical to n and hence has a 1 degree of
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freedom about the rotation around n.
Notice that the 3D points u fed to Equation (3) are not necessar-

ily from a singleΠ. In fact by capturing the panelΠwith different
poses, they can cover a larger area of the scene and contribute to
improve the accuracy and robustness of the parameter estimation
as pointed out in [1].

3.5 Extrinsic Calibration of PVPM and PVCM
The extrinsic parameter R, t between the PVPM Cv and the

PVCM Cv′ is given by

R = Rc
′(Rc)⊤, t = tc

′ − Rc
′(Rc)⊤ tc. (5)

In addition, we can apply a bundle-adjustment which nonlinearly
minimizes the reprojection error using the value by Equation (5)
as the initial values.

4. Underwater Space Carving
As described in Section 1, underwater photography causes

epipolar lines to be curved and hence simple image-based cor-
responding point search strategies based on sliding a static tem-
plate window in the captured images cannot be valid. Besides, the
structured light methods utilizing multiple images such as gray-
coded patterns cannot handle dynamic targets.

To solve this problem, we employ the space-carving approach
[12] which examines the photo-consistency of each voxel by pro-
jecting it to the images. While this approach requires computing
the forward (3D-to-2D) projections repeatedly in order to account
for the refraction explicitly, the PVPM and PVCM representa-
tions solve this difficulty as it realizes an efficient forward com-
putation [9].

In practice, our underwater space carving is conducted as fol-
lows. 1. Capture the background images without the object. 2.
Capture the foreground images with the object while projecting a
fixed pseudo-random-dot pattern on it. 3. Estimate the object sil-
houettes from each foreground and background images. 4. Apply
the shape-from-silhouette [14] to estimate the rough object vol-
ume by the visual hull. 5. Carve photo-inconsistent voxels from
the visual hull.

Notice that we also use the projector as a reverse underwater
camera in 5. , and examines the photo-consistency utilizing the
knowledge about the projected pattern.

5. Evaluation
5.1 PVPM Calibration using Synthesized Data

Fig. 4 shows calibration errors before (blue) and after (red) the
non-linear optimization of the reprojection error, under different
noise levels using a synthesized dataset (Fig. 5). Given randomly-
synthesized three chessboard patterns V in water, we virtually
project the chesscorners to C′ and add Gaussian noise with zero-
mean and standard deviation σ = 0.0, . . . , 1.0 pixels to the pro-
jections. Then we estimate Rc

′, tc
′, V , Rc and tc with such noisy

2D points.
The three plots report the average errors of 100 trials at each

noise level, where ERc is the Riemannian distance between Rc

and the ground truth, E tc is the RMS error of tc normalized by
the norm of the ground truth, and Ep is the average reprojec-
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Fig. 7 Reconstructed 3D shapes of plane by a graycode method with pixel-
wise varifocal model (blue), the same graycode method with central
projection model (red), and our underwater space-carving method
(green).

Fig. 8 Captured images of vessel by the left and right cameras

tion error per pixel in the original image plane of the projector
C. These results quantitatively demonstrate that our calibration
method performs robustly against the observation noise.

Notice that tc after the optimization is worse than before in the
plot (Fig. 4 right). A possible reason is because both tc and τa can
move the camera along the housing surface normal and hence the
model is over-parameterized. This point must be verified in future
work.

5.2 3D Shape Estimation with Real Data
Fig. 6 shows our underwater projector-camera system for 3D

shape capture in water. This system consists of a single projector
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Left camera
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Projector
Fig. 9 Reconstructed 3D shape of vessel. The red, green and black points

represent outmost, interior, and carved voxels.

and two cameras, and performs as a trinocular active stereo sys-
tem. Notice that the object is submerged in an octagonal water
tank of approximately 90cm width, and the projector and cam-
eras observe the object via the flat acrylic tank surface of about
3.0cm thick. This is optically-equivalent to having an underwater
projector and cameras with flat housings of the same thickness.

Fig. 7 shows estimated 3D shapes of the white flat textureless
panel in Fig. 6 by three different methods. The blue dots represent
a 3D shape (voxels) Ŝ estimated by a structured light method us-
ing graycode images taking account of the refraction into by the
housings using the pixel-wise varifocal length model. The red
dots represent a 3D shape S̃ by the same structured light method
but triangulating the geometry by the central projection model
without account for the refraction. The green dots represent the
3D shape S by our underwater space-carving using a single im-
age pair. Notice that S contains only the frontmost voxels of the
result of the space carving here.

In this experiment we assume Ŝ can serve as the ground truth
since it has no mismatches in the corresponding point estimation
process and models the refraction exactly, and S̃ can be seen as a
best estimation except the refraction modeling. By comparing S̃
and S with Ŝ, we can observe that S̃ is located beyond Ŝ due to
the refraction, while S almost coincide with Ŝ. This fact can
be verified quantitatively by comparing the 90%-accuracy and
1cm-completeness [19] which were 3.88cm and 0.06% for S̃, and
1.96cm and 92.28% for S respectively. Hence we can conclude
that (1) even though the correspondence estimation is correct, the
refraction introduces a significant error in the 3D shape, and (2)
our method can estimate a shape much closer to the ground truth
quantitatively.

In addition Fig. 9 shows the estimated 3D shape of a white
textureless vessel in water (Fig. 1) using an image pair shown in
Fig. 8. This result also demonstrates qualitatively that our system
successfully estimates the 3D shape of a textureless target.

6. Conclusion
Towards realizing a 3D shape capture of underwater ob-

jects, this paper proposed an underwater projector-camera sys-
tem which explicitly handles the refraction caused by the flat
housings, and utilizes the projector as a reverse underwater cam-
era. The evaluations quantitatively demonstrated the robustness
of our underwater projector-camera system calibration and im-
provements from the baseline method which does not account for
the refraction.

We believe this work is to be one step closer to realizing a
practical 3D sensing of underwater objects. Our future work in-
cludes full 3D capture, 3D motion estimation, and extension to

semi-transparent targets.
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