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Abstract

Temporal structures such as utterance pauses/overlaps, and duration of facial ex-
pression play a crucial roles in realizing smooth and natural human communi-
cation. We introduce a novel method for modeling the human communication
dynamics based on interval-based representations via hybrid dynamical systems
and show several examples to demonstrate how this method captures the charac-
teristics of temporal structures in facial expressions and multimodal signals.

1 Introduction

The primary objectives of human-machine interaction systems are understanding the meaning of
user commands and presenting the appropriate information. Therefore, most of the existing re-
searches have aimed to realize interaction systems that can understand the semantic information
specified by a user and generate attractive presentations through multimedia data (e.g., texts, pic-
tures, videos, and sounds). Furthermore, currently advanced systems that can understand spoken
words and gestures are being developed. While the multimedia interactions are important, users
sometimes feel frustrated when the systems do not adequately consider human interaction protocols.
For example, systems often ignore dynamic features, such as acceleration patterns, pause lengths,
tempo speeds, and rhythms, which convey rich nonverbal information in human communication.

We have been attempting to model such dynamic features or temporal structures in human commu-
nication based on a hybrid dynamical system (HDS, or, in short, hybrid system) [1]. Essentially, an
HDS is basically an integrated model of dynamical systems and discrete-event systems. In HDSs,
dynamical systems modeled by using differential equations are suitable for describing smooth and
continuous physical phenomena (considering time as a physical metric entity), while discrete-event
systems are suitable for describing not only discontinuous changes in physical phenomena but also
subjective or intellectual activities (considering time as ordinal state transition).

The rationale we use HDSs in the context of modeling human communication dynamics is the
followings. Firstly, we assume that a complex human behavior consists of dynamic primitives,
which are often referred to as motion elements, movemes, visemes, etc. For example, a periodic
lip motion can be described by a periodic sequence of symbols that represent simple lip movements
such as “open,” “close,” and “remain closed.” Once the set of dynamic primitives is determined, a
complex behavior can be partitioned into “temporal intervals,” each of which is characterized by a
label of the dynamic primitive and its temporal duration length.

Secondly, we assume that not only temporal orders of the primitives but also their duration lengths or
temporal relations (gaps/overlaps) of the beginning and end time points of those temporal intervals
convey rich information in human communication. For example, some psychological experiments
have suggested that the duration lengths of facial actions influence the human judgments of basic
facial-expression categories [2].
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Figure 1: Interval-based HDS
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Figure 2: Agglomerative clustering of LDSs

Based on the abovementioned assumptions, we propose a specific class of HDS [1], which can be
regarded as an extension of segmental models [3]. The system has a two-layer architecture consisting
of a finite state automaton (Fig. 1 top) and a set of linear dynamical systems (LDSs){Di}N

i=1 (Fig. 1
bottom). In this architecture, each LDS represents the dynamics of each primitive (e.g., motion
element) and has a one-to-one correspondence with a discrete state of the automaton. In order to
connect the physical temporal axis used in the LDSs with the automaton, we introduceintervals
described by(m, τ), wherem ∈ {q1, ..., qN} and τ denote an automaton state and its temporal
duration length, respectively. We therefore refer to our model as an interval-based HDS (IHDS).

Once the IHDS is identified (learned) from given training data in the manner described in the next
section, the trained model can generate a multivariate sequence; that is, the automaton first generates
a sequence of intervals, while the LDS corresponding to each interval is subsequently activated and
generates a multivariate sequence. The activation timing and period of the constituent LDSs are thus
controlled by the automaton. Similar to other generative models such as HMMs, the trained system
can also be used to segment newly observed input data via the Viterbi algorithm.

By applying IHDSs to various human communication behaviors, we successfully extract dynamic
features of the behaviors on the basis of the relations of temporal intervals. In this paper, we give
two examples: the classification of fine-grained facial expressions (Sec. 3) [4] and the modeling of
the synchronization/delay mechanisms between mouth movements and speech sounds (Sec. 4) [5].

2 Identification of Interval-based HDS

In the learning stage, we assume that only a set of multivariate sequences is given. Under this
assumption, the identification process of the IHDS has a paradoxical nature. That is, since the
system comprises a set of subsystems (D), the parameter estimation of each subsystem requires
partitioned training data to be modeled by the subsystem; meanwhile, the segmentation process of
the given training data requires a set of identified subsystems as well as the number of subsystems.
Moreover, iterative methods such as the expectation-maximization (EM) algorithm do not work
properly in many cases because it depends strongly on the initial parameters. Therefore, we propose
the following two-step learning method [1].

[Step 1] Clustering of Dynamical Systems: The first step is an agglomerative clustering that
finds a set of LDSs required to describe the training data, i.e., the estimated number of LDSs (N )
and their parameters. This is a model-based hierarchical clustering, where the models are LDSs and
the distances between LDSs are measures such as the Kullback-Leibler divergence. Figure 2 shows
an example in which the algorithm was applied to the periodic lip motion during the utterance of
/mamamama/. The sequence of four LDSs appears repeatedly (here the colors represent the labels
of the LDSs), and the periodic property is successfully extracted whenN = 4.

[Step 2] Refinement of Parameters: The second step is a refinement process of the system pa-
rameters by using the EM-based Viterbi-approximated algorithm. This iterative algorithm is initial-
ized by the result of the clustering step, which provides a rough estimation of the parameters ofD.
The state-transition probability and the duration-length distributions are estimated along with the
refinement of the parameters of LDSs at each iteration step.
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3 Analysis of Timing Structures in Facial Expressions

Human facial expressions can be considered as being generated based on two mechanisms: (1)
emotional expressions produced by spontaneous muscular action and (2) intentional displays to
convey certain intentions to others. Therefore, an analysis of their dynamic structures is required
to recognize human emotion and intention from facial expressions. However, most of the existing
approaches depend on the facial action coding system (FACS) [6], whose objective is to describe
basic emotional expressions (anger, happiness, sadness, disgust, etc.) using the combination of “ac-
tion units” rather than determining the dynamic characteristics of facial expressions such as duration
lengths and temporal differences among the movements.

To extract the dynamic characteristics of facial action, we propose a novel facial motion description
that we refer to as afacial score; it can be acquired by applying multiple IHDSs to the movements
of multiple parts in a human face (see also Fig. 3 bottom): (1) Track each facial part; in this study,
we use six parts—left/right eyes, left/right eyebrows, mouth, and nose. (2) Extract the movements
of each part as a time-varying sequence of shape vectors; we obtain six corresponding sequences.
(3) Use an IHDS for each sequence, and segment the signal into an interval sequence. (4) Align
the six interval sequences obtained in (3) along the common temporal axis. In this manner, we can
construct a facial score (Fig. 3 top right) as a set of intervals; the facial score is similar to a music
score in the sense that both representations describe the timing of elements (music notes).

Generation of facial expressions: By using this score, we can describe facial expressions as a
spatio-temporal combination of the intervals. Figure 4 shows an example of the full set of the facial
score that describes the dynamic characteristics of all facial parts during intentional smiles. Figure 4
(bottom) shows the facial motion generated by activating IHDS; in other words, each constituent
dynamical system, which represents a simple motion, in the IHDS is activated in accordance with
the timing described in the facial score.

Recognition of spontaneous and intentional smiles:Figure 4 also suggests that the movement
of each smile can be segmented into intervals based on the following four modes—two stationary
modes (“neutral” and “smiling”) and two dynamic modes (“onset” and “offset” of smiling). By
comparing the onset and offset timings of the intervals observed in different facial parts, we can
extract various temporal features that can be used to classify facial expressions (Fig. 3 top left). In
particular, we examined person-dependent recognition of intentional and spontaneous smiles using
the timing structures among facial parts. Support vector machines were used on the features of
temporal differences. The performance evaluation showed that the rate of correct discrimination
ranged from 79.4% to 100% depending on the subjects.

4 Modeling Cross-Media Timing Structures in Multimedia Signals

Multimedia data comprising media signals is obtained by measuring human communication with
multiple sensors. Once we successfully model the mutual dependency among those signals, we can
employ the model in a variety of applications such as human computer interfaces (e.g., audio-visual
speech recognition systems [7]) as well as computer graphics techniques that generate one media
signal from another (e.g., lip sync to input speech) [8].
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While the existing methods enable us to represent frame-based cooccurrence or short-term cross-
media relations, they are not well suited to describe systematic and long-term relationships. For
example, an explosive sound /p/ is strongly synchronized with an opening lip movement, while a
vowel sound loosely synchronized with the lip and its temporal gap has certain variance.

To represent such systematic synchronizations/delays of mutual dependencies among multimedia
signals, we extend the multipart-relation modeling described in the previous section. Let us assume
that two media signalsS andS′ are captured from different sensors and that each signal is mod-
eled by a different IHDS. The temporal relationship between overlapped interval pairs can then be
modeled by the following probabilistic distribution:

P (b(I) − b(I ′), e(I) − e(I ′) |m(I),m(I ′), I ∩ I ′ ̸= ∅),
whereb(I), e(I) are the beginning and end points of intervalI, respectively;I, I ′, intervals appear-
ing in the segmentation results of signalS, S′, respectively; andm(I), m(I ′), the labels of LDSs
in the IHDS models ofS, S′, respectively. We estimate the above distribution for all the possible
LDS pairs in signalsS, S′ and use the cross-media relation model together with other distributions
such asP (m(I),m(I ′) | I ∩ I ′ ̸= ∅). This enables us to construct various of applications such as
mechanisms to realize sound-to-motion (e.g., lip sync [5]) and motion-to-sound generations (speech
estimation in noisy environments via visual cues [9]). The basic idea behind these applications is
that, once IHDSs are learned from both media signals, the media conversion can be executed in the
interval representation by solving the optimizationIgen = arg maxI P (I|Iref , Φ) via the dynamic
programming, whereIgen andIref are generated and reference interval sequences, respectively, and
Φ is the parameter set of the learned timing model (i.e., probability distributions).

5 Conclusion

We have proposed an interval-based representation for modeling human communication dynamics
via multiple hybrid dynamical systems (HDSs). Since each media signal can be described by the
switches in submodels using the identified HDS, the overall model successfully extracts the concur-
rence of and temporal relation between multipart and multimodal signals as the temporal differences
between switching times. Although we have primarily concentrated on modeling the dynamics in
individual human behaviors rather than multiparty in this study, we are currently extending this
scheme in order to model mutual interactions including turn-taking based on the coupling of HDSs.

Acknowledgments
This study is supported by the Grant-in-Aid for Scientific Research of the Ministry of Education,
Culture, Sports, Science and Technology of Japan under the contracts of 18049046 and 21680016.

References

[1] H. Kawashima and T. Matsuyama, “Multiphase learning for an interval-based hybrid dynamical system,”
IEICE Trans. Fundamentals, vol. E88-A, no. 11, pp. 3022–3035, 2005.

[2] M. Kamachi, V. Bruce, S. Mukaida, J. Gyoba, S. Yoshikawa, and S. Akamatsu, “Dynamic properties
influence the perception of facial expressions,”Perception, vol. 30, pp. 875–887, 2001.

[3] M. Ostendorf, V. Digalakis, and O. A. Kimball, “From HMMs to segment models: A unified view of
stochastic modeling for speech recognition,”IEEE Trans. Speech and Audio Process, vol. 4, no. 5, pp.
360–378, 1996.

[4] M. Nishiyama, H. Kawashima, T. Hirayama, and T. Matsuyama, “Facial expression representation based
on timing structures in faces,”IEEE Int. Workshop on Analysis and Modeling of Faces and Gestures (W.
Zhao et al. (Eds.): AMFG 2005, LNCS 3723), pp. 140–154, 2005.

[5] H. Kawashima and T. Matsuyama, “Interval-based linear hybrid dynamical system for modeling cross-
media timing structures in multimedia signals,”Int. Conference on Image Analysis and Processing, pp.
789–794, 2007.

[6] P. Ekman and W. V. Friesen,Unmasking the Face. Prentice Hall, 1975.

[7] A. V. Nefian, L. Liang, X. Pi, X. Liu, and K. Murphy, “Dynamic Bayesian networks for audio-visual speech
recognition,”EURASIP Journal on Applied Signal Processing, vol. 2002, no. 11, pp. 1–15, 2002.

[8] M. Brand, “Voice puppetry,”SIGGRAPH, pp. 21–28, 1999.

[9] H. Kawashima, Y. Horii, and T. Matsuyama, “Speech estimation in non-stationary noise environments
using timing structure between mouth movements and sound signals,”Interspeech, pp. 442–445, 2010.

4


