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Abstract. This paper addresses the clustering problem of hidden dy-
namical systems behind observed multivariate sequences by assuming
an interval-based temporal structure in the sequences. Hybrid dynam-
ical systems that have transition mechanisms between multiple linear
dynamical systems have become common models to generate and ana-
lyze complex time-varying event. Although the system is a flexible model
for human motion and behaviors, the parameter estimation problem of
the system has a paradoxical nature: temporal segmentation and system
identification should be solved simultaneously. The EM algorithm is a
well-known method that solves this kind of paradoxical problem; how-
ever the method strongly depends on initial values and often converges
to a local optimum. To overcome the problem, we propose a hierarchical
clustering method of linear dynamical systems by constraining eigenval-
ues of the systems. Due to the constraints, the method enables param-
eter estimation of dynamical systems from a small amount of training
data, and provides well-behaved initial parameters for the EM algorithm.
Experimental results on simulated and real data show the method can
organize hidden dynamical systems successfully.

1 Introduction

Hybrid dynamical systems (hybrid systems) such as switching dynamical systems
[6] and segment models [10] have become common models for speech recognition,
computer vision, graphics, and machine learning researchers to generate and
analyze complex time-varying event (e.g., human speech and motion [3, 12, 2,
9]). They assume that a complex event is consist of dynamic primitives, which is
often referred to as phonemes, movemes [3], visemes, motion textons [9], and so
on. For instance, a cyclic lip sequence in Figure 1 can be described by simple lip
motions (e.g., “open”, “close”, and “remain closed”). Once the set of dynamic
primitives is determined, an observed or generated time-varying pattern can be
partitioned by temporal intervals with the labels of primitives.

A hybrid system represents each dynamic primitive by a simple dynamical
system, and models transition between dynamical systems by a discrete-event
model, such as an automaton and a hidden Markov model. Therefore, the system
has a capability of generating and analyzing multivariate sequences that consist
of temporal regimes of dynamic primitives.

In spite of the flexibility of hybrid systems, especially for modeling human mo-
tion and behaviors such as gestures and facial expressions, the real applications
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Fig. 1. Example of a lip image sequence modeled by a hybrid system.

are often beset with difficulties of parameter estimation due to the paradoxical
nature of the estimation problem, as we see in the next paragraph.

This paper proposes a bottom-up approach that estimates a set of dynamical
systems based on an agglomerative hierarchical clustering process, which itera-
tively merges dynamical systems. A constraining method for system eigenvalues
(spectra) is proposed to identify stable linear dynamical systems, which are ap-
propriate systems to model human motion, from a small number of training
sequences. In this paper, we use only linear dynamical systems to model dy-
namic primitives and often omit the term “linear”. Since the hierarchical clus-
tering method provides approximate parameters of linear dynamical systems
comprised in a hybrid system, it successfully initializes refinement process of the
overall system such as a maximum likelihood estimation process.

Difficulty of the Parameter Estimation: Let us assume that a large amount
of training data (multivariate sequences) is given. Then, the parameter estima-
tion problem requires us to simultaneously estimate temporal partitioning of
the training data (i.e., segmentation and labeling) and a set of dynamical sys-
tems. The reason is that identification methods of dynamical systems require
partitioned and labeled training sample sequences; meanwhile segmentation and
labeling methods of the sample sequences require an identified set of dynami-
cal systems. The expectation-maximization (EM) algorithm [5] is a well-known
method that solves this kind of paradoxical problems with iterative calculations;
however, it strongly depends on the initial parameters and does not converge
to the optimum solution, especially if the model has a large parameter space to
search. Therefore, the parameter estimation of hybrid systems necessitates an
initialization method that searches an appropriate set of dynamical systems (i.e.,
the number and parameters of dynamical systems) from given training data.

The Assumed Parameter Estimation Scheme: To solve the problem above, we
assume a multiphase learning approach (see Figure 2). The first step is a hier-
archical clustering process of dynamical systems, which is applied to a compar-
atively small number of typical sequences selected from given training data set.
For the second step, we assume a refinement process for all the system parame-
ters based on a maximum likelihood method via EM algorithm [12]. The method
not only refines parameters of dynamical systems but estimates parameters of
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Fig. 2. The assumed parameter estimation scheme of a hybrid system. This paper
concentrates on a hierarchical clustering of dynamical systems that works as an initial-
ization process of the EM algorithm.

the automaton that models transition between the constituent linear dynami-
cal systems. This refinement process is applied to all the given training data.
Thanks to the estimated parameters in the hierarchical clustering process, the
refinement process can be initialized by parameters that are relatively close to
optimum compared to randomly selected parameters. As a result, the refinement
process converges to the optimal solution successfully. This paper concentrates
on the first step of the multiphase approach as an initialization process for the
second step (i.e., EM algorithm).

The Advantage of the Hierarchical Clustering: Although several clustering ap-
proaches have been proposed to find a set of linear dynamical systems from given
training sequences, such as greedy approaches [9], we propose an agglomerative
hierarchical clustering method that extracts dynamical systems. The reason is
that the method provides useful interfaces, such as the history of model fitting
errors in each merging steps, to determine the number of clusters.

In Section 2, we describe a structure of a hybrid system. Section 3 explains the
hierarchical clustering method proposed in this paper. We evaluate the method
using simulated and real data to verify the expressiveness of the extracted dy-
namical systems in Section 4.

2 A Hybrid Dynamical System

2.1 System Architecture

A hybrid system is a generative model that can generate multivariate vector
sequences by changing (or switching) the activation of constituent dynamical
systems [6, 12]. In most case, the dynamical systems are linear. The system has
a two-layer architecture. The first layer has a finite state automaton that models
stochastic transition between dynamic primitives. The automaton has an ability
of generating interval sequences, where each interval is labeled by one of the
dynamic primitives. The second layer consists of a set of multiple dynamical
systems D = {D1, ..., DN}. In this paper, all the constituent dynamical systems



are assumed to share a n-dimensional continuous state space, and each activated
dynamical system can generate sequences of continuous (real valued) state vector
x ∈ Rn. The generated state sequences are mapped to observation sequences of
multivariate vector y ∈ Rm in a m-dimensional observation space by a linear
function that is also shared by all the dynamical systems.

2.2 Linear Dynamical Systems

The state transition in the continuous state space by a linear dynamical system
Di, and the mapping from the continuous state space to the observation space
is modeled as follows:

xt = F (i)xt−1 + g(i) + ω
(i)
t , yt = Hxt + υt, (1)

where F (i) is a transition matrix and g(i) is a bias vector. Note that each dynam-
ical system has F (i) and g(i) individually. H is an observation matrix that de-
fines linear projection from the continuous state space to the observation space.
ω(i) and υ is a process noise and an observation noise, respectively. We as-
sume that the process noise and the observation noise has Gaussian distribution
N (0, Q(i)) and N (0, R), respectively. The notation N (a,B) is a Gaussian dis-
tribution with an average vector a and a covariance matrix B. As we described
in the previous subsection, we assume that all the dynamical systems share a
continuous state space to simplify the model and to reduce the parameters. Us-
ing the notations above, we can consider the probability distribution functions:
p(xt|xt−1, dt = Di) = N (F (i)xt−1, Q

(i)) and p(yt|xt, dt = Di) = N (Hxt, R),
where the variable dt represents an activated dynamical system at time t.

Calculation of Likelihood in Intervals: Let us assume that a continuous state
has a Gaussian distribution at each time t. Then, the transition of the continuous
state becomes a Gauss-Markov process, which is inferable in the same manner
as the Kalman filtering [1]. Therefore, the predicted state distribution under
the condition of observations from 1 to t − 1 is formulated as p(xt|yt−1

1 , dt =
Di) = N (x(i)

t|t−1, V
(i)
t|t−1) and p(yt|yt−1

1 , dt = Di) = N (Hx
(i)
t|t−1,HV

(i)
t|t−1H

T + R),

where the average vector x
(i)
t|t−1 and covariance matrix V

(i)
t|t−1 are updated every

sampled time t. Suppose that the dynamical system Di represents an observation
sequence ye

b , yb, ..., ye, which has a duration length e−b+1, then the likelihood
that the system Di generates the sequence is calculate by the following equation:

p(ye
b |de

b = Dj) =
e∏

t=b

p(yt|yt−1
1 , dt = Dj), (2)

where we assume a Gaussian distribution N(x(i)
init, V

(i)
init) for the initial state dis-

tribution in each interval represented by dynamical system Di.
In the following sections, we assume the observation matrix and the noise

covariance matrix is H = I (unit matrix) and R = O (zero matrix), respectively,
to concentrate on extracting dynamic primitives represented by transition ma-
trices. Hence, the parameters to be estimated in a hybrid system become the
following.



– the number of dynamical systems N
– the parameters of dynamical systems Θ = {θ1, ..., θN}, where

θi = {F (i), g(i), Q(i), x
(i)
init, V

(i)
init} is a parameter set of dynamical system Di

– the parameters of an automaton that models transition between dynamics

As we described in the Section 1, we concentrate on estimating N and Θ that
initializing the EM algorithm. We assume that the parameters of the automaton
are estimated and the parameter set Θ is refined by the EM algorithm.

2.3 Generable Time-varying Patterns by Linear Dynamical Systems
The generable class of time-varying patterns (corresponds to trajectories of
points in the state space) from a linear dynamical system can be described by
the eigenvalues of the transition matrix. To concentrate on the temporal evolu-
tion of the state in the dynamical system, let us assume the bias and the process
noise term is zero in Equation (1). Using the eigenvalue decomposition of the
transition matrix:

F = EΛE−1 = [e1, ..., en]diag(λ1, ..., λn)[e1, ..., en]−1,

we can solve the state at time t with initial condition x0:

xt = F tx0 = (EΛE−1)tx0 = EΛtE−1x0 =
n∑

p=1

αpepλ
t
p, (3)

where ep and λp is a corresponding eigenvalue and eigenvector pair. We omit
the indices i for simplification. A weight value αp is determined from the initial
state x0 by calculating [α1, ..., αn]> = E−1x0. Hence, the generable patterns
from the system can be categorized by the sign (especially in the real parts)
and the norm of the eigenvalues λ1, ..., λn. For instance, the system can generate
time-varying patterns that converge to certain values if and only if |λp| < 1 for
all 1 ≤ p ≤ n (using the term in control theory, we can say that the system is
stable); meanwhile, the system can generate non-monotonic or cyclic patterns if
the imaginary parts have nonzero values.

3 Hierarchical Clustering of Dynamical Systems

The goal of the hierarchical clustering process is to estimate the parameters N
and Θ by assuming only a small amount of typical training data is given.

Let us assume that a multivariate sequence yT
1 , y1, ..., yT is given as a typical

training data (we consider a single training data without loss of generality), then
we simultaneously estimate a set of dynamical systems D (i.e., the number of
dynamical system N and the parameter set Θ) with an interval set I (i.e.,
segmentation and labeling of the sequence), from the training sample yT

1 . Note
that, the number of intervals K is also unknown. We formulate the problem
as the search of the linear dynamical system set D and the interval set I that
maximizes the total likelihood of the training data: L = P (yT

1 |I,D). Because the
likelihood monotonically increases with an increase in the number of dynamical
systems, we need to determine the right balance between the likelihood and the



number N . A hierarchical clustering approach provides us an interface, such as
the history of model fitting errors in each merging step, to decide the number of
dynamical systems.

To identify the system parameters from only a small amount of training
data, we need constraints to estimate an appropriate dynamics. In this paper,
we concentrate on extracting human motion primitives observed in such as facial
motion, gaits, and gestures; therefore, constraints based on stability of dynamics
are suitable to find motion that converges to a certain state from an initial
pose. The key idea to estimate stable dynamics is the method that constrains
on eigenvalues. If all the eigenvalues are lower than 1, the dynamical system
changes the state in a stable manner, as we described in Subsection 2.3.

In the following subsections, we first propose a constrained system identifi-
cation method that constrains an upper bound of eigenvalues in the transition
matrices of linear dynamical systems. The method enables us to find a set of
dynamical systems that represents only stable dynamics. Second, we describe an
agglomerative hierarchical clustering of dynamical systems based on the pseudo
distance between two dynamical systems. The algorithm also merges two inter-
val sets labeled by the same dynamical system in each iteration step. Thus, the
clustering method solves two problems simultaneously: temporal segmentation
and parameter estimation.

3.1 Constrained System Identification

Given a continuous state sequence mapped from an observation space, the pa-
rameter estimation of a transition matrix F (i) from the sequence of continuous
state vectors x

(i)
b , .., x

(i)
e becomes a minimization problem of prediction errors.

Let us use the notations X
(i)
0 = [x(i)

b , ..., x
(i)
e−1] and X

(i)
1 = [x(i)

b+1, ..., x
(i)
e ], if the

temporal interval [b, e] is represented by a linear dynamical system Di. Then, we
can estimate the transition matrix F (i) by the following equation:

F (i)∗ = arg min
F (i)

||F (i)X
(i)
0 −X

(i)
1 ||2 = lim

δ2→0
X

(i)
1 X

(i)>
0 (X(i)

0 X
(i)>
0 + δ2I)−1, (4)

where I is the unit matrix and δ is a positive real value.
To set a constraint on the eigenvalues, we stop the limit in the Equation

(4) before X
(i)>
0 (X(i)

0 X
(i)>
0 + δ2I)−1 converges to the pseudo-inverse matrix of

X
(i)
0 . Using Gershgorin’s theorem in linear algebra, we can determine the upper

bound of eigenvalues in the matrix from its elements. Suppose f
(i)
uv is an element

in row u and column v of the transition matrix F (i). Then, the upper bound
of the eigenvalues is determined by B = maxu

∑n
v=1 |f (i)

uv |. Therefore, we search
a nonzero value for δ, which controls the scale of elements in the matrix, that
satisfies the equation B = 1 via iterative numerical methods.

3.2 Hierarchical Clustering of Dynamical Systems

The hierarchical clustering algorithm is initialized by partitioning the training
sequence into motion and stationary pose intervals, which are simply divided
using the scale of the first-order temporal difference of training data. In the
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for i ← 1 to N do
Di ← Identify (Ii)

end for
for all pair(Di, Dj) where Di, Dj ∈ D
do

Dist (i, j) ← CalcDistance (Di, Dj)
end for
while N ≥ 2 do

(i∗, j∗) ← arg min(i, j) Dist (i, j)
Ii∗ ← MergeIntervals (Ii∗ , Ij∗)
Di∗ ← Identify (Ii∗)
erase D∗

j from D; N ← N − 1
for all pair(D∗

i , Dj) where Dj ∈ D
do

Dist(i∗, j) ← CalcDistance (Di∗ , Dj)
end for

end while
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Fig. 3. Identify is a constrained system identification that we described in Subsection
3.1 Ii is an interval set that comprises intervals labeled by Di. CalcDistance calculates
the distance between the two modes defined in Subsection 3.2. MergeIntervals merges
two interval set belongs to the nearest dynamical system pair.

first step of the algorithm, a single dynamical system is identified from each
interval in the initial interval set. Then, we calculate a pseudo distances for all the
dynamical system pairs based on the distance definition in the next paragraph.
In the second step, the nearest dynamical systems are merged iteratively based
on an agglomerative hierarchical clustering (see Figure 3.2). As a result, all
the dynamical systems are merged to one dynamical system. We discuss the
determination of the number of dynamical systems in the remaining of this
subsection.

Distance Definition between Dynamical Systems: We define a pseudo distance
between dynamical systems Di and Dj as an average of two asymmetric di-
vergences: Dist(Di, Dj) = {KL(Di||Dj) + KL(Dj ||Di)}/2, where each of the
divergences is calculated as an approximation of Kullback-Leibler divergence [7]:

KL(Di||Dj) ∼ 1
|Ii|

∑

Ik∈Ii

{
log p(yek

bk
|dek

bk
= Di)− log p(yek

bk
|dek

bk
= Dj)

}
,

where ybk
, ..., yek

is a partitioned sequence by interval Ik. |Ii| is the summation
of interval length in the interval set Ii that is labeled by a linear dynamical
system Di. Note that we can calculate the likelihoods based on Equation (2).

Cluster Validation Problem: The determination of the appropriate number of
dynamical systems is an important problem in real applications. The problem
is often referred to as the cluster validation problem, which remains essentially
unsolved. There are, however, several well-known criteria, which can be catego-
rized into two types, to decide the number of clusters. One is defined based on



the change of model fitting scores, such as log-likelihood scores and prediction
errors (approximation of the log-likelihood scores), during the merging steps.
If the score is decreased rapidly, then the merging process is stopped [11]. In
other words, it finds knee of the log-likelihood curve. The other is defined based
on information theories, such as minimum description length and Akaike’s in-
formation criterion. The information-theoretical criteria define the evaluation
functions that consist of two terms: log-likelihood scores and the number of free
parameters.

Although information-theoretical criteria work well in simple models, they
tend to fail in evaluating right balance between the two terms, especially if the
model becomes complex and has a large number of free parameters [8]. Because
the problem also arises in our case, we use model fitting scores directly. First, we
extract candidates for the numbers of the dynamical systems by finding peaks
in difference of model fitting errors between adjacent two steps. If the value
exceeds a predefined threshold, then the number of dynamical systems in that
step is added to the candidates. We consider that user should finally decide the
appropriate number of dynamical systems from the extracted candidates.

4 Experimental Results

For the first evaluation, we used simulated sequences for training data to verify
the proposed clustering method, because it provides the ground truth of the
estimated parameters. Three linear dynamical systems and their parameters were
set manually. The dimension was n = 2; therefore each of the system had 2× 2
transition matrix. A two-dimensional vector sequence Y = [y1, ..., yL] (Figure 4
(b)) was generated as an observation sequence from simulated transition between
the dynamical systems based on the activation pattern in Figure 4 (a). The
length of the sequence was L = 100. We then applied the clustering method
proposed in Section 3. Figure 4 (c) shows the overall model fitting error between
the original sequence Y and generated sequences Y gen(N) from the extracted
N dynamical systems. The error was calculated by the Euclid norm: Err(N) =

||Y − Y gen(N)|| =
√∑L

t=1 ||yt − ygen(N)t||2. Figure 4 (d) shows the results of
temporal segmentation partitioned by the extracted dynamical systems in each
iteration step. We see that the error increases monotonically with the decrease
in the number of dynamical systems. Note that there are several steep slopes in
the chart. The steep slopes correspond to the iteration steps in which dynamical
system pairs with a long distance were merged. The candidates of the number
were determined as N = 3 (which corresponds to the ground truth) and N = 8
by extracting the steps in which the difference Err(N − 1) − Err(N) exceeds
the given threshold. Consequently, the history of model fitting errors helps us to
decide the appropriate number of dynamical systems.

For the second evaluation, we applied the clustering method to real video
data. A frontal facial image sequence was captured by 60fps camera. Facial
feature points were tracked by the active appearance model [4, 13], and eight
feature points around the right eye were extracted. The length of the sequence
was L = 1000. We then applied the clustering method to the obtained 16-



dimensional vector sequence that comprised x- and y-coordinates of the feature
points (both coordinate coefficients were plotted together in Figure 5 (a)). The
candidates of the number of dynamical systems were determined as N = 3 and
N = 6. Figure 5 (b) and (c) shows the error ||Y −Y gen(N)|| in each step and the
generated sequences in the steps of N = 12 and N = 4. We see that the generated
sequence Y gen(12) remains the spikes, which represent eye blinks, appeared in
the original sequence; meanwhile, Y gen(4) smoothes out them. For instance, the
dominant dynamical systems D2 and D3 represent the intervals in which the
eye remains closed and open, respectively. Hence, we can control the coarseness
of the model by changing the number of dynamical systems, which work as the
bases of original motion.

5 Conclusion

This paper proposed a hierarchical clustering method that finds a set of dy-
namical systems, which can be exploited to multiphase parameter estimation for
hybrid systems that comprises a finite state automaton and multiple linear dy-
namical systems. The experimental results on simulated and real data show that
the proposed hierarchical clustering method successfully finds a set of dynamical
systems that is embedded in the training data.
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Fig. 4. Clustering results on the simulated sequence generated from three dynamical
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Fig. 5. Clustering results on the feature point sequence around the right eye during
the subject smiled four times.


