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Abstract

In this paper, we propose a computational scheme named
an interval-based linear hybrid dynamical system (ILHDS)
to represent complex dynamic events based on temporal in-
tervals, each of which is characterized by linear dynamics
and its duration. We then propose a cross-media timing-
structure model to represent dynamic structures among
multiple media signals based on the relation of temporal
intervals described by multiple ILHDSs. To evaluate the
proposed scheme, we conducted experiments on media con-
version that generates lip video from an input audio signal.

1. Introduction

Understanding the meaning of user commands and pre-
senting appropriate information to a user is one of the
primary objectives of human-machine interaction systems.
Most of the existing approaches, therefore, set the goal to
realize interaction systems that understand semantic infor-
mation specified by a user and generate attractive presen-
tation to a user using multimedia data such as text, graphs,
pictures, video, sound, and so on.

While such multimedia interaction systems are impor-
tant, users sometimes feel frustration when the systems
get out of human interaction protocols. That is, the sys-
tems often ignore dynamic features such as acceleration pat-
terns, pause lengths, tempo speed, and rhythms, which con-
vey rich nonverbal and non-semantic information in human
communication.

In this paper, we attempt to model such dynamic fea-
tures or temporal structures in verbal and nonverbal com-
munication based on a novel computational model, named
an interval-based linear hybrid dynamical system (ILHDS).
A hybrid dynamical system is the integration of two types of
dynamical systems: one described by differential equations,
which is suitable for describing physical phenomena (con-
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Figure 1. Architecture of hybrid dynamical
systems.

sider time as physical metric entity), and a discrete-event
system, which is suitable for describing human subjective
or intellectual activities (consider time as ordinal state tran-
sition) (Figure 1).

We developed ILHDS based on the following rationale.
Firstly, we assume that a complex human behavior consists
of dynamic primitives, which are often referred to as mo-
tion elements, movemes, visemes, and so on. For example,
a cyclic lip motion can be described by a cyclic sequence
of simple lip motions such as “open”, “close”, and “remain
closed”. Once the set of dynamic primitives is determined,
a complex behavior can be partitioned into “temporal inter-
vals”, each of which is characterized by a dynamic primitive
and its temporal duration.

Secondly, we assume that not only temporal orders of
motion elements but also their duration lengths or tempo-
ral differences among beginning and ending timing of the
temporal intervals convey rich information in human com-
munication.

Based on the assumptions above, we proposed ILHDS
for modeling dynamic events in terms of temporal intervals.
The system has a two-layer architecture consisting of a fi-
nite state automaton and a set of linear dynamical systems.
In this architecture, each linear dynamical system represents



the dynamics of a motion primitive and corresponds one to
one to a discrete state of the automaton. In other words,
the automaton controls the activation order and timing of
the linear dynamical systems. Thus, ILHDS can model and
generate multimedia signals that represent complex human
behaviors.

In spite of the flexibility of the systems, the learning pro-
cess has a difficulty due to its paradoxical nature; that is, it
requires us to solve temporal segmentation and system iden-
tification problems simultaneously. We therefore propose a
two-step learning method as we describe in Section 4.

Applying multiple ILHDSs to human communication,
we can successfully extract dynamic features of the behav-
iors based on relations of temporal intervals. In this paper,
we focus on modeling cross-media timing structures and an-
alyzed synchronization/delay mechanisms between mouth
motion and speech utterance. Thanks to the model, we suc-
cessfully generate lip video from an input audio signal (see
Section 5 for details).

2. Related Work

Segment models [6] have been proposed in speech
recognition fields as the unified model of segmental
HMMs [4]. This model uses thesegmentas a descriptor,
which has a duration distribution. The segment represents
a temporal region in which one of the states is activated,
and the total system represents phonemes and subwords as
a sequence of the segments.

While ILHDS also explicitly represents duration, the
concept of the system is different from the segment mod-
els because we concentrate on modeling temporal structure
among multiple events rather than only the duration lengths
of events. We use the termintervalsinstead of segments be-
cause our motivation is bringing Allen’s temporal interval
logic [1], which exploits 13 topological relations between
two intervals (e.g., meets, during, starts with, etc.), into the
class of hybrid systems.

Once the intervals are explicitly defined, we can fabri-
cate more flexible models to represent cross-modal tempo-
ral relations such as timing among concurrent dynamics ap-
peared in man-machine interaction.

3. Interval-Based Linear Hybrid Dynamical
System

3.1. System Architecture

ILHDS has a two-layer architecture (Figure 2). The first
layer (the top of Figure 2) records a finite state automaton
as a discrete-event system that models stochastic transitions
between discrete events. The second layer (the second top
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Figure 2. Interval-based linear hybrid dynam-
ical system for modeling a single signal

of Figure 2) consists of a set of linear dynamical systems
D = {D1, ..., DN}. To integrate these two layers, we in-
troduceintervals(the bottom of Figure 2): each interval is
described by< qi, τ >, whereqi denotes a state in the
automaton andτ the physical temporal duration of the in-
terval. Each state in the automaton corresponds to a unique
linear dynamical system recorded at the second layer:qi

denotes the label of the corresponding linear dynamical
system as well as a state in the automaton. As a result,
the automaton has a discrete state setQ = {q1, ..., qN}.
Note that multiple different intervals can correspond to the
same state in the automaton; that is, their dynamics are de-
scribed/controlled by the same linear dynamical system.

When a temporal sequence of observed signal datayt ∈
Rm, is given, it is first transformed into a sequence of in-
ternal statesxt ∈ Rn. Then, that sequence is partitioned
into a sequence of intervals. That is, the internal state se-
quence is partitioned into a group of sub-sequences so that
the dynamic state variation in each sub-sequence can be de-
scribed by a linear dynamical system, which is denoted by
qi recorded in the interval covering that sub-sequence.

Once ILHDS has been constructed by learning as will
be described in Section 4, it can generate a multivariate
signal sequence by activating the automaton: the activated
automaton first generates a sequence of intervals, each of
which then generates a signal sequence based on its cor-
responding linear dynamical system (the bottom of Fig-



ure 2). Note that the activation timing and period of the lin-
ear dynamical system are controlled by the duration length
recorded in the interval.

3.2. Linear Dynamical Systems

The state transition of dynamical systemDi in the in-
ternal state space, and the mapping from the internal state
space to the observation space is modeled by the following
linear equations:

xt = F (i)xt−1 + g(i) + ω
(i)
t (1)

yt = Hxt + υt,

whereF (i) is a transition matrix andg(i) is a bias vector.H
is an observation matrix that defines linear projection from
the internal state space to the observation space.ω(i) and
υ is the process noise and the observation noise, which are
modeled by Gaussian distributions respectively. Note that
each dynamical system is defined byF (i), g(i), andω(i).

3.3. Interval-Based State Transition

In this section, we define the transition of discrete states
in the automaton that generate interval sequences. Here, we
assume first-order Markov property for the generated inter-
vals. A major difference from conventional state transition
models, such as hidden Markov models, is that the automa-
ton models the correlation between duration lengths of ad-
jacent intervals as well as the transition of discrete states.

Let I = I1, ..., IK be an interval sequence generated by
the automaton. To simplify the model, we assume that ad-
jacent intervals have no temporal gaps or overlaps. Here,
the intervalIk depends only on the previous intervalIk−1

because of the Markov property assumption. Then, the
Markov process of intervals can be modeled by the follow-
ing conditional probability:

P (Ik =< qj , τ > |Ik−1 =< qi, τp >),

which denotes the probability that interval< qj , τ > occurs
after interval< qi, τp >.

The computation of probabilityP (Ik =< qj , τ >
|Ik−1 =< qi, τp >) requires a large parameter set, which
does not only increase computational cost but also incur the
problem of over-fitting during a training phase. We there-
fore use a parametric model for the duration length distribu-
tion. That is, for each state transition in the automaton, we
recordP (qj |qi) together with a parametric distribution for
P (τ |τp, qi, qj).

4. Learning Process for ILHDS

Let us assume that only a group of multivariate signal
sequences is given as training data. Then, in most of hybrid

dynamical systems, the system identification process that
estimates system parameters becomes difficult because of
its paradoxical nature. That is, the system consists of a set
of subsystems (in our case, linear dynamical systems) and
the parameter estimation of each subsystem requires parti-
tioned training data to be modeled by that subsystem, while
the segmentation process of training data requires a set of
identified subsystems. Moreover, the number of subsystems
is also unknown in general.

The expectation-maximization (EM) algorithm is one of
the most common approaches to solve this kind of paradox-
ical problems. The algorithm estimates parameters based
on the iterative calculation. In each step, the algorithm con-
ducts model fitting to training data using the model parame-
ters that were updated in the previous step. Then, the param-
eters are updated based on the result of the current model
fitting process.

However, the EM algorithm-based parameter estimation
method involves two problems: (1) initialization of the EM
algorithm, and (2) estimation of the number of subsystems.

To solve the difficulties in the learning process, we divide
the estimation process into two steps: clustering of dynami-
cal systems to estimate a set of required dynamical systems
and parameter refinement of the overall system.

We here assume that internal-state sequences have been
estimated from observation sequences; that is, an observa-
tion matrix H and distribution parameters of observation
noiseυ have been estimated based on prior knowledge or
system-identification techniques [7].

[Step 1] Clustering of Dynamical Systems. The first
step is a clustering process that finds a set of dynamical sys-
tems required to describe training data: the number of the
systems and their parameters. This step employs a typical
data sequence as training data. Then, an agglomerative hier-
archical clustering is applied to the training data to estimate
a set of dynamical systems required to model the data (Fig-
ure 3):

1. Partition the training sequence into a group of very
short sub-sequences and estimate a dynamical system
that can model each sub-sequence respectively.

2. Compute the distance between each pair of estimated
dynamical systems.

3. Integrate the closest pair of dynamical systems: com-
pute parameters of the integrated dynamical system
based on such sub-sequences that were modeled by the
pair of dynamical systems to be integrated.

4. Iterate the above integration process until the closest
distance between a pair of dynamical systems becomes
greater than a pre-specified value.
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Figure 4. The result of lip motion segmenta-
tion using clustering of dynamical systems.

After this process, we get the number of required dynam-
ical systemsN and approximate parameters of the dynami-
cal systems. Since this approach agglomerates not the input
data but dynamical models, the method can be considered as
one of model-based hierarchical clustering techniques [8].

Figure 4 shows the result of lip motion segmentation us-
ing the proposed clustering method. We see that the lip
sequence is divided by four dynamics: “remain closed”,
“open”, “remain open”, and “close”.

[Step 2] Refinement of the Parameters. The second
step is a refinement process of the system parameters based
on the EM algorithm. The process is applied to all training
data, whereas the clustering process is applied to a selected
typical training sequence. While the EM algorithm strongly
depends on its initial parameters, the clustering step pro-
vides an initial parameter set that is relatively close to the
optimum.

Once the system parameters have been identified, each
sequence in the training data set can be described by a se-
quence of intervals respectively, which then is used to esti-
mate parameters of the automaton. Firstly note that a set of
discrete states have been determined uniquely from the set
of dynamical systems obtained by the clustering process.
Then, for each pair of discrete states, the transition prob-
ability and the duration length distribution associated with
the state transition are computed. Thus, ILHDS is identi-
fied.

5. Modeling Cross-Media Timing Structures

5.1. Timing Structures in Multimedia Data

Measuring dynamic human actions such as speech and
music performance with multiple sensors, we can obtain
multimedia signal data. We human usually sense/feel cross-
modal dynamic structures fabricated by multimedia signals
such as synchronization and delay. For example, it is well-
known that the simultaneity between auditory and visual
patterns influences human perception.

The cross-modal timing structure is also important to
realize multimedia systems such as human computer in-
terfaces (e.g., audio-visual speech recognition systems [5])
and computer graphics techniques that generate some media
signal from another (e.g., lip sync to input speech [2]).

Dynamic Bayesian networks, such as coupled hidden
Markov models [5], are often used as media integration
methods. These methods describe co-occurrence or tempo-
ral adjacency of states in different media data. While such
methods enable us to represent short-term cross-media rela-
tions, they are not well suited to describe systematic and
long-term cross-media relations. For example, an open-
ing lip motion is strongly synchronized with an explosive
sound /p/, while the lip motion is loosely synchronized with
a vowel sound /e/.

To represent such systematic and long-term synchroniza-
tion/delay and mutual dependency among multimedia sig-
nals, here we propose a novel model based on ILHDS. For
each media signal sequence in multimedia data, we first
apply ILHDS to obtain the interval sequence respectively.
Then, by comparing intervals of different media signals,
we construct across-media timing-structure model, which
is a stochastic model to describe temporal structures across
multimedia signals.

5.2 Modeling Cross-Media Timing Struc-
tures

Applying ILHDS to each media signal sequence in mul-
timedia data, we obtain a group of interval sequences (the
top in Figure 5). LetIk be an interval of modeMi in one of
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Figure 5. Learning timing-structure model.

the obtained interval sequences andI ′k′ an interval of mode
M ′

p in another interval sequence overlapping withIk. Note
that modesMi andM ′

p specify the linear dynamical sys-
tems that describe dynamics in intervalsIk andI ′k′ respec-
tively. Let bk(ek) andb′k′(e′k′) denote the beginning (end-
ing) points of intervalsIk andI ′k′ , respectively.

To model the cross-media relation between modesMi

andM ′
p, we collect all pairs of overlapping intervals that

satisfy the same temporal relation as that betweenIk and
I ′k′ and compute

P (bk − b′k′ , ek − e′k′ |mk = Mi, m
′
k′ = M ′

p), (2)

wheremk and m′
k′ are the modes of intervalIk and I ′k′

( the bottom in Figure 5). We refer to this distribution as
a temporal difference distribution. This distribution repre-
sents rich cross-media synchronization structures between
a pair of different media signals. For example, if the peak
of the distribution comes to the origin, the two modes tend
to be synchronized each other at both beginning and ending
points, while ifbk − bk′ has large variance, the two modes
loosely synchronized at their onset timing.

Note that we compute temporal difference distributions
for all possible mode pairs and record them as fundamental
characteristics of the cross-media timing structure of a given
multimedia signal data. In addition to a set of such tempo-
ral difference distributions, we also model which mode pair
tends to overlap with each other across different media (co-
occurrence probabilities of modes), and which mode pair
tends to appear in neighboring intervals in each media sig-
nal data (mode-transition probabilities). The cross-media
timing structure is defined by these mutual dependency re-
lations between modes.

5.3. Timing-Based Media Conversion

Once the cross-media timing-structure model is learned
from simultaneously captured multimedia signal data, we
can exploit the model for generating one media signal from

another related media signal. The overall flow of the media
conversion from signalS′ to S is as follows:

1. A reference (input) signalS′ is partitioned into an in-
terval sequenceI ′ = {I ′1, ..., I ′K′}.

2. An interval sequenceI = {I1, ..., IK} is generated
from I ′ based on the cross-media timing-structure
model. (K andK ′ is the number of intervals inI and
I ′, and note thatK ̸= K ′ in general.)

3. SignalS is generated fromI.

The key process of this media conversion lies in step
2. Let Φ be the cross-media timing-structure model that
is learned in advance. Then, the problem of generating an
interval sequenceI from I ′ can be formulated by the fol-
lowing optimization:

Î = arg max
I

P (I|I ′, Φ). (3)

In the equation above, we have to determine the num-
ber of intervalsK and their properties, which can be de-
scribed by triples< bk, ek,mk > (k = 1, ...,K), where
bk, ek ≤ T and mk ∈ M. Here, T is the length of
signal S′, and M is the set of modes of intervals (i.e.,
set of linear dynamical systems fixed at the learning pro-
cess). If we searched for all possible interval sequences
{I}, the computational cost would increase exponentially
asT becomes longer. We therefore use a dynamic program-
ming method to solve Equation (3), where we assume that
generated intervals have no gaps or overlaps; thus, pairs
< ek,mk > (k = 1, ...,K) are required to be estimated
under this assumption.

5.4. Experiments

To evaluate the descriptive power of the proposed cross-
media timing structure model and the performance of the
media conversion method, we conducted experiments on
the lip video generation from an input audio signal.

Feature extraction. A continuous utterance of five vow-
els /a/,/i/,/u/,/e/,/o/ (in this order) was captured using mutu-
ally synchronized camera and microphone. The utterance
was repeated nine times (18 sec.). A lip region in each
video image was extracted by the active appearance model
(AAM) [3]. Filter bank analysis was used for the audio fea-
ture extraction and the principal component analysis (PCA)
was used for visual feature extraction of the lip motion.
These features were used as observed data to train ILHDS.

Learning the cross-media timing-structure model.
Using the extracted audio and visual feature vector se-
quences as signalS′ and S, we estimated the number of
modes and parameters of each mode, partitioned each sig-
nal into an interval sequence, and then computed the cross-
media timing structure according to the method described
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in Section 5.2. The estimated number of modes was 13 and
8 for audio and visual modes, respectively. The segmen-
tation results are shown in Figure 6 (the first and second
rows). Because of the noise, some vowels were divided into
several different audio modes.

Evaluation of timing generation. Based on the esti-
mated cross-media timing-structure, we applied the media
conversion method in Subsection 5.3: we used an audio sig-
nal interval sequence included in the training data of ILHDS
as an input (source) media (top row in Figure 6) and con-
verted it into a video signal interval sequence (third row in
Figure 6).

Then, to verify the performance of the media conver-
sion method, we first compared the converted interval se-
quence with the original one which was generated from the
video data measured simultaneously with the input audio
data (second row in Figure 6). Moreover, we also compared
the pair of video data: one generated from the converted in-
terval sequence (second bottom row in Figure 6) and the
originally captured one (bottom row in Figure 6). From
these data, the media conversion method seemed to work
very well.

To quantitatively compare our method with others, we
generated feature vector sequences based on several re-
gression models. Seven regression models were con-

structed, each of which estimated visual feature vec-
tor yt from 2a + 1 frames of audio feature vectors
yt−a, yt−a+1, ..., yt, ..., yt+a, wherea = 3, 4, ..., 9. Figure
7 shows the average error norm per frame of each model
whena = 3, 5, 6, 7, 9. We see that our method provide the
smallest error compared to the regression models1.

6. Conclusion

We proposed ILHDS as a novel computational model to
represent dynamic events and structures. Applying ILHDS
to human behavior analysis, we can successfully extract dy-
namic features based on the relation of temporal intervals,
and analyze the synchronization/delay mechanism between
mouth motion and speech utterance.

In this paper, we concentrated on modeling a single hu-
man behavior rather than multiparty interaction, because
our first concern is to see the effectiveness of ILHDS for
modeling and learning dynamic events and structures from
multimedia signals. Currently we are extending the pro-
posed scheme to model multiparty interaction by describing
timing structures among dynamic primitives (e.g., pitch and
intensity patterns in utterances) appeared in each of individ-
uals, and to realize natural human-machine interaction.
Acknowledgment: This study is supported by Grant-in-Aid
for Scientific Research No.18049046 of the Ministry of Education,
Culture, Sports, Science and Technology.
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