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proposed scheme, we conducted experiments on media con-

version that generates lip video from an input audio signal. Figure 1. Architecture of hybrid dynamical

systems.

1. Introduction sider time as physical metric entity), and a discrete-event
system, which is suitable for describing human subjective
Understanding the meaning of user commands and pre-or intellectual activities (consider time as ordinal state tran-
senting appropriate information to a user is one of the sition) (Figure 1).
primary objectives of human-machine interaction systems. We developed ILHDS based on the following rationale.
Most of the existing approaches, therefore, set the goal toFirstly, we assume that a complex human behavior consists
realize interaction systems that understand semantic infor-of dynamic primitives, which are often referred to as mo-
mation specified by a user and generate attractive presention elements, movemes, visemes, and so on. For example,
tation to a user using multimedia data such as text, graphsga cyclic lip motion can be described by a cyclic sequence
pictures, video, sound, and so on. of simple lip motions such as “open”, “close”, and “remain
While such multimedia interaction systems are impor- closed”. Once the set of dynamic primitives is determined,
tant, users sometimes feel frustration when the systemsa complex behavior can be partitioned into “temporal inter-
get out of human interaction protocols. That is, the sys- vals”, each of which is characterized by a dynamic primitive
tems often ignore dynamic features such as acceleration patand its temporal duration.
terns, pause lengths, tempo speed, and rhythms, which con- Secondly, we assume that not only temporal orders of
vey rich nonverbal and non-semantic information in human motion elements but also their duration lengths or tempo-
communication. ral differences among beginning and ending timing of the
In this paper, we attempt to model such dynamic fea- temporal intervals convey rich information in human com-
tures or temporal structures in verbal and nonverbal com-munication.
munication based on a novel computational model, named Based on the assumptions above, we proposed ILHDS
an interval-based linear hybrid dynamical system (ILHDS). for modeling dynamic events in terms of temporal intervals.
A hybrid dynamical system is the integration of two types of The system has a two-layer architecture consisting of a fi-
dynamical systems: one described by differential equations,nite state automaton and a set of linear dynamical systems.
which is suitable for describing physical phenomena (con- In this architecture, each linear dynamical system represents
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requires us to solve temporal segmentation and system iden-
tification problems simultaneously. We therefore propose a
two-step learning method as we describe in Section 4. 1
. f . . :Internal state space :
Applying multiple ILHDSs to human communication, S e S
we can successfully extract dynamic features of the behav-

iors based on relations of temporal intervals. In this paper, Sequence of Intervals

we focus on modeling cross-media timing structures and an- <q1, 4> <qz, 2> <q1, 5>
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motion and speech utterance. Thanks to the model, we suc-

cessfully generate lip video from an input audio signal (see *

Section 5 for deta”s)_ Sequence of Internal states Xt (multivariate vectors)
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2- Related WOfk Sequence of observation Yt (multivariate vectors)

Segment models [6] have been proposed in speech Figure 2. Interval-based linear hybrid dynam-
recognition fields as the unified model of segmental ical system for modeling a single signal
HMMs [4]. This model uses theegmentas a descriptor,
which has a duration distribution. The segment represents
a temporal region in which one of the states is activated, of Figure 2) consists of a set of linear dynamical systems
and the total system represents phonemes and subwords & = {D;, ..., Dnx}. To integrate these two layers, we in-
a sequence of the segments. troduceintervals(the bottom of Figure 2): each interval is
While ILHDS also explicitly represents duration, the described by< ¢;, 7 >, whereg; denotes a state in the
concept of the system is different from the segment mod- automaton and the physical temporal duration of the in-
els because we concentrate on modeling temporal structurderval. Each state in the automaton corresponds to a unique
among multiple events rather than only the duration lengthslinear dynamical system recorded at the second laygr:
of events. We use the terimervalsinstead of segments be- denotes the label of the corresponding linear dynamical
cause our motivation is bringing Allen’s temporal interval system as well as a state in the automaton. As a result,
logic [1], which exploits 13 topological relations between the automaton has a discrete state @et= {qi,...,qn }.
two intervals (e.g., meets, during, starts with, etc.), into the Note that multiple different intervals can correspond to the
class of hybrid systems. same state in the automaton; that is, their dynamics are de-
Once the intervals are explicitly defined, we can fabri- scribed/controlled by the same linear dynamical system.
cate more flexible models to represent cross-modal tempo- When a temporal sequence of observed signal glata
ral relations such as timing among concurrent dynamics ap-R™, is given, it is first transformed into a sequence of in-
peared in man-machine interaction. ternal states;; € R™. Then, that sequence is partitioned
into a sequence of intervals. That is, the internal state se-
guence is partitioned into a group of sub-sequences so that
the dynamic state variation in each sub-sequence can be de-
scribed by a linear dynamical system, which is denoted by
q; recorded in the interval covering that sub-sequence.
3.1. System Architecture Once ILHDS has been constructed by learning as will
be described in Section 4, it can generate a multivariate
ILHDS has a two-layer architecture (Figure 2). The first signal sequence by activating the automaton: the activated
layer (the top of Figure 2) records a finite state automaton automaton first generates a sequence of intervals, each of
as a discrete-event system that models stochastic transitionghich then generates a signal sequence based on its cor-
between discrete events. The second layer (the second topesponding linear dynamical system (the bottom of Fig-

3. Interval-Based Linear Hybrid Dynamical
System



ure 2). Note that the activation timing and period of the lin- dynamical systems, the system identification process that
ear dynamical system are controlled by the duration lengthestimates system parameters becomes difficult because of

recorded in the interval. its paradoxical nature. That is, the system consists of a set
of subsystems (in our case, linear dynamical systems) and

3.2. Linear Dynamical Systems the parameter estimation of each subsystem requires parti-
tioned training data to be modeled by that subsystem, while

The state transition of dynamical systen in the in- the segmentation process of training data requires a set of

ternal state space, and the mapping from the internal statddentified subsystems. Moreover, the number of subsystems
space to the observation space is modeled by the followingis also unknown in general.

linear equations: The expectation-maximization (EM) algorithm is one of

0 (i) (%) 1 the most common approaches to solve this kind of paradox-
e = Te-1 g+ Wy @ ical problems. The algorithm estimates parameters based
v, = Huzx+ vy, on the iterative calculation. In each step, the algorithm con-
whereF ) is a transition matrix and” is a bias vectord ducts model fitting to training data using the model parame-

is an observation matrix that defines linear projection from (€rS thatwere updated in the previous step. Then, the param-
the internal state space to the observation spaé. and eters are updated based on the result of the current model

v is the process noise and the observation noise, which arditing Process. . o
modeled by Gaussian distributions respectively. Note that However, the EM algorithm-based parameter estimation

each dynamical system is defined BY), ¢, andw (. method involves two problems: (1) initialization of the EM
algorithm, and (2) estimation of the number of subsystems.
3.3. Interval-Based State Transition To solve the difficulties in the learning process, we divide

the estimation process into two steps: clustering of dynami-

In this section, we define the transition of discrete statescal systems to estimate a set of required dynamical systems
in the automaton that generate interval sequences. Here, waénd parameter refinement of the overall system.
assume first-order Markov property for the generated inter- We here assume that internal-state sequences have been
vals. A major difference from conventional state transition estimated from observation sequences; that is, an observa-
models, such as hidden Markov models, is that the automa-ion matrix H and distribution parameters of observation
ton models the correlation between duration lengths of ad-noisev have been estimated based on prior knowledge or
jacent intervals as well as the transition of discrete states. system-identification techniques [7].

LetZ = Iy, ..., Ik be an interval sequence generated by
the automaton. To simplify the model, we assume that ad-[Step 1] Clustering of Dynamical Systems. The first
jacent intervals have no temporal gaps or overlaps. Herestep is a clustering process that finds a set of dynamical sys-
the intervall;, depends only on the previous intendgl tems required to describe training data: the number of the
because of the Markov property assumption. Then, thesystems and their parameters. This step employs a typical
Markov process of intervals can be modeled by the follow- data sequence as training data. Then, an agglomerative hier-

ing conditional probability: archical clustering is applied to the training data to estimate
a set of dynamical systems required to model the data (Fig-
P(Ik =< q5,T > ‘Ik—l =< qi> Tp >)7 ure 3)

which denotes the probability that intervalg;, 7 > occurs » o )

after interval< g;, 7, >. ‘ 1. Partition the training sequence into a group of very
The computé’tign of probabilityP(Iy =< g¢;,7 > short sub-sequences and estimate a dynamical system

- 20 .
I,_, =< ¢i,7, >) requires a large parameter set, which that can model each sub-sequence respectively.

does not only increase computational cost but also incur the
problem of over-fitting during a training phase. We there-
fore use a parametric model for the duration length distribu-
tion. That is, for each state transition in the automaton, we
record P(g;|g;) together with a parametric distribution for

2. Compute the distance between each pair of estimated
dynamical systems.

3. Integrate the closest pair of dynamical systems: com-
P pute parameters of the integrated dynamical system
(77, 45 45)- based on such sub-sequences that were modeled by the

) pair of dynamical systems to be integrated.
4. Learning Process for ILHDS

4. Iterate the above integration process until the closest
Let us assume that only a group of multivariate signal distance between a pair of dynamical systems becomes
sequences is given as training data. Then, in most of hybrid greater than a pre-specified value.



The numb famp"“g points in the internal-state sequence Once the system parameters have been identified, each
e number O

the systems is N Interval sequence sequence in the training data set can be described by a se-
[0 0 o 00 00 O guence of intervals respectively, which then is used to esti-
Identification mate parameters of the automaton. Firstly note that a set of
% f 5 discrete states have been determined uniquely from the set
D+ Do 3 of dynamical systems obtained by the clustering process.
7\D4 Distance space of Then, for each pair of discrete states, the transition prob-
| dynamical systems ability and the duration length distribution associated with
Nearest dynamical-system pair the state transition are computed. Thus, ILHDS is identi-
The number of * Merge fied.

the systems is N-1 Interval sequence
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B X‘ D 5.1. Timing Structures in Multimedia Data
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D2
Measuring dynamic human actions such as speech and
music performance with multiple sensors, we can obtain
Figure 3. Clustering of dynamical systems. multimedia signal data. We human usually sense/feel cross-

modal dynamic structures fabricated by multimedia signals
such as synchronization and delay. For example, it is well-

_% known that the simultaneity between auditory and visual
g5 patterns influences human perception.
£8 The cross-modal timing structure is also important to
P — — realize muItimedig sy;tems such as hum'a}n computer in-
;_.; K=10 __ — terfaces (e.g., audlo_-wsual speech recognition systems [5])_
Ty —— and computer graphics techniques that generate some media
K= 4 w signal from another (e.g., lip sync to input speech [2]).
Dynamic Bayesian networks, such as coupled hidden
frameﬂ_m ” o ﬂ3s Markov models [5], are often used as media integration
e~ methods. These methods describe co-occurrence or tempo-

ral adjacency of states in different media data. While such
methods enable us to represent short-term cross-media rela-
tions, they are not well suited to describe systematic and
long-term cross-media relations. For example, an open-
ing lip motion is strongly synchronized with an explosive
sound /p/, while the lip motion is loosely synchronized with

Figure 4. The result of lip motion segmenta-
tion using clustering of dynamical systems.

After this process, we get the number of required dynam-
ical systemsV and approximate parameters of the dynami- & YOWel sound /e/. _ _
cal systems. Since this approach agglomerates not the input 1° éPresent such systematic and long-term synchroniza-
data but dynamical models, the method can be considered agon/delay and mutual dependency among multimedia sig-
one of model-based hierarchical clustering techniques [g]. N@lS: here we propose a novel model based on ILHDS. For

Figure 4 shows the result of lip motion segmentation us- €ach media signal sequence in multimedia data, we first
ing the proposed clustering method. We see that the ”papply ILHDS to obtain the interval sequence respectively.

sequence is divided by four dynamics: “remain closed”, 1nen. by comparing m(tquqls_of different medlzws]!grr]]als,
» “remain open”, and “close”. we construct aross-media timing-structure modevhic

open, is a stochastic model to describe temporal structures across
[Step 2] Refinement of the Parameters. The second  multimedia signals.

step is a refinement process of the system parameters based

on the EM algorithm. The process is applied to all training 5.2 Modeling Cross-Media Timing Struc-

data, whereas the clustering process is applied to a selected tures
typical training sequence. While the EM algorithm strongly

depends on its initial parameters, the clustering step pro- Applying ILHDS to each media signal sequence in mul-
vides an initial parameter set that is relatively close to the timedia data, we obtain a group of interval sequences (the
optimum. top in Figure 5). Letl;, be an interval of mod@/; in one of
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Figure 5. Learning timing-structure model.

the obtained interval sequences dfdan interval of mode
M, in another interval sequence overlapping with Note
that modesM; and M,, specify the linear dynamical sys-
tems that describe dynamics in intervéjsand;, respec-
tively. Let by (er) andb), (e},,) denote the beginning (end-
ing) points of intervald, andI},, respectively.

To model the cross-media relation between mofigs
and M;,, we collect all pairs of overlapping intervals that
satisfy the same temporal relation as that betwBeand

another related media signal. The overall flow of the media
conversion from signa$’ to S is as follows:

1. A reference (input) signdl’ is partitioned into an in-
terval sequenc@’ = {I1, ..., I} }.

2. An interval sequenc& = {Ii,...,, Ik} is generated
from Z’ based on the cross-media timing-structure
model. (K and K’ is the number of intervals iff and
7', and note thakl # K’ in general.)

3. Signal$ is generated frorf.

The key process of this media conversion lies in step
2. Let ® be the cross-media timing-structure model that
is learned in advance. Then, the problem of generating an
interval sequenc& from Z’ can be formulated by the fol-
lowing optimization:

®)

In the equation above, we have to determine the num-
ber of intervalsK and their properties, which can be de-
scribed by triples< by, e, mi > (k = 1,..., K), where
bp,er, < T andmy € M. Here, T is the length of
signal S, and M is the set of modes of intervals (i.e.,
set of linear dynamical systems fixed at the learning pro-

1 =arg max P(Z|T, ®).

cess). If we searched for all possible interval sequences
{Z}, the computational cost would increase exponentially
asT becomes longer. We therefore use a dynamic program-
ming method to solve Equation (3), where we assume that

( the bottom in Figure 5). We refer to this distribution as generated intervals have no gaps or overlaps; thus, pairs
9 ' < er,mp > (k = 1,...,K) are required to be estimated

atemppral difference_distribution‘!’his_ distribution repre- under this assumption.
sents rich cross-media synchronization structures between
a pair of different media signals. For example, if the peak 5.4. Experiments
of the distribution comes to the origin, the two modes tend

to be synchronized each other at both beginning and ending 1, o\aluate the descriptive power of the proposed cross-

points, while ifb,, — by has large variance, the two modes  qqia timing structure model and the performance of the

loosely s;r/]nchromzed attheir onsetl E'j',?f'ng' distributions Media conversion method, we conducted experiments on
Note that we compute temporal difference distributions e ji5 video generation from an input audio signal.

for all possible mode pairs and record them as fundamental
characteristics of the cross-media timing structure of a givenFeature extraction. A continuous utterance of five vow-
multimedia signal data. In addition to a set of such tempo- €ls /a/,/i/,/ul,/fel,/o/ (in this order) was captured using mutu-
ral difference distributions, we also model which mode pair ally synchronized camera and microphone. The utterance
tends to overlap with each other across different media (co-was repeated nine times (18 sec.). A lip region in each
occurrence probabilities of modes), and which mode pair vVideo image was extracted by the active appearance model
tends to appear in neighboring intervals in each media sig-(AAM) [3]. Filter bank analysis was used for the audio fea-
nal data (mode-transition probabilities). The cross-mediature extraction and the principal component analysis (PCA)
timing structure is defined by these mutual dependency re-was used for visual feature extraction of the lip motion.
lations between modes. These features were used as observed data to train ILHDS.

Learning the cross-media timing-structure model.

Using the extracted audio and visual feature vector se-

guences as signdl’ and S, we estimated the number of
Once the cross-media timing-structure model is learnedmodes and parameters of each mode, partitioned each sig-

from simultaneously captured multimedia signal data, we nal into an interval sequence, and then computed the cross-

can exploit the model for generating one media signal from media timing structure according to the method described

I, and compute
P(by — by, ex — ep|mp = My, my, = M),

@)

wherem,, andm},, are the modes of intervdl, and I},

5.3. Timing-Based Media Conversion



training pair of interval sequences o
audio interval sequence

F-H-' e mel e el —_—— = —=— —_

visual interval sequence
—_—

-

—_—

—_—

—_—

—

’—\-H_\— e,
time [frame]

g
E#:SF-H_"

‘

generated visual interval sequence from audio interval sequence

— — — —_— — — ‘

]
=i —

frame #140

#250

generated image sequence

Y
e rFEEEEEEEEEEEEEEPEER |

original image sequence

Figure 6. Media conversion.

1 JIN0E

- 1" 15
timing -
structure

model regression models
(the number of used audio feature frames)

100 150

50

o

Average Error Norm per Frame

Figure 7. Average error norm per frame be-
tween generated and original sequences.

structed, each of which estimated visual feature vec-
tor y; from 2a + 1 frames of audio feature vectors
Ytmar Yt—atly s Yts - Yt+a, Wherea = 3,4, ....9. Figure

7 shows the average error norm per frame of each model
whena = 3,5,6,7,9. We see that our method provide the
smallest error compared to the regression motlels

6. Conclusion

We proposed ILHDS as a novel computational model to
represent dynamic events and structures. Applying ILHDS
to human behavior analysis, we can successfully extract dy-
namic features based on the relation of temporal intervals,
and analyze the synchronization/delay mechanism between
mouth motion and speech utterance.

In this paper, we concentrated on modeling a single hu-
man behavior rather than multiparty interaction, because
our first concern is to see the effectiveness of ILHDS for
modeling and learning dynamic events and structures from
multimedia signals. Currently we are extending the pro-
posed scheme to model multiparty interaction by describing
timing structures among dynamic primitives (e.g., pitch and
intensity patterns in utterances) appeared in each of individ-
uals, and to realize natural human-machine interaction.
Acknowledgment:  This study is supported by Grant-in-Aid
for Scientific Research No.18049046 of the Ministry of Education,
Culture, Sports, Science and Technology.
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