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Abstract—This paper proposes a distributed scheduling algo-
rithm of demands of multiple households/consumers in order to
achieve a power balancing in total. Assume that an autonomous
energy management system is installed in each household and
that those households are capable of communicating with an
aggregator. Then, it becomes possible to negotiate via the au-
tonomous energy management systems to find an agreement point
that takes both the users’ demands and the aggregator’s objective
into account. The key aspect of the algorithm is that it enables
us to encapsulate the particular control and objective in each
household, and realizes the negotiation based on power profiles.
We also show the proposed framework can be smoothly integrated
with a probabilistic generative model of power profiles.

I. INTRODUCTION

Autonomous demand-side energy management is attracting
great attention as it realizes machine to machine interaction
among households/consumers and aggregators/providers (e.g.,
[1], [2], [3], [4], [5], [6]). By automated energy management
systems (EMS), participants of demand response (DR) pro-
grams can respond to the information from the utility (or
an aggregator) and manage the scheduling of loads/generators
automatically. This trend is now increasing the variety of DR
programs.

When DR is implemented as a price-based program [7]
such as real-time pricing, in which customers are charged
short-term fluctuating prices, participants can automatically
change the on-off timing of appliances within an acceptable
range [6]. Meanwhile, in an incentive-based program (IBP),
participating customers receive some kind of rewards for the
achievement of utility-side requests or for the participation in
the programs. A classical IBP strategy is a direct load control,
where utility companies directly turn off participants’ devices.
Although this classical strategy satisfies the demands of the
aggregator side, it often cannot take account of the demands
of the participants side flexibly. To deal with the quality of life
(QoL) of participants, a recent trend is to develop a system
that handles the time shifting of appliances while minimizing
the deviation from their preference [2]. Indeed, recent IBP
introduces market-based bidding strategies, where participants
bid load reduction in electricity wholesale market [7]. As a
result, the automated EMS is expected to be a negotiator
between aggregators and users.

In this paper, we formulate this two-sided (i.e., households
and aggregators) demands directly and provide an algorithm
to optimize the power profiles of households in a distributed

manner (Fig. 1). We here use the term “household” to denote
a unit of group/area in which an installed EMS is capable
of controlling the devices inside the group, and therefore the
framework can be applied not only to home EMS (HEMS)
but also to the management systems for building, office, etc.
The present paper mainly focuses on providing an algorithmic
framework. In particular, similar to [6], [8], we assume the
situation of an IBP in which users have already been given an
incentive to join the program. That is, the participants inside
the territory of an aggregator are required to coordinate and
negotiate their day-ahead schedules of power consumption so
as to achieve the aggregator’s objective (e.g., balancing the
total power consumption/generation).

The contribution of this paper is twofold: (1) we introduce
a distributed optimization technique which enables us to encap-
sulate the actual control and objective in each household; and,
(2) we propose to use a probabilistic generative model, called
the hidden-semi Markov model (HSMM), to represent user-side
demands and the flexibility of changing his/her schedules. In
particular, (1) is quite useful property since, albeit beyond the
scope of this paper, it can be applied to the coordination of
heterogeneous types of EMS; and, the point of (2) is that a
detailed model of profiles can be trained from real data.

While there are successful distributed optimization tech-
niques based on game theories [1], [3], they assume each
player (household) collects power profiles from all the other
players. This may not only cause a privacy issue but assume
a centralized communication topology in terms of the way
of sharing information even though the players’ decisions are
made in a decentralized way. In contrast, this paper exploits
the methods called the dual decomposition and the alternating
direction method of multipliers (ADMM)[9]. This is the key to
realize the decoupling between households and an aggregator
and achieve a profile-based interaction characterized by (1).

In the next section we show how the problem can be
formulated and solved by the distributed optimization. In
Section III, we introduce a particular probabilistic model and
show the model can be smoothly integrated with the distributed
optimization framework. Simulation results, discussions, and
conclusions are given in Section IV, V, and VI, respectively.

II. DISTRIBUTED OPTIMIZATION

In this section, we consider a general formulation of
coordinating EMS via an aggregator in order to achieve
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Fig. 1. Architecture of the proposed framework. Iterative negotiation is
conducted in the box (dashed line) to determine the day-ahead power profiles
of the participants.

both household objectives, such as QoL of users, and the
aggregator’s objective, such as power balancing, and we do
not consider a particular EMS.

A. Problem Formulation

Consider N households are coordinated through an aggre-
gator. Let the scheduled power profile (sequence) of household
i ∈ N ≜ {1, ..., N} be xi ∈ RT , where T is the number of
time slots in a day, and the t-th element of xi represents the
(averaged) power consumption in the t-th time slot. While the
following discussion focuses on power consumption profiles,
the framework has no limitation of dealing with power gener-
ation from distributed power supply.

Here, we introduce two types of objective functions. Let
fi(xi) be a local objective function that measures the cost of
achieving profile xi at household i, and let g(v) be a global
objective function of the total energy of N households, where
v =

∑
i∈N xi. Then, we formulate the optimization problem

as
min
x

L(x) ≜
∑
i∈N

fi(xi) + g(
∑
i∈N

xi), (1)

where x = [x⊤
1 , ..., x

⊤
N ]⊤ ∈ RNT is a stacked vector form of

{xi}i∈N . For example, one may use

g(v) = α
T ||v||∞
1⊤
T v

(2)

to minimize the peak-to-average ratio (PAR), where 1n is a n-
dimensional column vector whose entries are all 1, and α > 0
is a weight parameter. Another example of function g to flatten
(and also to reduce) the total power consumption is

g(v) = α||v||2, (3)

where we denote a Euclidean norm as || · || otherwise noted.
On the other hand, the local objective function fi (∀i ∈ N )
basically encodes user’s QoL. In Subsection II-C, we will see
how this function can be related to the control of each EMS.

To solve Eq. (1) in a centralized manner, the aggregator
needs to know all the local objective functions fi, ∀i ∈ N .
However, this is often not desirable in terms of scalability

and privacy issues, since the local objective of each household
strongly depends on the user’s preference, e.g., types of
appliances and timing of their usage, and it is not realistic
for the aggregator to collect and manage all the households’
information in addition to their controllable ranges every day.

As such, we here try to decompose the total objective
function L(x) in Eq. (1) so as to allow each household to
upload only their schedule of power consumption. Indeed,
this can be achieved by introducing a method called the dual
decomposition, which introduces a set of duplicated variables.
We note that the problem in Eq. (1) is called a “sharing
problem” in a context of distributed optimization [9]. In the
next subsection we briefly explain its distributed algorithm as
a preliminary.

B. Dual Decomposition and ADMM of Sharing Problem [9]

Let zi be a duplicated variable of xi for all i ∈ N . Then
the original problem can be rewritten as

min
x,z

∑
i∈N

fi(xi) + g(
∑
i∈N

zi)

subject to xi = zi, ∀i ∈ N ,

and therefore the Lagrangian becomes

L(x, z, λ) ≜
∑
i∈N

fi(xi) + g(
∑
i∈N

zi) +
∑
i∈N

λi(xi − zi), (4)

where the elements of λ ∈ RT are called the dual variables
(Lagrange multipliers). Note that the above Lagrangian can
be solved iteratively, i.e., a standard dual ascent [10]. In each
iteration, we can solve N + 1 minimization, each of which
is relative to fi (i ∈ N ) and g, independently (this is the
reason of the name “dual decomposition”). The dual variables
{λi}i∈N are also updated together.

However, the update of λi in the dual ascent algorithm
requires a careful tuning of the step size. For this reason,
more robust methods, which exploit the following augmented
Lagrangian, have been introduced:

Lρ(x, z, λ) ≜
∑
i∈N

fi(xi)+g(
∑
i∈N

zi)+λ⊤(x−z)+
ρ

2
||x−z||2,

(5)
where λ and z are the stacked vector form similar to x.
The benefit of the additional penalty term is to improve
the robustness of the algorithm; that is, it converges under
rather mild conditions, e.g., without assumptions such as strict
convexity. Letting η = 1

ρλ, Eq. (5) can be further rewritten as
a convenient form

L̃ρ(x, z, η) ≜
∑
i∈N

fi(xi)+g(
∑
i∈N

zi)+
ρ

2
||x−z+η||2− ρ

2
||η||2,

(6)
which is often referred to as the “scaled form” since the dual
variables are scaled by 1

ρ .

Using the scaled form, the algorithm of ADMM becomes

x
(k+1)
i := argmin

xi

(
fi(xi) +

ρ

2
||xi − z

(k)
i + η

(k)
i ||2

)
z(k+1) := argmin

z

(
g(
∑
i∈N

zi) +
ρ

2

∑
i∈N

||zi − x
(k+1)
i − η

(k)
i ||2

)
η
(k+1)
i := η

(k)
i + x

(k+1)
i − z

(k+1)
i ,



where k is the index of iterations, and one can use η
(−1)
i = 0

and x
(0)
i = argminxi fi(xi) for the initialization. Here, the

minimization of the first and the last equations can be carried
out independently for each i ∈ N , i.e., solved in a distributed
manner. Considering the averages x̄ and z̄, where we denote q̄
the average of q1, ..., qN , and using the fact that minz

∑
i ||zi−

ai||2 with z̄ fixed is given by N ||z̄−ā||2, where ai = x
(k+1)
i +

η
(k)
i , the above algorithm can be rewritten as

x
(k+1)
i := argmin

xi

(
fi(xi) +

ρ

2
||xi − x

(k)
i + b(k)||2

)
(7)

where b(k) ≜ x̄(k) − z̄(k) + η(k) (8)

z̄(k+1) := argmin
z̄

(
g(Nz̄) +

Nρ

2
||z̄ − (x̄(k+1) + η(k))||2

)
(9)

η(k+1) := η(k) + x̄(k+1) − z̄(k+1), (10)

where we denote all the dual variables as η(k) since it can be
shown that η(k)i takes the same value for all i ∈ N .

The flow of this algorithm is as follows (see also Fig. 1). In
each iteration, participant i ∈ N determines the most desirable
profile x

(k+1)
i given information b(k) from the aggregator,

while the aggregator collects x
(k+1)
i from all the participants

i ∈ N in order to calculate x̄(k+1) which is required in Eq. (9)
and Eq. (10). Then, new information b(k+1) calculated by
Eq. (8) is broadcasted to all the participants again. Therefore,
this algorithm can be seen as an iterative negotiation process
to find an agreeable compromise of all the participants and
the aggregator through the communication of x(k)

i and b(k). If
the objective functions fi (i ∈ N ) and g are strictly convex,
and the augmented Lagrangian Eq. (4) has a saddle point,
x⋆
i at the convergence point minimizes the original objective

function L(x) in Eq. (1). Non-convex case will be discussed
in Section V-A.

C. Control in Each Household

We here closely examine the structure of objective function
fi : RT → R in our scenario. By fi(xi), household i evaluates
the difficulty of realizing xi, for example, how large the gap
from his/her comfortable usage of appliances (dissatisfaction)
to realize xi, and how large the risk of declaring to use
schedule xi (uncertainty). And, the measure of these quantities
must involve the control in the household.

Let ui ∈ Ui be the control of appliances in the household
i, where Ui is the set of possible control candidates in the
household. For example, ui can be a mode scheduling of
appliances in the household, as will be explained in the next
section. The control ui is tightly related to the QoL of the user,
and it is natural for the user to evaluate ui itself instead of xi.
Therefore, we introduce a dissatisfaction function fu

i : Ui → R
to evaluate the cost of taking the control ui as fu

i (ui).

Once the variable ui is decided, profile xi should be
determined by ui. For example, if the household i has only
two possible control patterns, Ui = {Ui,1, Ui,2}, then xi takes
either χi(Ui,1) or χi(Ui,2) with some mapping χi : Ui →
RT . Thus, the control variable serves as a compact factor
(compression) for specifying possible xi in the vector space
RT . However, there always exists the uncertainty of realizing

profile xi. Therefore, we let f
x|u
i (xi, ui) be an uncertainty

measure of achieving xi given control ui. Taking the above
aspects into account, we define fi(xi) as

fi(xi) ≜ min
ui∈Ui

(
fu
i (ui) + f

x|u
i (xi, ui)

)
. (11)

That is, to evaluate the cost of xi, we use the optimal control
ui in terms of minimizing both dissatisfaction and uncertainty.

Using the above definition of fi(xi), Eq. (7) becomes

u∗
i := argmin

ui∈Ui

(
fu
i (ui) + min

xi

(
f
x|u
i (xi, ui) + F

(k)
i (xi)

))
x
(k+1)
i := argmin

xi

(
f
x|u
i (xi, u

∗
i ) + F

(k)
i (xi)

)
(12)

where F
(k)
i (xi) ≜

ρ

2
||xi − x

(k)
i + b(k)||2

If the function f
x|u
i is given as a particular form, e.g., quadratic

function of xi, the minimization over xi can be solved analyt-
ically, and the optimization in each household only involves
the minimization over ui.

The key of this form is that now the algorithm does not
depend on a particular form of the control and optimization
in each household. Therefore, this gives us a general frame-
work of aggregating different types of EMS. Finally, we give
some important examples regarding the design of fu

i (ui) and
f
x|u
i (xi, ui).

1) Indicator function: Consider an ideal case that the power
profile under control ui is determined as χ(ui) ∈ RT without
uncertainty. In this case, fx|u

i (xi, ui) is given as

fx|u(xi, ui) =

{
0 xi = χ(ui)

+∞ xi ̸= χ(ui)
. (13)

Note that this is an indicator function that defines a set of
constraints on xi. Namely, the set of possible power profiles is
given as {χ(ui)}ui∈Ui ⊂ RT since xi is uniquely determined
by ui. Substituting Eq. (13) into Eq. (12) yields

u∗
i := argmin

ui∈Ui

(
fu
i (ui) + F

(k)
i (χ(ui))

)
x
(k+1)
i := χ(u∗

i ),

(14)

which requires each EMS the minimization over only the
control variable ui.

2) Probabilistic model: We also note that one of useful
implementations of the measures fu

i (ui) and f
x|u
i (xi, ui) is

a probabilistic generative model P (xi, ui) = P (ui)P (xi|ui).
Here, P (ui) and P (xi|ui) can be trained via machine learning
techniques (e.g., the maximum likelihood or Bayesian estima-
tion) from daily sensing data of power consumption and/or
some prior knowledge. Once the model is given or trained, the
probability P (ui) tells us how natural the control ui is for the
household i, and it is plausible that the larger the probability
the higher the user’s satisfaction. Meanwhile, the probability
P (xi|ui) tells us the confidence/certainty of achieving power
profile xi given control ui. Therefore, an example of fu

i (ui)

and f
x|u
i (xi, ui) can be

fu
i (ui) = − logP (ui), f

x|u
i (xi, ui) = − logP (xi|ui),



and in this case Eq. (11) becomes

fi(xi) = − log max
ui∈Ui

P (xi, ui).

If the probability becomes zero at some xi, fi(xi) takes +∞
and those profiles are excluded from the candidates of xi.
Indeed, if P (xi|ui) is given by the delta function

δ(xi − χ(ui)) =

{
1 xi = χ(ui)

0 xi ̸= χ(ui)
, (15)

f
x|u
i (xi, ui) becomes the indicator function shown in the

previous paragraph. On the other hand, if P (xi|ui) is given by
a Gaussian distribution, the minimization over xi in Eq. (12)
has a unique analytical solution.

III. PROBABILISTIC MODEL OF POWER PROFILES

Based on the discussion in the previous section, this section
introduces a particular probabilistic generative model of power
profiles as an example of users’ objective functions expected
to be useful. We here consider a model for the total power
profile in a household, while it can also be used for the model
of individual appliances (see Subsection V-B).

As discussed in the literature (e.g., [7], [2], [3], [5]), impor-
tant aspects of the control of consumption patterns is to alter
the “timing” and “level” of demands. Therefore, to estimate
and model power profiles, we propose to use the probabilistic
model called the hidden semi-Markov model (HSMM) (or
the explicit-duration hidden Markov model). The HSMM is
a particular instance of “segment models” [11], and therefore
it models time-varying signals as a sequence of segments or
intervals. As the model has been studied long years since
1980s [12], it now has several types of efficient algorithms for
model learning and state estimation. In particular, we extend
the probabilistic inference algorithm proposed in [13] to solve
the optimization in Eq. (12), i.e.,

min
ui∈Ui

(
− logP (ui) + min

xi

(
− logP (xi|ui) + F

(k)
i (xi)

))
=− max

ui∈Ui

(
logP (ui) + max

xi

(
logP (xi|ui)− F

(k)
i (xi)

))
(16)

A. Hidden Semi-Markov Model

Consider that the profile xi can be modeled by a transition
of discrete states, which we refer to as modes. Let si,t ∈ Qi ≜
{qi,1, ..., qi,Mi} be the mode at time t. We assume that control
variables of household i are these modes at time t = 1, ..., T ,
i.e., ui ≜ si,1:T ∈ QT

i , where, and in what follows, we denote
ab:e the sequence (at)

e
t=b = (ab, ab+1, ..., ae). To simplify the

notations, we will omit the index i from subscripts, and we
use yt instead of xi,t, i.e., xi = (y1, ..., yT ) = y1:T , to avoid
the confusion between indices i and t.

In the HSMM, yt is called an output at time t, and assume
that its distribution is determined only by st, the mode at t.
Thus, the probability P (xi|ui) becomes

P (xi|ui) = P (y1:T |s1:T ) =
T∏

t=1

P (yt|st),

where P (yt|st) is called an output probability distribution.
Meanwhile, as for P (ui) = P (s1:T ), the model assumes a
segment-based process. In accordance with [13], let τt ≥ 1 be
a random variable denoting the remaining (or residual) time
of the current mode. Assume a situation the pair (st, τt) takes
value (qm, d). If d > 1 then (st+1, τt+1) = (qm, d − 1),
otherwise (i.e., if d = 1), a mode transition occurs and
(st+1, τt+1) = (qn, d

′). This process is modeled by the mode
transition probability P (st+1 = qn|st = qm, τt = 1) and
duration distribution P (τt = d|st = qm, τt−1 = 1).

In summary, the parameters of the HSMM become

Initial mode: πm ≜ P (s1 = qm)
Mode transition: amn ≜ P (st+1 = qn|st = qm, τt = 1)
Duration : pm(d) ≜ P (τt = d|st = qm, τt−1 = 1)
Output : bm(yt) ≜ P (yt|st = qm)

where qm, qn ∈ Q, d ≥ 1 , and yt ∈ R. A typical parame-
ter estimation (learning) method is the maximum likelihood
estimation via the expectation-maximization algorithm (see,
for example, [12], [13]). Although the model can be trained
from actual sensing data, we will use manually determined
parameters in Section IV since our main objective is to
demonstrate the distributed optimization framework.

B. Optimal Mode Scheduling

Since the full search to find the optimal mode sequence
for Eq. (16) requires comparing |QT | = MT sequences,
the computational cost grows exponentially depending on the
resolution of the time slots, and thus some efficient algorithm is
required. Here, we note an important fact that the second term
of the minimization over ui in Eq. (16) can be decomposed as

max
y1:T

(
T∑

t=1

logP (yt|st)−
T∑

t=1

F
(k)
i,t (yt)

)
=

T∑
t=1

Gt(st), (17)

where, recalling the definition of F (k)
i in Eq. (12) and letting

b
(k)
t be the t-th element of b(k),

Gt(st) ≜ max
yt

(
logP (yt|st)− F

(k)
i,t (yt)

)
F

(k)
i,t (yt) = F

(k)
i,t (xi,t) ≜

ρ

2
(xi,t − x

(k)
i,t + b

(k)
t )2.

Therefore, it is possible to apply the dynamic programming
(DP) technique to Eq. (16).

Another key fact is from the observation in [13] that the
probability P (st = qm, τt = d) can be calculated as the sum-
mation of P (st−1 = qm, τt−1 = d+1) (mode continues at time
t) and P (τt−1 = 1, st = qm)P (τt = d|τt−1 = 1, st = qm)
(mode changes at time t) (see Fig. 2 for reference). Besides,
P (τt−1 = 1, st = qm) =

∑
n ̸=m anmP (τt−1 = 1, st−1 = qn).

In other words, to arrive at (st, τt) = (qm, d) from st−1, there
exists M(= 1 + (M − 1)) paths depending on st−1.

Hence, letting

φt(m, d) ≜ max
s1:t−1

(
logP (s1:t−1, st = qm, τt = d)+

t−1∑
t′=1

Gt′(st′)
)
,
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we can use the following recursive algorithm:

φt(m, d) = max

(
φt−1(m, d+ 1) +Gt−1(qm),

log pm(d) + max
n

(
φt−1(n, 1) + log anm +Gt−1(qn)

))
.

Note that this is the maximization over all the possible st−1.
From the definition of φt(m, d), the initialization is given by

φ1(m, d) = logP (s1 = qm, τ1 = d) = log pm(d) + log πm.

The optimal value of Eq. (16) becomes maxm,d(φT (m, d) +
GT (qm)) and the optimal mode sequence is given by tracing
back the optimal path of the recursion.

Using this optimization of individual households for
Eq. (12) with Eq. (9) and Eq. (10), we finally have a distributed
mode scheduling algorithm.

IV. SIMULATION RESULTS

To demonstrate the effectiveness of the proposed algorithm,
we present simulation results of flattening the power con-
sumption of multiple residences. Specifically, we used Eq. (3)
for the global objective function with α = ν/(2N), where
ν = 2× 10−6. In this case, Eq. (9) can be solved analytically,
and the update of z̄ is given by z̄(k+1) = ρ

ν+ρ (x̄
(k+1) + η(k)),

where ρ = 0.2 × 10−6 was used. The scale of ρ and ν was
decided so as to balance with the local objective functions.

In this simulation, we used the HSMM explained in the
previous section to model the power profile in each residence.
To investigate the basic properties of the proposed algorithm,
we used simple parameters as explained below. First, we
assume that each of the residences owns the same type of
a plug-in hybrid electric vehicle (PHEV) as a controllable
device but has his/her own preference on the start time of
charging. For simplicity, we consider the consumption profile
of only the PHEV in each household as its required power is
dominant in many residences. Specifically, we assume that the
power consumption profile can be represented by three modes:
Q = {q1, q2, q3} and that the initial mode, the mode transition
probabilities, and the output distributions are identical for all
the residences. In particular, we consider the deterministic
(fixed) transition pattern q1 → q2 → q3. To focus on the aspect
of mode scheduling, we used simple output distributions given
by P (yt|st) = δ(yt−χ(st)), where χ(st) = 0, 1000, 0[W ] for
st = q1, q2, q3, respectively. As for the time slots of a day,

0 5 10 15 20 25 30
0
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g
(
Σ
i 
x
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Fig. 3. The change of the values of the global objective function (scenario
1). In this scenario, peak-to-average ratio (PAR), not shown here, was reduced
from 8.0 to 2.9 in 30 iterations.

we divided one day into ten-minute slots (i.e., T = 144). In
addition, we assume that each PHEV requires about 3kWh
charge (i.e., three hours) in a day.

Using this setting, we conducted two scenarios. In both
scenarios, N households negotiate with an aggregator on their
day-ahead scheduling of power profiles. In the first scenario
(scenario 1), N = 20 households have some flexibility to
determine the starting time of PHEV charging. This can be
represented as follows. Consider that the duration distribution
of mode qm is given by a Gaussian with mean µm and standard
deviation σm. In scenario 1, we used the following parameters:

• µ1 differs depending on a user (uniformly distributed
in the time interval [50, 55]); σ1 = 10.

• µ2 = 18 (three hours); σ2 = 1.

• µ3 = T − (µ1 + µ2); σ3 = 10.

Note that µ1 determines the starting time of the PHEV
charging and µ2 represents the charging time (duration), while
σm (m = 1, 2, 3) determines the flexibility of these durations
(e.g., the charging time has less flexibility).

Figure 3 shows the value of the global objective function
g(
∑

i(xi)) as the distributed optimization algorithm proceeds.
We observe that the value decreased enough in approximately
20 iterations. To see the details of the total power consumption,
as for the second scenario (scenario 2), we added another
20 households (group 2) which have much less flexibility
than the original 20 households (group 1), and applied the
same algorithm to the N = 40 households. For group 2,
µ1 was uniformly chosen in the time interval [100, 105], and
σ1 = 1 was used (i.e., less flexible than group 1). As shown
in Fig. 3, the total power consumption of group 1 was flatten
drastically while that of group 2 was almost remained at the
original profiles. This observation shows the characteristics
of using the probabilistic model; that is, if the models are
properly trained to encode users’ preference, the distributed
mode scheduling algorithm successfully finds an agreement
point between households and an aggregator.

V. LIMITATIONS AND EXTENSION

A. Non-convexity of Objective Functions

If the objective functions fi (i ∈ N ) and g are non-convex,
the convergence and the optimality are not always guaranteed.
This is often the case when users have complicated preference
patterns. Nevertheless, if the parameters such as ρ is chosen
appropriately, the algorithm still converges in many cases due



0

10

20

0

10

20

T
o

ta
l 
p

o
w

e
r 

[k
W

]

0 50 100 150
0

10

20

Time t (10min x 144)

(Iteration k = 0)

(Iteration k = 5)

(Iteration k = 20)

Fig. 4. Total power consumption of 40 households (thick lines) (scenario 2).
Each of thin lines close to zero axes depicts a profile of each household. In
this scenario, 20 households (group 2, right peak) are designed to have much
less flexibility than the remaining 20 households (group 1, left peak).

to the additional penalty term of the augmented Lagrangian in
Eq. (5) even though the convergence point is possibly a local
minimum [9].

B. Multiple Devices

While this paper has considered two-layer architecture (the
dashed box in Fig. 1), one can extend the architecture to
have more than three layers. Let Ai be the set of devices in
household i. Letting ei,a, a ∈ Ai, be the cost function of each
of devices, the following objective function can be used:∑
i∈N

∑
a∈Ai

ei,a(xi,a) +
∑
i∈N

fi(
∑
a∈Ai

xi,a) + g(
∑
i∈N

∑
a∈Ai

xi,a).

By introducing duplicated variables again such that xi,a = yi,a
and yi,a = zi,a, it is not difficult to show that a similar profile-
based distributed optimization can be derived (see also [14],
for ADMM with multiple agents). Our future work includes
the detailed analysis of such hierarchical architectures with
multiple devices and/or multiple aggregators.

C. Incentive Design of Demand Response Program

Although this paper has focused on an algorithmic aspect of
coordination, the design of incentives such as rewards/penalties
and prices is crucial to implement the framework as a practical
demand response program. It is worth to seek the possibility of
extending the proposed framework by including some factors
of rewards/penalties and prices into the design of the objective
functions, and to see how the method is effective for important
challenges such as preventing rebound peaks [4].

D. Conditional Probability Models

In the simulation, all the parameters were given manually,
and were fixed in a day. However, the trend of the usage of
devices can be affected by many other factors such as time of
day, temperature, season, the day of week, and users’ special
events. To take these factors into account, one can train the
model with many types of conditional probabilities. Obviously,
to find such detailed conditional probabilities requires a large
amount of training data together with any available prior
knowledge, and this will be investigated in the future work.

VI. CONCLUSION

This paper proposes a distributed scheduling algorithm of
demands of multiple households in order to balance the total
power in the territory of an aggregator. By communicating via
profiles, the proposed algorithm finds the agreement point of
the users’ and the aggregator’s objectives. The key aspect of
the algorithm is that it enables us to encapsulate a particular
control in each household and hide the objective functions each
other. We proposed to use the probabilistic model called the
hidden semi-Markov model as a particular model for power
profiles in each household, and we have shown that the model
can be smoothly integrated with the proposed framework.
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