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Abstract

We have developed a high-precision method that selects

an appropriate model of a video image in order to track an

unknown face in front of a large display. Currently, Active

Appearance Models (AAMs) are used to track non-rigid ob-

jects, such as a faces, because the models efficiently learn

the correlation between shape and texture. The problem

with an AAM is that when it tracks an unknown face, exces-

sive training data increases tracking errors because there is

an intermediate model size beyond which the reduction in

fitting performance outweighs the gains from any improved

representational power of the model. To increases the accu-

racy with which an unknown face is tracked, we built clus-

tered models from training datasets and select a cluster that

includes a face which is similar to the unknown face. Our

method of clustering and cluster selecting is based on the

Mutual Subspace Method (MSM). We demonstrated the ef-

fectiveness of our method by using the leave-one-out cross-

validation.

1. Introduction

We developed an interactive information display system

that also reads a user’s unconstrained non-verbal behavior,

such as face and gaze direction, in order to guess such things

as the user’s real intentions or true preferences. Figure 1

shows the system. The system has a large display and mul-

tiple cameras, and interactively shows information reacting

to the user’s intention and preference. This system can be

applied to situations that involve a dialogue, such as mak-

ing travel plans or explaining items of interest to museum

visitors.

Reading a user’s non-verbal behavior depends on a sys-

Figure 1. Information display system

tem being able to accurately estimate face and gaze direc-

tion; therefore, facial tracking technology, which performs

this function, is essential. An Active Appearance Model

(AAM) [3] is often used for facial parts tracking, such as the

analysis of facial expressions [7]. Using an AAM can pro-

vide fast and stable non-rigid object tracking because it is a

statistical model that shows the correlation between shapes

(coordinate values of feature points) and grey-levels (inten-

sity of each pixel). However, when an AAM is used for

person-independent face tracking, excessive training data

decreases tracking accuracy as we will describe in the next

section. To improve the accuracy of tracking an unknown

user, we use a clustered model made from face images that

are similar to the user’s face image. Similar individuals

from face database containing a large number of individual

face data are found and merged using a hierarchical cluster

analysis. Finally, we dynamically select the most appropri-

ate cluster for the user and used it to provide highly accurate

face tracking.
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2. Related Works

Using an AAM involves performing a PCA-subspace of

face images, as does using many other face tracking meth-

ods. For example, Sparse Eigentemplate [10] uses face

subspace with Condensation and tracks human faces sta-

bly. However, Sparse Eigentemplate can track only trained

faces.

Some traditional approaches to extracting an unknown

face from images involve training a model by using many

individual images in order to improve the ability of the sub-

space to express the variety of human faces [13, 14]. In

methods involving facial parts tracking, there is some re-

search on making an individual eigenspace for each facial

part, such as the eye, nose, and mouth, from many individ-

ual images in order to detect facial parts in images [8, 17].

However, using excessive training data to train a subspace

decreases the tracking accuracy because there is an interme-

diate model size beyond which the reduction in fitting per-

formance outweighs the gains from the model’s improved

representational power [4]. Using a simultaneous inverse

compositional algorithm increases the fitting performance.

The algorithm fits shapes into a face image by performing

a Gauss-Newton gradient descent optimization simultane-

ously on the warp parameters and the appearance param-

eters. The algorithm, however, needs high computational

power and cannot work in real-time [4].

To solve the problem of reduced tracking accuracy, we

dynamically change a clustered model into the most appro-

priate one made from similar face images. In research that

does not involve eigenspace, a tracking method developed

by Sugano et. al. [11] and a tracking method called Elas-

tic Bunch Graph Matching (EBGM) [16] change models to

deal with the differences between individual faces and can

be used to accurately detect facial parts. Sugano et. al. uses

incremental bundle adjustment for person-dependent shape

estimation. In EBGM, a system takes many Gabor features,

and selects an appropriate one for an input image. We try

to build clusters that have an appropriate size so that they

can express an unknown individual face as a subspace of

the cluster.

3. Tracking Based on AAM [3]

3.1. Learning Procedure

Cootes et. al. proposed an efficient method to learn the

correlation between shape and texture [3]. Initially, gray-

level variance independent from shape variance is needed

for learning the correlation between shape and grey-level.

The training data for an AAM is a set of images and coordi-

nate values of feature points on the images. Figure 2 shows

an example of training data recorded by the system in Fig-

ure 1. We put 45 feature points on the image. In this paper,

Figure 2. Training data for AAM

Figure 3. A mesh for warp and a warped image

a vector composed of coordinate values on feature points

is called shape vector s. To build an AAM, rotation and

translation of shape vectors of training sets are normalized.

The face region is extracted from an image along its fea-

ture points, and its shape is normalized into a mean shape

s of the normalized shapes. This process is called Warp.

Piecewise affine or thin plate spline can be used for this nor-

malization [2, 9]. We use piecewise affine based on a mesh

composed of the feature points. Figure 3 shows a mesh and

an image warped by the mesh. A vector composed of inten-

sity values in the warped image is called a grey-level vector

g.

Next, the distribution and correlation between shapes

and grey-level is calculated . When PCA is performed on

a set of shape vectors s and grey-level vectors g in training

data, Equation (1) gives approximations of s and g:

s = s+ Uscs , g = g + Ugcg (1)

where s is a mean vector of s, g is a mean vector of g, Us

andUg are orthogonal matrixes where each column vector is

a base vector, and cs and cg are coefficients of basis vector.

Since there may be correlations between the shape and grey-

level variations, both of the vectors are concatenated into a

vector, and PCA is performed on the vector as follows.

[

Wscs

cg

]

= c =

[

Vs

Vg

]

d = V d (2)



(a) Model from 1 User (b) Model from 6 Users

Figure 4. Tracking result based on personal / multi-users’ AAM

whereWs is a diagonal matrix of weights for each shape pa-

rameter, allowing for differences in units between the shape

and grey-level, V is a set of orthogonal models, and d is a

parameter vector controlling both the shape and grey-levels

of the model. Note that the linear nature of the model al-

lows us to express the shape vector s and grey-level vector

g directly as a function of d

s = s+ UsWs
−1Vsd , g = g + UgVgd (3)

where V = (Vs
T , Vg

T )T . In other words, an example

image can be synthesized for a given d by generating the

shape-free grey-level image from the vector g and warping

it using the feature points described by s.

3.2. Searching Procedure

If a new image and the model (Us,Ws, Vs, Ug, Vg) are

given, we can treat face tracking as an optimization problem

in which we minimize the grey-level difference between a

new image and a synthesized image using the parameter

vector d∗.

d∗ = argmin
d

|gu − gv|
2

(4)

where gv is a synthesized image projected from parameter

d∗ by Eq. (3), and gu is a new image warped by a candi-

date of optimized shape s∗ projected from d∗ by Eq. (3).

|gu − gv| are iteratively minimized. In most previous algo-
rithms, it was simply assumed that there was a constant lin-

ear relationship between this error image 1 and the additive

incremental updates to the parameters d∗ [3].

3.3. Problems with AAM

When we use an AAM for person-independent face

tracking, there is an inherent trade-off between performance

to express previously unseen data and performance to fit

1the right side of Equation (4)

those data. A generic model based on large number of in-

dividual datasets has not only power of representation, but

also difficulty of fitting. The main reason for the difficulty

appears to be that the effective dimensionality of the generic

shape model is far higher than that of the person-specific

shape models [4].

Figure 4(a) shows the result of tracking a user by using

an AAM trained from the user. Figure 4(b) shows the result

of tracking the user by using an AAM trained from the user

and additional 5 users. Figure 4(b) shows less accuracy than

4(a). There is a significant mismatch in the left eye in 4(b)

because the result of 4(b) falls into a local minima. To solve

this problem, we dynamically change clustered models into

the most appropriate one made from faces those are similar

to a given user’s face.

4. Build and Select Cluster

4.1. Distance Between Clusters

To select the most similar cluster from input images or

cluster training sets, we define similarities between clus-

ters. We utilize inter-cluster similarities defined by using

the Mutual Subspace Method (MSM) [6], which is applied

to facial recognition [17]. Thanks to the use of the MSM,

a variety of facial expressions and directions can be dealt

with because the distributions of video images are exploited

in the MSM; meanwhile, the still images are used in tradi-

tional methods. Figure 5 shows the concept of the MSM. In

the MSM, similarity is measured between two subspaces,

L1 and L2, based on the smallest canonical angle, θ1, be-

tween L1 and L2. Using the MSM, the similarity of these

subspaces is defined as

cos2 θ1 = max
u∈L1,v∈L2,||u||6=0,||v||6=0

|(u, v)|2

||u||2||v||2
(5)

where u and v are vectors on the subspace while Equation

(5) has local maxima.

Maeda et. al. proposed a fast method to calculate the

smallest canonical angle θ1 based on projective matrixes

[6]. P1 and P2 are F × F -dimensional projective ma-

trixes from F -dimensional image space V projected onto

subspace L1 and L2. P1 and P2 are defined as

P1 =

M
∑

i=1

ΦiΦi
T ,P2 =

N
∑

i=1

ΨiΨi
T (6)

where Φi and Ψi are base vectors of subspace L1 and L2.

By defining the canonical angle, cos2 θ1 is equal to the

largest eigenvalue of P1P2 or P2P1. Maeda decreased

the number of dimensions for the calculations, based on the

theorem; cos2 θ1 is also equal to the largest eigenvalue of

P1P2P1 or P2P1P2.



Figure 5. Mutual Subspace Method

4.2. Build Hierarchy of Clusters

We analyze training datasets in the facial database and

built hierarchical clusters of training data in order to get an

appropriate set of AAMs. In the training face, our system

builds a subspace for each individual. We call the subspace

individual subspace. The system applies a hierarchical clus-

tering algorithm [5] to the individual subspaces, as follow.

step 0 Define the distance between individual subspaces as

1−cos2θ1. (θ1 is the smallest canonical angle between

these subspaces.)

step 1 Start by assigning each individual subspace to a

cluster.

step 2 Find the closest (most similar) pair of clusters and

merge them into a single cluster, so that now you have

one cluster less.

step 3 Compute distances (similarities) between the new

cluster and each of the old clusters.

1. The system rebuilds a new subspace of the

merged cluster and computes a new canonical an-

gle between the new subspace and the others.

2. The system defines distance between clusters

based on individual subspaces.

step 4 Repeat steps 2 and 3 until all items are clustered into

a single cluster.

At step 3, there are two types of methods for comput-

ing the distance between clusters. If the system rebuilds a

new subspace, a new merged cluster is often merged with

the other at the next step because distances between the

new cluster and the others often become shorter than that

between old clusters. In consequence, a chain like dendro-

gram is built. To avoid this problem, we use individual sub-

spaces, and Ward’s method [15], which is the hierarchical

cluster analysis, because the Ward’s method uses an analy-

sis of variance approach to evaluate the distances between

clusters. In short, this method attempts to minimize the sum

of squares (SS) of any two clusters that can be formed at

each step. In general, this method is regarded as very effi-

cient; however, it tends to create small clusters.

4.3. Overview of Selecting Process

We build a set of subspaces from grey-level vectors

g warped by feature points from face images and used

distances between the subspaces for clustering training

datasets.When we compare these subspaces, we can eas-

ily find the difference between individuals because the vec-

tors g are given from warped image by a mean shape and

the vectors suppresses inner variations of shapes in an in-

dividual, such as facial expression, as described in Section

3.1. Figure 6 shows an overview of building and selecting

a cluster. As shown in this figure, our system has a facial

database, which has training datasets to build AAMs. The

facial database has a hierarchical structure classified by the

algorithm described in Section 4.2. For instance, let the la-

bels X-Z denote the clusters in a layer of the hierarchy. To

track a face and select a model, we compute (a)-(d).

(a) AAM trained by all available data (for pre-tracking)

(b) AAM trained by each cluster (for tracking)

(c) Subspace of each cluster (for selecting cluster)

(d) Subspace of input data (for selecting cluster)

We assume that the system trains (a)-(c) from the facial

database and builds online (d) from input images. Initially,

when selecting a model, the system roughly pre-tracks the

input image using (a). Next, the system extracts the face

along the feature points, and warps the face image along a

mean shape of pre-tracked results. The system applies K-

L expansion to the warped image and gets a subspace (d).

Finally, the system determines the similarity between (c)

and (d) for each cluster, selects the most similar cluster, and

then accurately tracks the input image using (b) which is

included in the cluster.

We would develop a simple system if we could compare

AAMs directly; however, it is difficult to determine similar-

ity between AAMs. That is, each image space of each AAM

(b) is independent because each image space is warped by

each mean shape s, as shown in Figure 3. As shown in Fig-

ure 5, it is not possible using the MSM to compare AAMs

directly because it is assumed that subspace L1 and L2 are

included in the same image space. We build (b) and (c) in-

dependently because the system can track a user more accu-

rately based on AAM (b) built with the mean shape of the

most appropriate cluster for the user, rather than based on

(b) built with the mean shape of all the clusters. In Section

6.3, we discuss how to integrate (b) and (c).
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Figure 6. Overview of subspace selection

5. Experiment

5.1. Evaluation Dataset

At first, we built an experimental environment to get

evaluation datasets. We used one of the three cameras at-

tached around the plasma display panel (PDP) in Figure 1;

the camera is located on the right side of the display from

users’ viewp(oint. The camera is Dragonfly2 (XGA, 30fps,

8bit gray image, 1/3 inch CCD), made by Point Grey Re-

search Inc. We attached a lens, HF12.5HA-1B (f=12.5mm)

made by FUJINON Inc. to the camera. To keep the lighting

environment stable, two lights are set, as shown in Figure 1.

Next, we recoded and built evaluation datasets. We

recorded video images of 21 examinees (14 males, 7 fe-

males) aged between 20 and 50. Each examinee stood 1

meter away from the PDP. The PDP displayed 15 markers

(width 3 × height 5) at 20cm intervals. Each examinee se-

quentially looked at each of the markers directing their face

to the markers consciously. Examinees who wore glasses

took their glasses off. We built clusters, which is a set of

a subspace and an AAM as described in Section 4.3, from

the videos. We picked up one frame that showed the exam-

inee looking at each marker, giving a total of 15 frames for

each examinee. We manually put 45 feature points on each

frame. Figure 2 shows an example of images which our sys-

tem got, and shows feature points which we manually put.

We use them as training data and ground trouth of test sets

in this expreriment.

Finally, we built these clusters. We built each individual

subspace based on the 15 frames, as described at Section

4.3. The dimension of a subspace was defined, so that pro-

portion of variance became over 95%. We then obtained the

distance between individual subspaces by using the MSM

and applied the hierarchical clustering analysis shown in

Section 4.2. To build these clusters, we used R [1], a free

Figure 7. Result of clustering 21 individual-subspaces

software environment for statistical computing. Figure 7

shows a dendrogram analyzed by R. Labels start from ”U”

denote user IDs, labels A-T denote cluster IDs, and the num-

bers in italics are the dimensions of each cluster.

5.2. Evaluation of Tracking Accuracy

We estimated tracking accuracy using the leave-one-out

cross-validation. We removed data of one examinee as a test

set from each of obtained clusters in Figure 7 and re-built

the AAM except for the test-set. We tracked test-set videos

using AAMs of the 1st layer (B, C) and 2nd layer (D, E, F,

G). At first, we refer a cluster that includes a test-set as a

cluster α. For example, when user 12 is test-set, we call C

andG a cluster α. In this experiment, the test-set is removed

from the cluster α befor building an AAM and a subspace

for leave-one-out cross-validation. For example, when user

12 is test-set, we built two clusters as cluster α. The cluster

α on the 1st layer is built from user 9, 8, 15, 10, 4, 17, 21,

3, 19, 13, 1, and 6. The cluster α on the 2nd layer is built

from user 21, 3, 19, 13, 1, and 6.

Next, we refer a cluster, which is on the same layer of the

cluster α but not includes the test-set, as a cluster β to com-

pare tracking error. For example, when test-set is user 12,

we compared C to B as α and β in the 1st layer, and com-

pared G to F as α and β in the 2nd layer. In other words, a

cluster α includes similar faces with a test-set, and the clus-

ter α should be selected to track the test-set in the process

shown in Figure 6. For example, Figure 8 was clipped from

a XGA image which shows the result of tracking. Figure

8(a) shows the result of tracking user 12 using an AAM of

cluster C (cluster α), and Figure 8(b) shows that of cluster

B (cluster β).

We defined feature points put manually into training data

as ground truth. We compared the ground truth with the

tracking results of clusters α and β. Table 1 shows mean

errors of 45 feature points in 15 frames, which were used as



(a) α: Tracking U12 Using

Cluster C without U12 data

(b) β: Tracking U12 Using

Cluster B

Figure 8. Tracking result based on AAM from cluster α / β

a training set. The mean error M was defined as follows.

M =
1

nl

l
∑

j=1

n
∑

i=1

sqrt[(xi − x′
i)

2 + (yi − y′
i)

2] (7)

where n is the num of feature points, and l is the num of

frames. (x′
i, y

′
i) shows position of feature point i on image

coordinate system as a ground trouth, and (xi, yi) shows
that of tracked point.

In Table 1, we colored failed cases; i.e. we colored cells

of the test sets that the error of cluster α was larger than that

of β. We counted the number of cases when the error of

α was smaller than that of β. In the 1st layer, 16 tests out

of 21 tests (76.2%) corresponded to this case. In the 2nd

layer, 17 tests out of 21 tests (81.0%) corresponded to this

case. This result shows that selecting a cluster built from

similar individuals decreases tracking errors. It also shows

the dendrogram built in Section 4.2 is valid.

5.3. Evaluation of Selecting a Cluster

We tested whether our system can select the most appro-

priate cluster using the performance evaluation in the above

section. We predict that performance using the leave-one-

out validation was the same as in Section 5.3. We built a

subspace of a cluster in Figure 6 after removing a test-set

from the cluster. We defined the test-set as input images

and built a subspace from the input image. Finally, we com-

puted the similarity between input images and each cluster.

We did 21 trials for each user to select a cluster from the 1st

layer (B-C) and 2nd layer (D-G). In each trial, we compared

the similarity of cluster α to the similarity of cluster β. We

defined the trial as a success when input images has larger

similarity to cluster α than cluster β.

Table 2 shows the number of successful trials. We de-

fined the dimension of subspaces in two ways in this experi-

ment. In the first way, we defined the dimension so that pro-

Table 1. Mean tracking error [pixel] using cluster α or β. Cluster

α is a cluster that includes a test-set. Cluster β is a cluster on the

same layer of the cluster α but not includes the test-set. A colored

cell shows a failed case where tracking error of cluster α is larger

than that of β.
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Table 2. Rate of trials selecting appropriate cluster. We counted the

trials when input images has larger similarity to cluster α which

includes the test-set images than cluster β in the 1st layer or 2nd

layer of the dendrogram shown in Figure 7.
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portion of variance became over 95%. In the second way,

we used constant dimensions (top 5 axes). As shown in Ta-

ble 2, in the second experiment using constant dimensions,

81.0% of trials succeeded in the 1st layer and 85.7% of tri-

als succeeded in the 2nd layer. The 2 cases of 3 failed trials

were for user 2 and user 5. In these cases, the similarity

of cluster E tended to be small because cluster E had only

single individual data after the leave-one-out validation, as

shown in Figure 7. The results demonstrated that our sys-

tem can select a cluster that brings more accurate tracking

if the cluster has enough datasets.

In the first experiment using constant proportion of vari-

ance, the system tended to select a cluster that had more

datasets. In the MSM, a canonical angle between large clus-

ters tend to become small, because a larger cluster has better

peformance of representation. On the other hand, the defi-

nition based on proportion of variance is good for tracking

because the definition shows enough axes to express its im-

age space. If the facial database has enough data, clusters



Table 3. Mean tracking error using an each level cluster of the

dendrogram shown in Figure 7

 !"#$%& ' ( ) * + ,

%&&-& ./01 ./23 4/24 4/05 11/36 1./00

in the same layer will have same number of dimensions be-

cause the dimensions of the subspace will be saturated. In

the selecting process, however, we need to consider the dif-

ference of dimensions between clusters.

In this paper we built clusters before removing test set,

in order to check the both performance, accuracy (Sec. 5.3)

and selection (Sec. 5.3). Strictly speaking, we should build

clusters after removing test set, in order to evaluate our

method in practical environment. If we build clusters after

the leave-one-out, our system will show the same tendency

toward this experiment because experiments of Section and

demonstrated that a model which gave more accurate track-

ing tended to be selected.

6. Discussion

6.1. Best Size of Clusters

To investigate the most appropriate layer to track a user,

we compared the tracking error for user 12 based on a clus-

ter of each layer (A, C, G, L, Q, T) using the leave-one-

out validation, as described in Section 5.3. Table 3 shows

the mean error. In the layers from clusters C to T, the

larger cluster brings more accurate tracking. However, the

tracking error using cluster A is larger than cluster C, as

shown in Table 3. Cluster A uses AAM trained on the entire

dataset without user 12. This means that the comparison

between C and A shows comparison between the tracking

error the model selection technique and that of a standard

AAM trained on the entire dataset. In this case, the result

of the comparison shows the effectiveness of our selection

technique.

Figure 7 shows the reason of this result. The number

of dimensions of the clusters linearly increases from T to

C 2. However, the rate of increasing dimensions becomes

down between C and A. This means that the reduction in

fitting performance outweighs the gains from any improved

representational power of the model. In many other tests

with different users, however, the most accurate cluster be-

came A. The most likely reason for this is that there were

not enough datasets to saturate dimensions. Therefore, if

there is enough data in the facial database, a clustered AAM

obtained from partial datasets would become the most accu-

rate model, as seen in Table 3.

2Dimension of a cluster approximates total number of dimensions of

its children.

6.2. Effect of Pre-Tracking Errors

Our system applies the MSM to results of the pre-

tracking based on an AAM trained by all available data ((a)

in Figure 6). Any error in the pre-tracking would cause an

error in selecting clusters. However, our selecting method

can be less prone to tracking errors because the AAM uses

texture-based matching, as described by equation (4). In ad-

dition, when we will implement our method on an online-

system, we can deal with this problem by changing cluster

layers depending on the tracking accuracy.

6.3. Integration of AAM and MSM

As described in Section 4.3, we built an AAM to inde-

pendently from a subspace in order to implement accurate

tracking. If an AAM for each cluster is warped into the

mean shape of all available data, we can directly compare

the AAMs and perform cluster analysis on them. The pro-

cess to warp a individual face into the mean shape decreases

the accuracy of tracking. In this case, an AAM needs to be

used in combination with some method of partial matching,

such as the active shape model developed by Sung [12], in

order to deal with tracking errors.

6.4. Clustering Based on Face Directions

This paper attends to differences of appearance between

individual faces. We defined an individual subspace as a

minimum unit.However, appearance of an individual face

has large differences when it directs different directions.

When the angle between a camera and face is large, warp

cannot normalize the difference using these facial direc-

tions, and therefore there are often tracking errors. If our

system builds a cluster based on facial directions, we will

be able to track a face more accurately.

7. Conclusion

We increased the accuracy of AAM-based tracking an

unknown person by selecting clusters of similar individuals

based on the MSM. We estimated tracking errors for each

cluster by the leave-one-out validation. Using our method,

it is possible to select appropriate clusters for each input

image. Finally, we demonstrated that using our method was

effective by showing a clustered AAM was more accurate

than an AAM based on all available data, and discussed the

appropriate size of clusters. In the future, we will improve

the way clusters are selected, will implement an online sys-

tem, and will demonstrate the efficiency of our method us-

ing a large number of facial data base.
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