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Abstract

In this paper, we propose a robust background sub-
traction method for non-stationary scenes. The non-
stationarities modeled by the method are (1) wvaria-
tions of overall lighting conditions and (2) local image
pattern fluctuations caused by waving leaves, flutter-
g flags, flickering CRTs and so on. First we pro-
pose a correlation measure between two blocks in im-
ages (SMNVD) to realize the robust background sub-
traction against varying illuminations. To character-
ize local image pattern fluctuations, we propose a two
dimensional histogram (TNVDCM), where the distri-
bution representing the temporal fluctuation pattern
in a block is recorded. FExperimental results of the
background subtraction using SMNVD and TNVDCM
demonstrate their robustness and effectiveness for real
world scenes.

1 Introduction

Although the background subtraction is a useful
method to detect and track moving objects in video
images, its effectiveness is limited; the stationary
background scene assumption does not hold always in
the real world. To augment the background subtrac-
tion for non-stationary scenes, [1], [2] and [3] employed
probability distributions to model intensity variation-
s at each pixel and defined subtraction operators to
detect anomalous pixel values corresponding to non-
background moving objects.

In this paper, we propose a novel robust back-
ground subtraction method for non-stationary scenes.
The non-stationarities modeled by the method are (1)
variations of overall lighting conditions and (2) local
image pattern fluctuations caused by waving leaves,
fluttering flags, flickering CRTs and so on.

First we propose the spatially modulated normal-
ized vector distance (SMNVD, in short) to realize ro-
bust background subtraction against varying illumi-
nation. Intuitively speaking, the normalized vector
distance (NVD, in short) proposed in [4] measures the
relative angle between a pair of N? dimensional vec-
tors formed by scanning corresponding N x N blocks
in the background and observed images respectively.
While such angular difference is insensitive to changes
of absolute values of the vectors (i.e. overall intensity

changes in the blocks), it becomes unstable when the
absolute values decrease. To cope with this problem,
we propose SMNVD, which is computed by biasing N-
VD according to spatial characteristics in the blocks.
Experimental results demonstrated its superiority to
NVD when the level of the illumination is low.

To characterize non-stationary background objects
such as waving leaves, fluttering flags, and flickering
CRTs, we propose the temporal NVD co-occurrence
matriz (TNVDCM, in short). It represents the tempo-
ral fluctuation pattern in a block and is defined by a t-
wo dimensional histogram where (4, j) element records
the co-occurrence frequency of a pair of NVD values i
and j observed in the block at the time interval of At.
By analyzing the population distribution in TNVD-
CM, we categorize non-stationary background objects
into five classes and define a specific subtraction op-
erator for each class. Experimental results showed
that while the class categorization sometimes becomes
incorrect, the results of the background subtraction
are very robust against fluctuations caused by non-
stationary background objects.

While SMNVD and TNVDCM are separately im-
plemented, their integration will realize the robust
background subtraction method for real world scenes.

2 Spatially Modulated Normalized

Vector Distance
In this section, we propose SMNVD to perform the
robust background subtraction against varying illumi-
nation. Following the definition of NVD, the concept
of SMNVD is introduced. Then a practical implemen-
tation of SMNVD is described.

2.1 Normalized vector distance

Let f(z,y) be the reference image that was com-
puted from the a priori taken background image se-
quence!, and g(z,y,t) be the observed image at time
t. We divide these images into a set of blocks with
N x N pixels respectively. Let f;(x,y) and g;(z,y,t
denote corresponding blocks in f(z,y) and g(z,y,t

I The reference image records the median value at each pixel
position in the background images. We call this image median
image
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respectively. Then, we generate N? dimensional vec-
tors V; and W ;(t) by scanning f;(z,y) and g;(z,y,1t)
respectively. The components of these vectors repre-
sent pixel values in the blocks. These vectors indicate
local image pattern in the reference and observed im-
ages respectively.

To detect anomalous regions corresponding to mov-
ing objects, we need to compute correlation between
the reference and observed images. Since the corre-
lation between images can be computed based on the
distance between vectors V; and W;(t), we need to
define the vector distance which is independent of ab-
solute values of the vectors (i.e. illumination condi-
tions). Possible definitions of the vector distance are
X, 6 and D in Figure 2. Obviously X cannot be used
because it depends on absolute values of the vectors.
Although the relative angle between the vectors can
be used, the sensitivity of cos, which is computable,
degrades when 6 comes close to zero.

In [4], a new vector distance (NVD) insensitive to
varying illuminations was proposed. NVD is defined
as follows.

|V Wi(t)
D = |75~ i W
D;(t) and @ satisfy
D;(t) = /2(1 — cosb). (2)

D;(t) is insensitive to changes of absolute values
of the vectors. In general, however, since W (t) is

corrupted with random noise, the mean of NVD does
not become zero and varies approximately in inverse
proportion to |W;(t)| and the variance of NVD varies
approximately in inverse proportion to |W;(t)|?. This
means that the NVD value becomes unreliable as the
absolute values of the vectors decrease.

As is well known, illumination invariant measures
based on the color information (e.g. [5]) also become
unreliable when the level of the illumination decreases.

2.2 Incorporation of Spatial Characteris-
tics

Our idea for alleviating this problem is to incorpo-
rate spatial characteristics in the blocks into the defini-
tion of the vector distance. While NVD measures the
relative angle between vectors, it does not reflect any
spatial structures in the blocks. Hence, augmenting
NVD by taking spatial characteristics into account,
the performance of the background subtraction will
be improved; overall noise and moving objects can be
clearly distinguished from the background.

Generally speaking, let SP;(t) denote spatial char-
acteristics in block i. Then, spatially modulated nor-
malized vector distance (SMNVD, in short) is defined

as:
Si(t) = F(D;(t), SPi(t)), 3)

where F is the function biasing D;(¢) according to the
spatial characteristics.

2.3 An Implementation of SMINVD

Here we describe an implementation of SMNVD for
the robust background subtraction against varying il-
luminations. Although it is a very simple implemen-
tation, experimental results in Section 4.1 show its
effectiveness.

The algorithm of the background subtraction using
the implemented SMNVD is as follows:

1. Create the reference image from an a priori taken
background image sequence.

2. Calculate a set of NVD values for each block 4 us-
ing the reference image and the background image
sequence, and record the mean D; and variance
op, of the NVD value set as the background mod-
el. Assuming that the distribution of NVD obeys
the Gaussian distribution, the probability density
function Pnvp(D;(t)) of NVD is defined by

1 (Di(t) - Dy)*
P D;(t)) = _ )
W (D) = i exp { - 20
(4)
3. For each block i, define a group of small windows
w? (k =1,...,n) in the internal area of the block,

where n denotes the number of the windows (In
Figure 3, five windows are defined.) Then cal-
culate a set of NVD values CFs for each window
w¥ using the reference image and the background
image sequence, and record the mean C¥ of CFs
as the background model.
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Figure 3: Spatial characteristics in block ¢

4. Given an observed image g(z,y,t), compute NVD
values for block i and its internal windows w¥, i.e.
D;(t) and Ck(t) (k=1,...,n).

5. Figure 3 illustrates three different types of sit-
uations observed in block i: the block is covered
by the background region, mixture of background
and anomalous (i.e. moving object) regions , or
the anomalous region. To discriminate these sit-
uations, we employ the spatial variance of NVD
values in the windows, V(C;(t)), which is defined
by

V(Ci(t)) =

S|

Y (CE -ChH?. (5)
k=1

Static background Under normal illumination
conditions, the value of each CF(t) (k =
1,...,n) is almost equal to zero and hence
their variance V(C;(t)) is almost equal to
zero as well. Although each C¥(t) becomes
unstable when the level of illumination is
low, C¥(t) is almost equal to each other s-
ince the spatial distribution of noise in a
block is uniform. Consequently, their vari-
ance V(C;(t)) stays small irrespectively of
illuminating conditions.

Mixture of background and anomalous regions

In those windows covered by an anoma-
lous region, their NVD values C¥(t) becomes
large. So, V(C;(t)) gets larger.

Anomalous region Unless moving objects have
the same texture as the background scene,
each CF(t) takes a large random value. So,
the V(C;(t)) gets larger.

Normalized Frequency
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Figure 4: An example of TNVDCM

In summary, we can consider that V(C;(t)) repre-
sents the spatial characteristics in block ¢, so that
we define SP;(t) in equation 3 by V(C;(t)).

6. Integrating SP;(t) into D;(t), we will get S;(t).
Here F in Equation 3 is defined as follows:

1 4if  Pnvp(Di(t)) <Thl
F(D;(t), SPi(t)) = and SPi(t) > Th2,
0 otherwise.
(6)
where T'hl and Th2 are threshold values.

7. It F(D;(t),SP;(t)) is 1, the block 7 is regarded as
containing anomalous regions.

3 Temporal NVD Co-occurrence Ma-
trix

Real world scenes usually include various types of
locally fluctuating objects such as waving leaves, flut-
tering flags, flickering CRTs and so on. Whereas they
cause local image pattern fluctuations, they should
be regarded as the background. Thus the model
and operator of the background subtraction should
be augmented so that it can cope with such non-
stationary background scenes. Our idea for character-
izing temporal image fluctuation patterns is to record
co-occurrence frequency of a pair of NVD values in a
block separated by time interval At.

In this section, we propose a robust background
subtraction method for background scenes containing
locally fluctuating objects. The method uses the Tem-
poral NVD Co-occurrence Matrix (TNVDCM), whose
population distribution represents the temporal fluc-
tuation pattern in a block. By analyzing the distri-
bution pattern, we can categorize local image pattern
fluctuations into five classes and apply an optimized
background subtraction operator for each class.

3.1 Definition

Let D;(t) denote NVD computed for block i using
the reference image and a priori taken background
image sequence, where ¢ denotes the time covering the
period of the image sequence and takes discrete values
from 1 to T. Following the quantization of D;(¢) into
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Figure 5: Distribution patterns in TNVDCM

D;(t), which ranges from 1 to M, we compute M x M
matrix A; = {aj;}(j,k = 1,---, M), which is defined
as follows:

) 1 T—At
Uk = Ay > P(i,j,k,t), (7)

t=1
where

. _J 1 if Di(¥) =jand Di(t + At) =k,
P(i,j; k,t) = { 0 otheruiz(sc)z. i )
o G
and At represents the time interval. We call this ma-
trix the temporal NVD co-occurrence matriz (TNVD-
CM, in short). An example of TNVDCM is shown in
Figure 4.

3.2 Distribution Patterns in TNVDCM

The population distribution in TNVDCM reflects
the fluctuation pattern of non-stationary background
objects. We identify the following five different types
of distribution patterns ( Figure 5):

(1) Single peak TNVDCM includes a single peak.
This pattern corresponds to a static background
region, where NVD values do not vary dynami-
cally.

(2) Periodicity If the image fluctuation pattern in
a block has periodicity, the diagonal moment My
of the distribution in TNVDCM? varies as At
changes. When At is equal to the period, the mo-
ment becomes minimal. Using this property, we
can examine if the fluctuation pattern is periodic
and if so, compute the period of the fluctuation
Wi.

2The diagonal moment is defined as My = Z ajrli — k|
J.k

Mc: central moment
My: diagonal moment
v N C; : two state detection
| Mc<The C, : periodicity check
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Figure 6: Decision tree for the categorization

(3) Multiple peaks When the image pattern fluctu-
ation can be modeled by the temporal transition
between discrete states (e.g. vibrating high con-
trast edges), multiple peaks appear in TNVDCM.
Figure 5(3a)(3b) illustrate possible distribution
patterns for two state transition models.

(4) Diagonal ridge When a block represents wav-
ing leaves or swinging tree branches, NVD varies
gradually and widely. Then a diagonal smooth
ridge appears in TNVDCM.

(5) Random distribution Randomly moving ob-
jects such as fluttering flags causes a random dis-
tribution in TNVDCM.

3.3 Optimized Background Subtraction
Operator

To design a background subtraction method for
non-stationary scenes, we first classify each block 4
into the above mentioned five categories based on it-
s TNVDCM. Given an observed image g(z,y,t), we
select and apply the optimized subtraction operator
according to the category of block i.

3.3.1 Categorization of non-stationary back-
ground objects

The procedure of categorizing non-stationary back-
ground objects is described by the decision tree in
Figure 6, where M., Mg, C;, and C}, represent the

central moment?, the diagonal moment, the result of

3The central moment is defined as M, = Z ajr (|7 —ca| +
ik
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Figure 7: Experimental Result 1. In (c), white pixels are detected regions. In (d) and (e), square regions are the

detected blocks

examining two state transition?, and the result of the
periodicity check respectively. The examination of two
state transition is implemented by applying clustering
to TNVDCM. The periodicity check is performed by
examining variations of My with different time in-
terval Ats.

3.3.2 Optimized Subtraction Operators

Given an observed image g(z,y,t), the optimized sub-
traction operator is selected and applied to block 4
according to its classified category.

(1) Single peak The distribution of NVD values in
block 7 computed from the reference and the back-
ground image sequence is modeled by the Gaus-
sian distribution and the threshold operation for
D;(t) (i.e. NVD value computed for block i in
g(z,y,t)) using Equation 4 is applied.

(2) Periodicity In the categorization process, the
period of the fluctuation w; is estimated. Assum-
ing that the difference between a pair of NVD val-
ues separated by time interval w; obeys the Gaus-
sian, the threshold operation for D;(t—w;)—D;(t)
is applied.

(3) Multiple peaks The state transition is modeled
by a hidden Markov model and the probability
of the series of D;(t —1)(I = L,---,0) calculated
from the observed image sequence is computed

|k — cy|), where (cz,cy) denotes the centroid of the population
distribution in TNVDCM.

4In the current implementation, we assume that the periodic
fluctuation pattern in a block has two states.

based on the model and is thresholded (not im-
plemented yet).

(4) Diagonal ridge The distribution in TNVDCM
is normalized to represent the probability densi-
ty function and the likelihood of a pair of NVD
values, D;(t — At) and D;(t), is computed and
thresholded.

(5) Random distribution Same as (4).

4 Experiments

In this section, we show two experimental results
to examine the effectiveness of the implementation-
s of SMNVD and TNVDCM. Although these imple-
mentations are very simple, the experimental results
demonstrate their effectiveness.

4.1 Experiment 1

This experiment was conducted to show that SM-
NVD is superior to NVD under varying illumination
conditions. Images are captured from a fixed black
and white camera. First the median image (Fig-
ure 7(a)) is computed from the background image se-
quence and is used as the reference image for the back-
ground subtraction. Video images which contain a
moving person are captured under the relatively dark
illumination (Figure 7(b)).

Figures 7(c), (d) and (e) shows the anomalous re-
gions detected by the ordinary pixelwise intensity sub-
traction, the threshold operation for the probability
density function of NVD, and the method using SMN-
VD described in Section 2.3 respectively. As is obvious
from these results, the proposed background subtrac-
tion method using SMNVD is much robust against
varying illuminations.



(a) Reference Image

(b) Categorization Result

(c) Observed Image (d) Detection Result

Figure 8: Experimental Result 2

4.2 Experiment 2

This experiment was conducted to demonstrate
the effectiveness of the method described in Section
3.3. Its aim is to detect moving objects from indoor
and outdoor scenes including flickering CRTs, waving
leaves, fluttering flags, and swinging wires. Several d-
ifferent sequences of video images were taken and ana-
lyzed. Figure 8 shows one of the experimental results,
where swinging tree branches and wires, and fluttering
flags are included and a car moves from right to left.

Figure 8(b) illustrates the result of the block cat-
egorization, where three colors, blue, green, and red,
represent “single peak”, “diagonal ridge”, and “ran-
dom distribution” respectively. While no block is clas-
sified into “periodicity” and “multiple peaks” in this
scene, these two classes appeared in other scenes used
in the experiment.

Figure 8(d) shows the result of the background sub-
traction using the optimized subtraction operators.
The bright blocks denote detected anomalous region-
s corresponding to moving objects. Although some
moving regions are missing, no erroneous block is de-
tected. This demonstrates that the proposed opti-
mized background subtraction is very robust against
fluctuations caused by non-stationary background ob-
jects.

5 Conclusions

In this paper, we proposed a robust background
subtraction method for non-stationary scenes. The
non-stationarities modeled by the method are varia-
tion of overall lighting conditions and local image pat-
tern fluctuations: as for the former, we proposed spa-
tially modulated normalized vector distance (SMNVD)
and as for the latter, temporal NVD co-occurrence ma-
triz (TNVDCM). Although the implementations de-
scribed in this paper are very simple, the experimental
results demonstrated their effectiveness.

After writing this paper, Toyama et al [6] conducted
extensive experiments to compare the performance of
various background subtraction methods. According
to their result, SMNVD attained rather high perfor-
mance, while TNVDCM was not evaluated. Moreover,
we have made substantial improvement of SMNVD,
where illumination conditions of an observed image

are estimated by the principal component analysis and
the threshold values for the background subtraction
(i.e. Thl and Th2 in equation (6)) are adjusted based
on the estimated illumination conditions. We verified
that the performance is improved significantly[7].

As for TNVDCM, we should develop a more con-
crete algorithm by studying its theoretical character-
istics. In addition, we should study the integration of
SMNVD and TNVDCM, which will realize the robust
background subtraction for real world scenes.

This work was supported by the Research for the
Future Program of the Japan Society for the Promo-
tion of Science (JSPS-RFTF96P00501).
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