
REAL-TIME GENERATION AND HIGH FIDELITY VISUALIZATION OF 3D VIDEO

T. Matsuyama, X. Wu, T. Takai, and S. Nobuhara

{tm,wxj,takesi-t,nob }@vision.kuee.kyoto-u.ac.jp
Graduate School of Informatics, Kyoto University

Sakyo, Kyoto, 606-8501, Japan

ABSTRACT
3D video is the ultimate image media recording dynamic visual
events in the real world as is. Recorded object actions can be
observed from any viewpoint; 3D video records the object’s full
3D shape, motion, and precise surface properties (i.e. color and
texture). In this paper, we present research attainments so far
obtained: 1. a PC cluster system for real-time reconstruction of
dynamic 3D object action from multi-viewpoint video images, 2.
a deformable 3D mesh model for reconstructing the accurate 3D
object shape, and 3. an algorithm of rendering natural-looking
texture on the 3D object surface from the multi-viewpoint video
images. Experimental results demonstrate the effectiveness of
these methods in generating high fidelity object images from ar-
bitrary viewpoints.

1. INTRODUCTION

3D video[1] is the ultimate image media recording dy-
namic visual events in the real world as is; it records time
varying 3D object shape with high fidelity surface proper-
ties (i.e. color and texture). Its applications cover wide va-
rieties of personal and social human activities: entertain-
ment (e.g. 3D game and 3D TV), education (e.g. 3D ani-
mal picture books), sports (e.g. sport performance analy-
sis), medicine (e.g. 3D surgery monitoring), culture (e.g.
3D archive of traditional dances) and so on.
Several research groups developed real-time 3D shape re-
construction systems for 3D video and have opened up
the new world of image media [1] [2] [3] [4] [5]. All
these systems focus on capturing human body actions and
share a group of distributed video cameras for real-time
synchronized multi-viewpoint action observation. While
the real-timeness of the earlier systems[1] [2] was con-
fined to the synchronized multi-viewpoint video observa-
tion alone, the parallel volume intersection on a PC cluster
has enabled the real-time 3D shape reconstruction [3] [4]
[5].
To cultivate the 3D video world and make it usable in ev-
eryday life, we have to solve the following technical prob-
lems:

• Computation Speed:We have to develop both faster
machines and algorithms, because near frame-rate

3D shape reconstruction has been attained only in
coarse resolution and moreover texture mapping onto
the reconstructed 3D shape is still done off-line.

• High Fidelity: To obtain high fidelity 3D video in
the same quality as ordinary video images, we have
to develop high fidelity texture mapping methods as
well as increase the resolution.

• Wide Area Observation:3D areas observable by
the systems developed so far are confined to about
2m× 2m× 2m, which should be extended consid-
erably to capture human actions like sports playing.

• Data Compression:Since naive representation of
3D video results in huge data, effective compression
methods are required to store and transmit 3D video
data[6].

• Editing and Visualization:Since editing and visual-
ization of 3D video are conducted in the 4D space
(3D geometric + 1D temporal), we have to develop
human-friendly 3D video editors and visualizers that
help a user to understand dynamic events in the 4D
space[7].

This paper first describes our second generation PC clus-
ter system for reconstructing dynamic 3D object action
from multi-viewpoint video images, by which a tempo-
ral series of 3D voxel representations of the object action
can be obtained in real-time. The improvements from the
first system[3] rest in the introduction of 1. IEEE 1394
digital cameras to increase the video quality, 2. 25 ac-
tive cameras to realize wide-area active observation, 3. 30
PCs to facilitate real-time processing. Several results of
quantitative performance evaluation are given to demon-
strate its effectiveness. Then, we present a deformable
3D mesh model for reconstructing the accurate 3D object
shape and an algorithm of rendering video texture on the
reconstructed dynamic 3D object surface from the multi-
viewpoint video images. Experimental results demonstrate
the effectiveness of these methods in generating high fi-
delity object images from arbitrary viewpoints.

�����
el data

Marching Cubes

Method
T�
���

ure Mapping

Patch data

3D video

......

......

����	
ume Intersection

Silhouette Extraction

Figure 1: 3D video generation process

2. BASIC SCHEME OF 3D VIDEO GENERATION

Figure 1 illustrates the basic process of generating a 3D
video frame in our system:

1. Synchronized Multi-Viewpoint Image Acquisition:
A set of multi-viewpoint object images are taken si-
multaneously by a group of distributed video cam-
eras (top row in Figure 1).

2. Silhouette Extraction: Background subtraction is
applied to each captured image to generate a set of
multi-viewpoint object silhouettes (second top row
in Figure 1).

3. Silhouette Volume Intersection: Each silhouette is
back-projected into the common 3D space to gener-
ate a visual cone encasing the 3D object. Then, such
3D cones are intersected with each other to generate
the voxel representation of the object shape (third
bottom in Figure 1).

4. Surface Shape Computation: The discrete march-
ing cubes method[8] is applied to convert the voxel
representation to the surface patch representation.
Then the generated 3D mesh is deformed to obtain
accurate 3D object shape(second bottom in Figure
1).

5. Texture Mapping: Color and texture on each patch
are computed from the observed multi-viewpoint im-
ages (bottom in Figure 1).

Myrinet

Figure 2: PC cluster for real-time active 3D object shape
reconstruction system.

By repeating the above process for each video frame, we
have a live 3D motion picture.

In the following sections, we describe our real-time 3D
shape reconstruction system, deformable mesh model, and
high fidelity video texture mapping algorithm.

3. REAL-TIME DYNAMIC 3D OBJECT SHAPE
RECONSTRUCTION SYSTEM

3.1. System Organization

Figure 2 illustrates the hardware organization of our real-
timeactive3D object shape reconstruction system. It con-
sists of

• PC cluster: 30 node PCs (dual Pentium III 1GHz)
are connected through Myrinet, an ultra high speed
network (full duplex 1.28Gbps). PM library for Myrinet
PC clusters[9] allows very low latency and high speed
data transfer, based on which we can implement ef-
ficient parallel processing on the PC cluster.

• Distributed active video cameras: Among 30, 25
PCs have Fixed-Viewpoint Pan-Tilt (FV-PT) cameras[10],
respectively, for active object tracking and image
capturing. In the FV-PT camera, the projection cen-
ter stays fixed irrespectively of any camera rota-
tions, which greatly facilitates real-time active ob-
ject tracking and 3D shape reconstruction. More-
over, digital IEEE 1394 video cameras are employed
to enhance video quality (image size: 640× 480).

���

���

���

�

	

�

���

���

���

�

	

�

(a) (b)

Figure 3: 3D shape representations: (a) 3D voxel space,
(b) parallel plane space.

11

22

Base Slice

Base Silhouette

Figure 4: Plane-based volume intersection method

3.2. Real-time Plane-Based Parallel Pipeline Volume
Intersection Method

In the naive volume intersection method, the 3D space is
partitioned into small voxels (Figure 3(a)), and each voxel
is mapped onto each image plane to examine whether or
not it is included in the object silhouette.
To realize real-time 3D volume intersection, we proposed
in [3]

1. the plane-based volume intersection algorithm to im-
prove the computational efficiency,

2. a parallel processing method using the PC cluster,
and

3. the introduction of pipeline processing to further in-
crease the processing speed.

The plane-based volume intersection algorithm consists of
the following processes:

1. Partition the 3D space into a set of equally spaced
parallel planes (Figure 3(b)).

2. Project the object silhouette observed by each cam-
era onto the base plane (Figure 4 left,1©).

3. Project each base silhouette onto the other planes
(Figure 4 left, 2©).

4. Compute 2D intersection of all silhouettes projected
on each plane (Figure 4 right).

Communication

Silhouette
Image

Base Plane
Silhouette
Image

Final Result

node1 node2 node3

Captured
Image

Silhouette
on a slice

Loop Loop Loop

Object Area
on a slice

SIP

PPP

BPP

INT

SIP SIP

BPPBPP

PPP PPP

INT INT

Figure 5: Processing flow of the parallel pipeline 3D
shape reconstruction.

5. Stack up the intersected silhouettes to get 3D object
shape.

From a computational point of view, this algorithm has the
following advantages [3] :

• The plane-to-plane homographic projection is more
computationally efficient than the 3D perspective
projection (Figure 4 left,1©). Moreover, we devel-
oped a very efficient computational method to im-
plement the plane-to-plane projection, which greatly
accelerates the computation speed.

• The projection between parallel planes can be real-
ized by simple 2D affine transformation (Figure 4
left, 2©), which also accelerates the computation.

• The projection from an image plane onto the base
plane and the silhouette intersection on a plane can
be done independently of the others, which enables
us to introduce efficient data-level parallel process-
ing.

Figure 5 illustrates the processing flow of the parallel pipeline
3D shape reconstruction. It consists of the following five
stages:

1. Image Capture :Triggered by a capturing signal,
each PC with a camera captures a video frame (top
row in Figure 5).

2. Silhouette Extraction :Each PC with a camera ex-
tracts an object silhouette from the video frame (sec-
ond top row in Figure 5).

3. Projection to the Base-Plane :Each PC with a cam-
era projects the silhouette onto the common base-
plane in the 3D space (third top row in Figure 5).

4. Base-Plane Silhouette Duplication :All base-plane
silhouettes are duplicated across all PCs over the
network so that each PC has the full set of all base-
plane silhouettes (forth row in Figure 5). Note that
the data are distributed over all PCs (i.e. with and
without cameras) in the system.

5. Silhouette Intersection :Each PC computes 2D sil-
houette intersection on its specified parallel planes
respectively(three bottom rows in Figure 5).

Figure 6: Average computation time for each pipeline
stage measured by changing the number of PCs.

(a) Soft Trigger

(b) Hard Trigger

Figure 7: Overall computation time for reconstructing one
3D shape measured by changing the numbers of cameras
and PCs.

In addition to the above parallel processing, we introduced
a pipeline processing on each PC: 5 stages (correspond-
ing to the 5 steps above) for PC with a camera and 2
stages (steps 4 and 5) for PC without a camera. In this
pipeline processing, each stage is implemented as a con-
current process and processes data independently of the
other stages. Note that since a process on the pipeline
should be synchronized with its preceding and succeeding
processes and moreover the stage 5 for the silhouette in-
tersection cannot be executed before all silhouette data are
prepared, the output rate, the rate of the 3D shape recon-
struction, is limited to the speed of the slowest stage.

3.3. Performance Evaluation

In the experiments of the real-time 3D volume reconstruc-
tion, we used 6 digital IEEE1394 cameras placed at the
ceiling (like in Figure 2) for capturing multi-viewpoint
video data of a dancing human. We will discuss their
synchronization method later. The size of input image is
640 × 480 pixels. We measured the time taken to recon-
struct one 3D shape in the voxel size of 2cm× 2cm× 2cm
contained in a space of 2m× 2m× 2m.
In the first experiment, we analyzed processing time spent
at each pipeline stage by changing the number of PCs
from 6 to 10. Figure 6 shows the average computation
time 1 spent at four pipeline stages: “Silhouette Extrac-
tion”, “Projection to the Base-Plane”, “Base-Plane Sil-
houette Duplication” and “Silhouette Intersection”. Note
that the image capturing stage is not taken into account in
this experiment, which will be discussed later.
From this figure, we can observe the followings:

• The computation time for theProjection to the Base-
Planestage is about 18ms, which proves the plane-
to-plane projection algorithm proposed in [3] is very
efficient.

• With 6 PCs (i.e. with no PCs without cameras),
the bottleneck for real-time 3D shape reconstruc-
tion rests at theSilhouette Intersectionstage, since
this stage consumes the longest computation time
(i.e. about 40ms).

• By increasing the number of PCs, the time taken
at that most expensive stage decreases considerably
(i.e. well below 30ms). This proves the proposed
parallelization method is effective. Note that while
the time spent at the Base-Plane Silhouette Dupli-
cation stage increases as the number of PCs is in-
creased, it stays well below 30ms.

1For each stage, we calculated the average computation time of 100
video frames on each PC. The time shown in the graph is the average
time over all PCs.

• With more than 8 PCs, we can realize real-time (video-
rate) 3D shape reconstruction.

In the second experiment, we measured the total through-
put of the system including the image capturing process
by changing the numbers of cameras and PCs. Figure 7
shows the throughput2to reconstruct one 3D shape.
In our PC cluster system, we developed two methods for
synchronizing multi-viewpoint video capturing: use an
external trigger generator (Hard Trigger) and control the
cameras through network-communication (Soft Trigger).
The performance was evaluated for the two methods in
Figure 7 (a) and (b), respectively.
From Figure 7 we can get the following observations:

• In both synchronization methods, while the through-
put is improved by increasing PCs, it saturates at a
constant value in all cases: for Soft Trigger about
75∼ 80 ms and for Hard Trigger about 80∼ 90ms.

• Comparing the hard and soft triggers, the latter shows
a slightly better performance.

Since as was proved in the first experiment, the through-
put of the pipelined computation itself is about 30ms, the
elongated overall throughput is due to the speed ofIm-
age Capturestage. That is, although a camera itself can
capture images at a rate of 30 fps individually, the syn-
chronization reduces its frame rate down into half. This is
partly because the external trigger for synchronization is
not synchronized with the internal hardware cycle of the
camera and partly because it takes some time to transfer
image data to PC memory.
In summary, the experiments proved the effectiveness of
the proposed real-time 3D shape reconstruction system:
the plane-based volume intersection method, its accelera-
tion algorithm, and the parallel pipeline implementation.
Moreover, the proposed parallel processing method is enough
flexible to scale up the system by increasing numbers of
cameras and PCs. To realize video-rate 3D shape recon-
struction, we have to develop sophisticated video captur-
ing hardwares.

4. DEFORMABLE 3D MESH MODEL FOR
ACCURATE 3D SHAPE RECONSTRUCTION

As is well known, the volume intersection method cannot
reconstruct accurate 3D object shape. That is, its output
represents just the visual hull of the object; concave por-
tions of the object cannot be reconstructed. To overcome
this problem and reconstruct accurate 3D object shape, we
developed a deformable mesh model based algorithm.

2The time shown in the graph is the average throughput for 100
frames.

With the deformable mesh model, we can employ geomet-
ric and photometric constraints of the object surface into
its shape reconstruction process, which are not used in the
volume intersection method, stereo, or the space carving
method[11].
Our algorithm consists of the following steps:

step 1 Convert the voxel representation into the triangle
mesh model by the discrete marching cubes algorithm[8]
and use it as an initial shape.

step 2 Deform the model iteratively:

step 2.1 Compute force working at each vertex re-
spectively.

step 2.2 Move each vertex according to the force.

step 2.3 Terminate if the vertex motions are small
enough. Otherwise go back to 2.1 .

To realize the shape deformation like SNAKES[12], we
can use either energy function based or force based meth-
ods. As described above, we employed a force based
method. This is firstly, from a computational point of
view, because we have too many vertices to solve energy
function and secondly, from an analytical point of view,
because one of the constraints used to control the deforma-
tion cannot be represented as any analytical energy func-
tion (see below).
We employed the following three types of constraints to
control the 3D shape deformation:

1. Photometric constraint: a patch in the mesh model
should be placed so that its texture, which is com-
puted by projecting the patch onto a captured image,
should be consistent irrespectively of onto which
image it is projected.

2. Silhouette constraint: when the mesh model is pro-
jected onto an image plane, its 2D silhouette should
be coincide with the observed object silhouette on
that image plane.

3. Smoothness constraint: the 3D mesh should be lo-
cally smooth and should not intersect with itself.

These constraints define aframe and skin modelto repre-
sent 3D object shape:

• Suppose we want to model the object in Figure 8
(a).

• First, the silhouette constraint defines a set of frames
of the object (Figure 8 (b)).

• Then the smoothness constraint defines a rubber sheet
skin to cover the frames (Figure 8 (c)).

Figure 8: Frame and skin model

Figure 9: Photometric consistency and visibility

• Finally, the photometric constraint defines support-
ing points on the skin that have prominent textures
(Figure 8 (d)).

In what follows, we describe the forces at each vertex gen-
erated to satisfy the constraints.

4.1. Forces at each Vertex

We denote a vertex, its 3D position, and the set of cam-
eras which can observe that vertex byv, qv, andCv re-
spectively. For example,Cv = {CAM2, CAM3} in Figure
9.
We introduce the following three forces atv to move its
position so that the above mentioned three constraints should
be satisfied:
External Force: Fe(v)
First, we define external forceFe(v) to deform the mesh
to satisfy the photometric constraint.

Fe(v) ≡ ∇Ee(v), (1)

whereEe(v) denotes the correlation of textures to be mapped
aroundv (Figure 9) :

Ee(v) ≡ 1
N(Cv)

∑

c∈Cv

‖pv,c − pv‖2 , (2)

wherec denotes a camera inCv, N(Cv) the number of
cameras inCv, pv,c the texture corresponding tov on the
image captured byc, andp̄v the average ofpv,c . Fe moves
v so that its corresponding image textures observed by the
cameras inCv become mutually consistent.
Internal Force: Fi(v)
SinceFe(v) may destroy smoothness of the mesh or incur

Figure 10: Silhouette preserving force

self-intersection, we introduce the internal forceFi atv:

Fi(v) ≡
∑n

j qvj
− qv

n
, (3)

whereqvj denotes neighboring vertices ofv and n the
number of such vertices.Fi works like tension between
vertices and keeps them locally smooth.
Silhouette Preserving Force:Fs(v)
To satisfy the silhouette constraint described before, we
introduce the silhouette preserving forceFs(v). This is
the most distinguishing characteristics of our deformable
model and involves nonlinear selective operation based on
the global shape of the mesh, which cannot be analytically
represented by any energy function.
Figure 10 explains how this force atv is computed, where
So,c denotes the object silhouette observed by camerac,
Sm,c the 2D projection of the 3D mesh on the image plane
of camerac, andv′ the 2D projection ofv on the image
plane of camerac.

1. For eachc in Cv, compute the partial silhouette pre-
serving forcefs(v, c) by the following method.

2. If

(a) v′ is located out ofSo,c or

(b) v′ is located inSo,c and on the contour ofSm,c,

then compute the 2D shortest vector fromv′ to So,c

(Figure 10 2©) and set its corresponding 3D vector
= fs(v, c) (Figure 10 4©).

3. Otherwise,fs(v, c) = 0.

The overall silhouette preserving force atv is computed
by summing upfs(v, c):

Fs(v) ≡
∑

c∈Cv

fs(v, c). (4)

Note thatFs(v) works only at those vertices that are lo-
cated around the object contour generator[13], which is

Figure 11: Camera arrangement

(a) CAM5 (b) CAM1
Figure 12: Initial shape. (a) is viewed fromCAM5 in Fig-
ure 11, (b) fromCAM1

defined based on the global 3D shape of the object as well
as locations of image planes of the cameras.
Overall Vertex Force: F (v)
Finally we define vertex forceF (v) with coefficientsα, β, γ
as follows:

F (v) ≡ αFi(v) + βFe(v) + γFs(v). (5)

Fe(v) andFs(v) work to reconstruct the accurate object
shape andFi(v) to smooth and interpolate the shape. Note
that there may be some vertices whereCv = {} and hence
Fe(v) = Fs(v) = 0.

4.2. Performance Evaluation

Figure 11 illustrates the camera arrangement for exper-
iments, where we useCAM1, . . . , CAM4 for the shape
reconstruction andCAM5 for the performance evaluation.
That is, we compare the 2D silhouette of the reconstructed
shape viewed fromCAM5 position with the really observed
one byCAM5.
Figure 12 shows the initial object shape by the volume in-
tersection using the images captured byCAM1, . . . , CAM4.
The shape is viewed fromCAM5 and CAM1 positions,
i.e. the shaded regions showSm,5 andSm,1, respectively.
Bold lines in the figures highlight the contours ofSo,5 and
So,1. We can observe some differences betweenSo,5 and
Sm,5 while not betweenSo,1 andSm,1. This is because
the image captured byCAM5 is used for the reconstruc-
tion.

In the experiments, we evaluated our algorithm with the
following conditions : (a)F (v) = Fi(v), (b) F (v) =
Fi(v) + Fp(v), (c) F (v) = Fe(v) + Fi(v) + Fp(v). The
first row of Figure 13 illustratesSm,5 (left) andSm,1 (right)
for each condition associated with the bold lines denot-
ing the corresponding observed object silhouette contours:
So,5 andSo,1. The graphs on the second row show how
the average error betweenSm,c andSo,c c = 1, 5 changes
with the iterative shape deformation.
From these results we can get the following observations:

• With Fi(v) alone (Figure 13(a)), the mesh model
shrinks and its 2D silhouette on each image plane
becomes far apart from the observed one.

• With Fi(v) andFs(v), while Sm,c, c = {1 . . . 4}
well match withSm,c, Sm,5, whose corresponding
image is not used for the reconstruction, does not
deform well (Figure 13(b)).

• With Fe(v), Fi(v), andFs(v), Sm,5 matches well
with So,5 (Figure 13(c)). This proves the effective-
ness ofFe(v).

Compared with the Space-Carving method[11], which em-
ploys photometric consistency as its main reconstruction
cue, our approach additionally employs geometric con-
tinuity and silhouette constraint. Such rich constraints
make our approach more stable and accurate. Moreover,
our deformable mesh model can be extended to dynamic
inter-frame deformation, which will enable us to analyze
dynamic object motion and realize highly efficient data
compression.

5. HIGH FIDELITY TEXTURE MAPPING
ALGORITHM

5.1. Viewpoint Dependent Vertex-Based Texture Map-
ping Algorithm

For 3D video visualization, we developed a texture map-
ping algorithm that can generate high fidelity object im-
ages based on not so accurate 3D shape; the mesh model
obtained may not be so accurate because of errors of cam-
era calibration or limitations of our shape reconstruction
algorithm.
We first implemented a naive texture mapping algorithm,
which selects the most ”appropriate” camera for a patch
and then maps onto the patch the texture extracted from
the image observed by the selected camera. The appropri-
ateness is measured based on the normal vector of a patch
and the viewing direction of a camera. Since this texture
mapping is conducted independently of the viewer’s view-
point of 3D video, we call it as the Viewpoint Independent
Patch-Based Method (VIPBM in short).

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40 45 50

di
st

an
ce

 to
 th

e
si

lh
ou

et
te

 /
co

nt
ou

r-
po

in
t

iteration

CAM1-4
CAM5

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35 40 45 50

di
st

an
ce

 to
 th

e
si

lh
ou

et
te

 /
co

nt
ou

r-
po

in
t

iteration

CAM1-4
CAM5

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35 40 45 50

di
st

an
ce

 to
 th

e
si

lh
ou

et
te

 /
co

nt
ou

r-
po

in
t

iteration

CAM1-4
CAM5

(a) (b) (c)

Figure 13: Experimental results. (a)Fi(v) alone (α = 1.0, β = 0.0, γ = 0.0), (b)Fi(v) + Fp(v) (α = 0.5, β = 0.0, γ =
0.5) (c)Fi(v) + Fe(v) + Fs(v) (α = 0.3, β = 0.4, γ = 0.3)

From the viewpoint of fidelity, however, the rendered im-
age quality is not satisfiable;

1. Due to errors involved in the patch normal estima-
tion, the best camera for a patch varies from patch
to patch even if patches are neighboring. Thus, tex-
tures on neighboring patches are often extracted from
those images captured by different cameras, which
introduces jitters in rendered images.

2. Since the texture mapping is conducted patch by
patch and their positions are not accurate, textures
of neighboring patches may not be smoothly con-
nected even if their textures are taken from the same
observed image. This introduces jitters at patch bound-
aries in rendered images.

To overcome these quality problems, we developed a view-
point dependent vertex-based texture mapping algorithm[7].
In this algorithm, the color (i.e. RGB values) of a vertex is
computed taking into account of the viewpoint of a viewer
and then the texture of a patch is generated by interpolat-
ing color values of its three vertices.
Our algorithm can be summarized as follows:

1. Specify the viewline vector. It denotes the unit nor-
mal vector of the image plane on which the object
image is to be rendered.

2. Then compute inner product between the viewline
vector and that of each camera. We use the com-
puted value as the weighting factor for each camera.

3. For each vertex, compute its RGB values based on
both those RGB values of the pixels in the observed
images corresponding to the vertex and the weight-
ing factors of the cameras.

4. For each triangle, generate texture by linearly inter-
polating the RGB values of its 3 vertices.

5.2. Performance Evaluation

450 cm

400 cm
250 cm

#1 #5

#8

#7

#6

#12#12

#11#11

#10

#9

#2

#3

#4

Figure 14: Camera Setting

To evaluate the performance of the proposed viewpoint
dependent vertex-based method (VDVBM), we compare
it with the viewpoint independent patch-based method (VIPBM).
To quantitatively evaluate the quality, we calculate RGB
root-mean-square (rms) errors between a real image cap-
tured by a camerac and its corresponding images gener-
ated by VIPBM and VDVBM, respectively. To evaluate
the performance of VDVBM, we employed two methods:
VDVBM–1 generates images based on a set of observed
images including one captured by camerac itself, while
VDVBM–2 excludes such real image captured by camera
c. The experiments were conducted under the following
settings:

• camera configuration: Figure 14

• image size: 640×480[pixel] 24 bit RGB color

• viewpointc: camera 5 in Figure 14

Figure 15 illustrates rms errors from frame 95 to 145. This
figure proves that VDVBMs performs better than VIPBM.
The superiority of VDVBM and its high fidelity image
generation capability can be easily observed in Figure 16,
where real and generated images for frame 110 and 120
are illustrated.

35

40

45

50

55

60

65

70

75

95 100 105 110 115 120 125 130 135 140 145

R
oo

t-
m

ea
n-

sq
ua

re
 e

rr
or

Frame number

VDVBM-1
VDVBM-2

VIPBM

Figure 15: Root-mean-square errors of RGB values (top:
VIPBM, middle: VDVBM-2, bottom: VDVBM-1).

Finally, Figure 17 show examples of edited 3D video, where
a dancing lady is copied and placed in different 3D loca-
tions and an omnidirectional background image is intro-
duced.

6. CONCLUSION

We are proposing 3D video as new image media: it records
the object’s full 3D shape, motion, and surface properties
(i.e. color and texture). In this paper, we presented re-
search attainments so far obtained:

1. a PC cluster system for real-time reconstruction of
dynamic 3D object actions from multi-viewpoint video
images,

2. a deformable 3D mesh model for reconstructing the
accurate 3D object shape, and

3. an algorithm of rendering high fidelity texture on
the 3D object surface from the multi-viewpoint video
images.

To make 3D video usable in everyday life, we still have to
develop methods of

• effective data compression

• more natural image generation

• higher speed and more accurate 3D action recon-
struction

• editing 3D video for artistic image contents.

Based on these novel technologies, we will be able to open
up new image media world and promote personal and so-
cial activities in education, culture, entertainment, sport,
and so on.

This work was supported by the grant-in-aid for scientific
research (A) 13308017. We are grateful to Real World
Computing Partnership, Japan for allowing us to use their
multi-viewpoint video data.

7. REFERENCES

[1] S. Moezzi, L. Tai, and P. Gerard, “Virtual view gen-
eration for 3d digital video,”IEEE Multimedia, pp.
18–26, 1997.

[2] T. Kanade, P. Rander, and P. J. Narayanan, “Virtu-
alized reality: Constructing virtual worlds from real
scenes,”IEEE Multimedia, pp. 34–47, 1997.

[3] T. Wada, X. Wu, S. Tokai, and T. Matsuyama, “Ho-
mography based parallel volume intersection: To-
ward real-time reconstruction using active camera,”
in Proc. of International Workshop on Computer Ar-
chitectures for Machine Perception, Padova, Italy,
Sept. 2000, pp. 331–339.

[4] E. Borovikov and L. Davis, “A distributed system
for real-time volume reconstruction,” inProc. of In-
ternational Workshop on Computer Architectures for
Machine Perception, Padova, Italy, Sept. 2000, pp.
183–189.

[5] G. Cheung and T. Kanade, “A real time system for
robust 3d voxel reconstruction of human motions,”
in Proc. of Computer Vision and Pattern Recogni-
tion, South Carolina, USA, June 2000, pp. 714–720.

[6] T. Matsuyama and R. Yamashita, “Require-
ments for standardization of 3d video,”ISO/IEC
JTC1/SC29/WG11, MPEG2002/M8107, 2002.

[7] T. Matsuyama and T. Takai, “Generation, visualiza-
tion, and editing of 3d video,” inProc. of symposium
on 3D Data Processing Visualization and Transmis-
sion, Padova, Italy, June 2002, pp. 234–245.

[8] Y. Kenmochi, K. Kotani, and A. Imiya, “March-
ing cubes method with connectivity,” inProc. of
1999 International Conference on Image Process-
ing, Kobe, Japan, Oct. 1999, pp. 361–365.

[9] H. Tezuka, A. Hori, Y. Ishikawa, and M. Sato, “Pm:
An operating system coordinated high performance
communication library,high-performance comput-
ing and networking, lecture notes in computer sci-
ence, vol. 1225,” 1997.

[10] T. Wada and T. Matsuyama, “Appearance sphere :
Background model for pan-tilt-zoom camera,” in
Proc. of 13th International Conference on Pattern
Recognition, Wienna, Austria, Aug. 1996, pp. A–
718–A–722.

VDVBM–1

VIPBM

Original sequence
frame #110 frame #120

Figure 16: Sample frames of generated 3D video

frame #68 frame #157 frame #103 frame #138 frame #285

Figure 17: 3D video with an omni-directional background

[11] K. N. Kutulakos and S. M. Seitz, “A theory of shape
by space carving,” inProc. of International Con-
ference on Computer Vision, Kerkyra, Greece, Sept.
1999, pp. 307–314.

[12] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes:
Active contour models,” International Journal of
Computer Vision, vol. 1, no. 4, pp. 321–331, 1988.

[13] Geoffrey Cross and Andrew Zisserman, “Surface
reconstruction from multiple views using apparent
contours and surface texture,” 2000.

