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Abstract

3D video is NOT an artificial CG animation but a real 3D
movie recording the full 3D shape, motion, and precise sur-
face color & texture of real world objects. It enables us to
observe real object behaviors from any viewpoints as well
as to see pop-up 3D object images. We believe the exploita-
tion of 3D video technologies will open up a new world of
versatile cultural and social activities: visual communica-
tion, entertainment, training & learning, archiving, and so
on. This paper gives an overview of our research attain-
ments so far obtained: (1) a PC cluster system with dis-
tributed active cameras for real-time 3D shape reconstruc-
tion, (2) a dynamic 3D mesh deformation method for ob-
taining accurate 3D object shape, (3) a texture mapping al-
gorithm for high fidelity visualization, and (4) user friendly
3D video editing system.

1. Introduction

3D video[5] is NOT an artificial CG animation but a real
3D movie recording the full 3D shape, motion, and pre-
cise surface color & texture of real world objects. It en-
ables us to observe real object behaviors from any view-
points as well as to see pop-up 3D object images. Such new
featured image medium will promote wide varieties of per-
sonal and social human activities: communication (e.g. 3D
TV phone), entertainment (e.g. 3D game and 3D TV), edu-
cation (e.g. 3D animal picture books), sports (e.g. sport per-
formance analysis), medicine (e.g. 3D surgery monitoring),
culture (e.g. 3D archive of traditional dances), and so on.

This paper gives an overview of our research attainments
so far obtained: (1) a PC cluster system with distributed ac-
tive cameras for real-time 3D shape reconstruction, (2) a dy-
namic 3D mesh deformation method for obtaining accurate
3D object shape, (3) a texture mapping algorithm for high
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Figure 1. PC cluster for real-time active 3D
object shape reconstruction.

fidelity visualization, and (4) user friendly 3D video edit-
ing system1.

2. Real-Time 3D Shape Reconstruction

2.1. System Organization

Figure 1 illustrates the architecture of our real-timeac-
tive3D object shape reconstruction system. It consists of

• PC cluster: 30 node PCs (dual Pentium III 1GHz) are
connected through Myrinet, an ultra high speed net-
work (full duplex 1.28Gbps), which enables us to im-
plement efficient parallel processing on the PC cluster.

• Distributed active video cameras: Among 30, 25 PCs
have Fixed-Viewpoint Pan-Tilt (FV-PT) cameras[6],
respectively, for active object tracking and imaging.

1 As for technical details, please refer to [7][2][4][3]. Figures and parts
of the text are cited from these papers.



Figure 2. Captured multi-viewpoint images

Figure 2 shows a snapshot of multi-view object video
data captured by the system.

2.2. Basic Scheme of 3D Video Generation

Figure 3 illustrates the basic process of generating a 3D
video frame in our system:

1. Synchronized Multi-View Image Acquisition: A set
of multi-view object images are taken simultaneously
(top row in Figure 3).

2. Silhouette Extraction: Background subtraction is ap-
plied to each captured image to generate a set of multi-
view object silhouettes (second top row in Figure 3).

3. Silhouette Volume Intersection: As shown in Figure
4, each silhouette is back-projected into the common
3D space to generate a visual cone encasing the 3D
object. Then, such 3D cones are intersected with each
other to generate the voxel representation of the ob-
ject shape (third bottom in Figure 3).

4. Surface Shape Computation: The discrete marching
cubes method[1] is applied to convert the voxel repre-
sentation to the surface mesh representation. Then the
generated 3D mesh is deformed to obtain accurate 3D
object shape (second bottom in Figure 3).

5. Texture Mapping: Color and texture on each patch are
computed from the observed multi-view images (bot-
tom in Figure 3).

By repeating the above process for each video frame, we
have a live 3D motion picture.

2.3. Parallel Volume Intersection Algorithm Using
Plane-to-Plane Perspective Projection

The back-projection is the most expensive computation
in the above volume intersection method. To accelerate the
computation, we first developed the plane-to-plane perspec-
tive projection (PPPP) algorithm, where the 3D voxel space
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Figure 3. 3D video generation process

Figure 4. Visual cone intersection for 3D
shape reconstruction

is partitioned into a group of parallel planes and the cross-
section of the 3D object volume on each plane is recon-
structed (Figure 5):

1. First an object silhouette in the image plane is back-
projected on the base plane in the 3D space.

2. Then the back-projected base silhouette is projected
onto each of the parallel planes.

3. Finally, back-projected silhouettes on each plane
are intersected with each other to generate an ob-
ject cross-section on that plane. By stacking up
such cross-sections, we have the voxel representa-
tion of the 3D object shape.
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Figure 5. Plane-to-plane perspective projec-
tion algorithm

The next step to realize real-time 3D shape reconstruc-
tion is to introduce parallel processing by the PC clus-
ter. Figure 6 illustrates the processing flow of the parallel
pipelined PPPP algorithm:

1. Image Capture : Triggered by a capturing command,
each PC with a camera captures a video frame (Fig-
ure 6 top row).

2. Silhouette Extraction : Each PC extracts an object sil-
houette from the video frame (Figure 6 second top
row).

3. Projection to the Base-PlaneEach PC projects the sil-
houette onto the common base-plane in the 3D space
(Figure 6 third top row).

4. Base-Plane Silhouette Duplication: All base-plane sil-
houettes are duplicated across all PCs over the network
so that each PC has the full set of base-plane silhou-
ettes (Figure 6 forth top row).

5. Object Cross Section Computation: Each PC com-
putes object cross sections on specified parallel planes
in parallel (Figure 6 three bottom rows).

The above processing is implemented as the 5 stage
pipeline process. The experimental results showed that the
PC cluster system can reconstruct a full 3D shape of a hu-
man in 80∼ 90ms, i.e. 11∼ 12 frame per second under such
conditions that the size of input image is640 × 480 pixels,
the voxel size is 2cm× 2cm× 2cm, and the 3D shape is con-
tained in a space of 2m× 2m× 2m.

In summary, the experiments proved the effectiveness
of the proposed real-time 3D shape reconstruction system:
the plane-based volume intersection method and the paral-
lel pipeline implementation. Moreover, the proposed paral-
lel processing method is flexible enough to scale up the sys-
tem by increasing numbers of cameras and PCs.
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Figure 6. Processing flow of the parallel
pipelined 3D shape reconstruction.

3. Deformable Mesh Model for Accurate 3D
Shape Reconstruction

As is well known, the volume intersection method is sta-
ble, but cannot reconstruct accurate 3D object shape; its out-
put represents just the visual hull of the object and concave
portions of the object cannot be reconstructed.

To solve this problem, we proposed a deformable mesh
model: we first convert the reconstructed 3D voxel data into
a surface mesh consisting of triangular surface patches and
then deform it to fit the object surface.

The deformation is conducted to satisfy the following
constraints:

1) photo-consistency constraint: when a patch is mapped
onto captured multi-view images, colors and textures
of the mapped patches should be mutually consistent
(Figure 7).

2) silhouette constraint : when the mesh is mapped onto
each captured image, the silhouette of the mapped
mesh should be aligned with the observed object sil-
houette.

3) smoothness constraint: the mesh should be smooth
and should not cause any self intersection.

4) 3D motion flow constraint : the mesh should be dy-
namically deformed according to object actions.



Figure 7. Photometric consistency

5) inertia constraint : the dynamic mesh deforma-
tion should be smooth.

In our 3D deformable mesh model, we introduce two
types of deformation: intra-frame deformation and inter-
frame deformation. In the intra-frame deformation, our
model uses the visual hull, a result of the volume intersec-
tion, as the initial shape and changes its shape so as to sat-
isfy constraints 1), 2) and 3) described above. While
the volume intersection employs the geometric informa-
tion (i.e., silhouettes) alone, the deformable model refines
the 3D shape using photometric information. As a re-
sult, we can reconstruct the accurate 3D object shape even
for its concave portions.

In the inter-frame deformation, on the other hand, the
mesh changes its shape frame by frame to satisfy all con-
straints 1), ..., 5). This deformation process enables us to
obtain a temporal sequence of topologically consistent 3D
meshes. That is, since each vertex of the mesh can be traced
over time, we can easily analyze detailed object motion.

3.1. Intra-Frame Deformation

Our intra-frame deformation algorithm consists of the
following steps:

step 1 Convert the voxel representation into a triangle mesh
model by the discrete marching cubes algorithm[1],
which is used as the initial shape for the deformation.

step 2 Deform the mesh iteratively:

step 2.1 Compute force acting on each vertex: the
force denotes how much energy is required to sat-
isfy the constraints 1), 2), and 3).

step 2.2 Move each vertex according to the force.

step 2.3 Terminate if all vertex motions are small
enough. Otherwise go back to 2.1 .

Figure 8(a) illustrates a close-up of the mesh data gener-
ated from reconstructed voxel data. Figure 8(b) illustrates

(a) (b)

Figure 8. (a) surface mesh generated by the
discrete Marching cube method and (b) sur-
face mesh after the intra-frame deformation

the result of the intra-frame deformation, where accurate
and smooth 3D object shape is obtained.

3.2. Inter-Frame Deformation

If a mesh at timet deforms its shape to satisfy the con-
straints at timet+1, we can obtain the shape att+1 and the
motion fromt to t + 1 simultaneously. Note that by this dy-
namic deformation, the topological structure of the mesh is
preserved and hence we can compute the motion vector for
each vertex.

To realize this dynamic mesh deformation, i.e. the inter-
frame deformation, we introduce the 3D motion flow and
inertia constraints in addition to the photo-consistency, sil-
houette, and smoothness constraints described before.

Figure 9 and 10 illustrate the inter-frame deformation
through 3 successive frames. The columns of Figure 9 show,
from left to right, the captured images, the visual hulls gen-
erated by the discrete marching cubes method, and the mesh
data generated by the inter-frame deformation, respectively.
Note that the visual hull in framet was used as the initial
shape for the intra-frame deformation and then the resul-
tant mesh for the inter-frame deformation.

From these results, we can observe:

• Our dynamic mesh model can follow the non-rigid ob-
ject motion smoothly.

• During its dynamic deformation, our mesh model pre-
serves both global and local topological structure and
hence we can find corresponding vertices between any
pair of frames for all vertices. Figure 10 illustrates
this topology preserving characteristic. That is, the left
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Figure 9. Results of the inter-frame deformation (overview)

mesh denotes a part of the initial mesh obtained by ap-
plying the marching cubes to the visual hull att. The
lower bold arrow stands for the inter-frame deforma-
tion process, where any parts of the mesh can be traced
over time. Aligned along the upper bold arrow, on the
other hand, are parts of the meshes obtained by apply-
ing the marching cubes to each visual hull indepen-
dently, where no vertex correspondence can be estab-
lished because the topological structures of the meshes
are different.

In summary, we can demonstrate the effectiveness of our
dynamic deformable mesh model for obtaining accurate dy-
namic 3D object actions. The mesh data we used consist
of about 12,000 vertices and 24,000 triangles, and the pro-
cessing time per frame is about 10 minutes by PC (Xeon
1.7GHz); we do not study any real-time processing for the
deformation process yet.

4. High Fidelity Texture Mapping Algorithm

In this section, we propose two texture mapping algo-
rithms to generate high fidelity 3D video and compare their
performance.

Figure 10. Results of the inter-frame deforma-
tion (close-up)



4.1. Texture Mapping Algorithms

We first implemented a naive texture mapping algorithm,
which selects the most ”appropriate” camera for each patch
and then maps onto the patch the texture extracted from the
image observed by the selected camera. Since this texture
mapping is conducted independently of the viewer’s view-
point of 3D video, we call it as the Viewpoint Independent
Patch-Based Method (VIPBM in short).

This method generates fully textured 3D object shape,
which can be viewed from arbitrary viewpoints with ordi-
nary 3D graphic display systems. Moreover, its data size
is very compact compared with that of the original multi-
viewpoint video data.

From the viewpoint of fidelity, however, the displayed
image quality is not satisfiable;

1. Due to the rough quantization of patch normals, the
best camera for a patch varies from patch to patch even
if they are neighboring. Thus, textures on neighbor-
ing patches are often extracted from those images cap-
tured by different cameras (i.e. viewpoints), which in-
troduces jitters in displayed images.

2. Since the texture mapping is conducted patch by patch
and their normals are not accurate, textures of neigh-
boring patches may not be smoothly connected. This
introduces jitters at patch boundaries in displayed im-
ages.

To overcome these quality problems, we developed a
viewpoint dependent vertex-based texture mapping algo-
rithm (VDVBM in short). In this algorithm, the color (i.e.
RGB values) of each vertex of patches is computed taking
into account of the viewpoint of a viewer and then the tex-
ture of each patch is generated by interpolating color values
of its three vertices.

4.2. Performance Evaluation

To evaluate the performance of VDVBM and the effec-
tiveness of the mesh deformation, we applied VIPBM and
VDVBM to Mesh(converted from voxel data) andD–Mesh
(after deformation ) respectively and evaluated the gener-
ated images qualitatively.

Figures 11 and 12 show images generated by VIPBM
and VDVBM, respectively, using the same frame data of
Mesh andD–Mesh and the same viewpoints. From these
images, we can observe

• Comparing those images generated by VIPBM and
VDVBM, the former introduces many jitters in im-
ages, which are considerably reduced by the latter.

• Comparing those images generated withMeshandD–
Mesh,

Mesh D–Mesh

Figure 11. Images generated by the Viewpoint
Independent Patch-Based Method

Mesh D–Mesh

Figure 12. Images generated by the Viewpoint
Dependent Vertex-Based Method

– VIPBM with D–Mesh can generate better im-
ages; while many jitters are still included, de-
tailed textures can be observed. This is because
the surface normals are smoothed and become
more accurate by the mesh deformation.

– On the other hand, VDVBM withD–Meshdoes
not show any observable improvements and in-
stead seems to introduce more blurring effects.
This is because in VDVBM, the viewpoint infor-
mation to generate an image plays much more
important role than the accuracy of the 3D shape.
In other words, VDVBM can work well even for
3D object shape data of limited accuracy.

Figure 13 compares images generated by VIPBM
and VDVBM with D–Mesh to their corresponding orig-
inal video images. This also verify the effectiveness of
VDVBM.

Next, we conducted quantitative performance evalua-
tions of VIPBM and VDVBM with Mesh and D–Mesh.
We calculate RGB root-mean-square (rms) errors between a
real image captured by cameracj and its corresponding im-
ages generated by VIPBM and VDVBM, respectively: in
generating the images, the position and direction of cam-
eracj are used as those of the viewpoint for the 3D video.
To evaluate the performance of VDVBM, we employed two
methods: VDVBM–1 generates images by using all multi-
view images including real images captured by cameracj it-
self, while VDVBM–2 excludes such real images captured
by cameracj . The experiments were conducted under the
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Figure 13. Sample images of generated 3D
video with D–Mesh
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Figure 14. Camera Setting

following settings:

• camera configuration: Figure 14

• image size: 640×480[pixel] 24 bit RGB color

• viewpoint: camera 5

Figure 15 illustrates the experimental results, where rms
errors for frame 101 to 140 are computed. This figure proves
that

• VDVBM–1 and VDVBM–2 perform better than
VIPBM with bothMeshandD–Mesh.

• ComparingMeshwith D-Mesh,

– In VIPBM, D–Meshimproves the fidelity of gen-
erated images significantly.
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values
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Figure 16. Virtual Scene Setup

– In VDVBM–2, D-Meshreduces rms errors about
10%.

– In VDVBM–1, on the other hand,D-Mesh in-
creases rms errors slightly. This is becauseD–
Mesh introduces blurring effects as discussed be-
fore.

In summary, the proposed texture mapping method (VD-
VBM) works well to render natural looking object images
from any viewpoint. Moreover, the the mesh deformation
is effective for 3D video visualization as well as for accu-
rate 3D shape reconstruction.

5. Editing and Visualization System of 3D
Video

To visualize 3D video, we first define a virtual scene con-
sisting of a reconstructed 3D object, a background and a vir-
tual camera. Figure 16 illustrates the virtual scene we used,
where a dome-shaped omnidirectional background image is
introduced as a virtual background. This image is generated
by mosaicing multiple images taken by our FV-PT[6] cam-
era. The background enables us to discriminate camera ac-
tions from object motions.

To visualize the scene, we have to specify many param-
eters including



Figure 17. a GUI for 3D video editing and vi-
sualization.

• virtual camera parameters: viewpoint, view direction,
angle of view, focal length

• object position, pose, and scale

• background position, pose, and scale

Furthermore, these parameters must be specified at each
frame, and they should be continuously changed for smooth
visualization and natural camera-works.

We developed two methods to help the visualization:

1. Key Frame Method: generating camera-works by
temporal interpolation of parameters specified for ar-
bitrary key frames.

2. Automatic Camera-Work Generation Method: gen-
erating camera-works by utilizing an object’s parame-
ters (e.g. height, direction).

We also developed a GUI to interactively specify the pa-
rameters (Figure 17). In this interface, a user can specify the
positions, rotations, and scales of the three coordinate sys-
tems: the object coordinate system, the background coordi-
nate system, and the virtual camera’s. The top, front, and
side views of these coordinate systems and the obtained im-
age are displayed in the left top of the window (Figure 17).
Figure 18 illustrates sample shots generated by using the 3D
video editing system, where we can copy a 3D video object
and arrange its copies as we like.

6. Conclusion

In this paper, we presented research attainments so far
obtained to generate 3D video: 1. A PC cluster system for
real-time reconstruction of 3D object actions from multi-
view video images. 2. A deformable 3D mesh model for re-
constructing the accurate 3D object shape and motion. 3. An
algorithm of rendering high fidelity texture on the recon-
structed 3D object surface from the multi-view video im-
ages. 4. A user-friendly editing and visualization system.

Figure 18. Visualized 3D video with an omni-
directional background

While we believe that the proposed methods set a mile-
stone to realize 3D video, we still have to augment them to
make 3D video usable in everyday life.

This work was supported by the grant-in-aid for scien-
tific research (A) 13308017. We thank all members of our
laboratory for their helps and insightful suggestions.
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