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Abstract

In human communication, dynamics of communication,
i.e. timing structure of utterances, nodding, gesture, pause
and so on, plays a crucial role to realize smooth natu-
ral communication. We proposed a computational scheme
named Interval-based Linear Hybrid Dynamical System
(ILHDS, in short) for modeling complex dynamic events and
conducted several experiments to explore characteristics of
dynamic structures of human verbal and nonverbal com-
munication based on ILHDS. In the paper, we describe the
theoretical scheme of ILHDS followed by its practical ap-
plications.

1. Introduction

Understanding the meaning of user commands and pre-
senting appropriate information to a user is one of the
primary objectives of human-machine interaction systems.
Most of the existing approaches, therefore, set the goal to
realize interaction systems that understand semantic infor-
mation specified by a user and generate attractive presen-
tation to a user using multimedia data such as text, graphs,
pictures, video, sound, and so on. Now advanced systems
are being developed that can understand spoken words and
gestures as well as generate 3D images.

While such multimedia interaction systems are impor-
tant, users sometimes feel frustration when the systems
get out of human interaction protocols. That is, the sys-
tems often ignore dynamic features such as acceleration pat-
terns, pause lengths, tempo speed, and rhythms, which con-
vey rich nonverbal and non-semantic information in human
communication.

In this paper, we attempt to model such dynamic features
or temporal structures in verbal and nonverbal communica-
tion based on a novel computational model, named Interval-
based Linear Hybrid Dynamical System (ILHDS, in short).
A hybrid dynamical system is the integration of two types of
dynamical systems: one described by differential equations,
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Figure 1. Architecture of hybrid dynamical
systems

which is suitable for describing physical phenomena (con-
sider time as physical metric entity), and a discrete-event
system, which is suitable for describing human subjective
or intellectual activities (consider time as ordinal state tran-
sition) (Figure 1).

We developed ILHDS based on the following rationale.
Firstly, we assume that a complex human behavior consists
of dynamic primitives, which are often referred to as mo-
tion elements, movemes, visemes, and so on. For example,
a cyclic lip motion can be described by a cyclic sequence
of simple lip motions such as “open”, “close”, and “remain
closed”. Once the set of dynamic primitives is determined,
a complex behavior can be partitioned into “temporal inter-
vals”, each of which is characterized by a dynamic primitive
and its temporal duration.

Secondly, we assume that not only temporal orders of
motion elements but also their duration lengths or tempo-
ral differences among beginning and ending timing of the
temporal intervals convey rich information in human com-
munication. For example, some psychological experiments
suggest that duration lengths of facial actions play an im-
portant role for human judgments of basic facial expression
categories.

Based on the assumptions above, we proposed ILHDS
for modeling dynamic events in terms of temporal intervals.
The system has a two-layer architecture consisting of a fi-



nite state automaton and a set of linear dynamical systems.
In this architecture, each linear dynamical system represents
the dynamics of a motion primitive and corresponds one to
one to a discrete state of the automaton. In other words,
the automaton controls the activation order and timing of
the linear dynamical systems. Thus, ILHDS can model and
generate multimedia signals that represent complex human
behaviors.

Applying ILHDS to various human verbal and nonverbal
communication behaviors, we can successfully extract dy-
namic features of the behaviors based on relations of tempo-
ral intervals, classify fine-grained facial expressions (Sec-
tion 4), and analyze synchronization/delay mechanisms be-
tween mouth motion and speech utterance (Section 5).

2. Interval-Based Hybrid Dynamical System

2.1. System Architecture

ILHDS has a two-layer architecture (Figure 2). The first
layer (the top of Figure 2) records a finite state automaton
as a discrete-event system that models stochastic transitions
between discrete events. The second layer (not explicitly
described in Figure 2) consists of a set of linear dynamical
systemsD = {D1, ..., DN}. To integrate these two layers,
we introduceintervals (the second top of Figure 2): each
interval is described by< qi, τ >, whereqi denotes a state
in the automaton andτ the physical temporal duration of
the interval. Each state in the automaton corresponds to
a unique linear dynamical system recorded at the second
layer: qi denotes the label of the corresponding linear dy-
namical system as well as a state in the automaton. Note
that the number of states in the automaton is not greater than
that of intervals; multiple different intervals can correspond
to the same state in the automaton, i.e. their dynamics are
described/controlled by the same linear dynamical system.

When a temporal sequence of observed signal data,
which is represented by a multivariate vector sequence (the
bottom in Figure 2), is given, it is first transformed into a
sequence of internal states (the second and third bottom in
Figure 2). Then, that sequence is partitioned into a sequence
of intervals (the second top in Figure 2). That is, the internal
state sequence is partitioned into a group of sub-sequences
so that the dynamic state variation in each sub-sequence can
be described by a linear dynamical system, which is denoted
by qi recorded in the interval covering that sub-sequence.

Once ILHDS has been constructed by learning as will
be described in Section 3, it can generate a multivariate
signal sequence by activating the automaton: the activated
automaton first generates a sequence of intervals, each of
which then generates a signal sequence based on its corre-
sponding linear dynamical system. Note that the activation
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Figure 2. Interval-based hybrid dynamical
system

timing and period of the linear dynamical system are con-
trolled by the duration length recorded in the interval.

We define some terms and notations for later discussions.
Firstly, we simply use the term “dynamical systems” to de-
note linear dynamical systems.

Internal state: All the constituent dynamical systems are
assumed to share ann-dimensional internal state
space. Each activated dynamical system can generate
sequences of real valued internal state vectorx ∈ Rn,
which can be mapped onto the observation space by a
linear function. We assume such linear transformation
function is also shared by all the dynamical systems.

Observation: An observation sequence is described by
a multivariate vectory ∈ Rm sequence in am-
dimensional observation space.

Discrete state: The finite state automaton has a discrete
state setQ = {q1, ..., qN}. Each stateqi ∈ Q corre-
sponds to the dynamical systemDi, respectively.

Duration length of an interval: The duration that an in-
terval continues is described by a positive integer; to
reduce parameter size, we set a minimum durationlmin

and a maximum durationlmax and the duration is de-
fined byτ ∈ T , {lmin, lmin + δ, lmin + 2δ, ..., lmax}.

Interval: An interval generated by the automaton is de-
fined as a combination of a discrete state and a dura-
tion length. We use notation< qi, τ >∈ Q × T to
represent the interval that has stateqi and durationτ .



2.2. Linear Dynamical Systems

The state transition of dynamical systemDi in the in-
ternal state space, and the mapping from the internal state
space to the observation space is modeled by the following
linear equations:

xt = F (i)xt−1 + g(i) + ω
(i)
t (1)

yt = Hxt + υt,

whereF (i) is a transition matrix andg(i) is a bias vector.H
is an observation matrix that defines linear projection from
the internal state space to the observation space.ω(i) and
υ is the process noise and the observation noise, which are
modeled by Gaussian distributions respectively. Note that
each dynamical system is defined byF (i), g(i), andω(i).

2.3. Interval-Based State Transition

In this section, we define the transition of discrete states
in the automaton that generate interval sequences. Here, we
assume first-order Markov property for the generated inter-
vals. A major difference from conventional state transition
models, such as hidden Markov models, is that the automa-
ton models the correlation between duration lengths of ad-
jacent intervals as well as the transition of discrete states.

Let I = I1, ..., IK be an interval sequence generated by
the automaton. To simplify the model, we assume that ad-
jacent intervals have no temporal gaps or overlaps. Here,
the intervalIk depends only on the previous intervalIk−1

because of the Markov property assumption. Then, the
Markov process of intervals can be modeled by the follow-
ing conditional probability:

P (Ik =< qj , τ > |Ik−1 =< qi, τp >),

which denotes the probability that interval< qj , τ > occurs
after interval< qi, τp >.

The computation of probabilityP (Ik =< qj , τ >
|Ik−1 =< qi, τp >) requires a large parameter set, which
does not only increase computational cost but also incur the
problem of over-fitting during a training phase. We there-
fore use a parametric model for the duration length distribu-
tion. That is, for each state transition in the automaton, we
recordP (qj |qi) together with a parametric distribution for
P (τ |τp, qi, qj).

3. Learning Process for ILHDS

3.1. Difficulties in Learning

Let us assume that only a group of multivariate signal
sequences is given as training data. Then, in most of hybrid

dynamical systems, the system identification process that
estimates system parameters becomes difficult because of
its paradoxical nature. That is, the system consists of a set
of subsystems (in our case, linear dynamical systems) and
the parameter estimation of each subsystem requires parti-
tioned training data to be modeled by that subsystem, while
the segmentation process of training data requires a set of
identified subsystems. Moreover, the number of subsystems
is also unknown in general.

The expectation-maximization (EM) algorithm [4] is one
of the most common approaches to solve this kind of para-
doxical problems. The algorithm estimates parameters
based on the iterative calculation. In each step, the al-
gorithm conducts model fitting to training data using the
model parameters that were updated in the previous step.
Then, the parameters are updated based on the result of the
current model fitting process.

However, the EM algorithm-based parameter estimation
method involves two problems:

1. Initialization of the EM algorithm

2. Estimation of the number of subsystems

To solve these problems, we propose a two-step learning
method.

3.2 Two-Step Learning Method

The key idea of our learning method is that we divide the
estimation process into two steps: clustering of dynamical
systems to estimate a set of required dynamical systems and
parameter refinement of the estimated dynamical systems.

We here assume that internal-state sequences have been
estimated from observation sequences, i.e. an observation
matrix H and distribution parameters of observation noise
υ have been estimated based on prior knowledge or system-
identification techniques [7].

[Step 1] Clustering of Dynamical Systems: The first
step is a clustering process that finds a set of dynamical sys-
tems required to describe training data: the number of the
systems and their parameters. This step employs a typical
data sequence as training data. Then, an agglomerative hier-
archical clustering is applied to the training data to estimate
a set of dynamical systems required to model the data (Fig-
ure 3):

1. Partition the training sequence into a group of very
short sub-sequences and estimate a dynamical system
that can model each sub-sequence respectively.

2. Compute the distance between each pair of estimated
dynamical systems.
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Figure 3. Hierarchical clustering of dynamical
systems.

3. Integrate the closest pair of dynamical systems: com-
pute parameters of the integrated dynamical system
based on such sub-sequences that were modeled by the
pair of dynamical systems to be integrated.

4. Iterate the above integration process until the closest
distance between a pair of dynamical systems becomes
greater than a pre-specified value.

After this process, we get the number of required dynamical
systemsN and approximate parameters of the dynamical
systems.

[Step 2] Refinement of the Parameters: The second
step is a refinement process of the system parameters based
on the EM algorithm. The process is applied to all training
data, whereas the clustering process is applied to a selected
typical training sequence. While the EM algorithm strongly
depends on its initial parameters, the clustering step pro-
vides an initial parameter set that is relatively close to the
optimum.

Once the system parameters have been identified, each
sequence in the training data set can be described by a se-
quence of intervals respectively, which then is used to esti-
mate parameters of the automaton. Firstly note that a set of
discrete states have been determined uniquely from the set
of dynamical systems obtained by the clustering process.
Then, for each pair of discrete states, the transition prob-
ability and the duration length distribution associated with
the state transition are computed. Thus, ILHDS is identi-
fied.

4. Analysis of Timing Structures in Facial Ex-
pressions

4.1. Timing Structure in Facial Expression

Facial expression plays an important role in human com-
munication; it can express emotion and intention to others.

Many systems developed so far describe facial expres-
sions based on “action units” of the Facial Action Cod-
ing System (FACS) developed by Ekman and Friesen [5].
However, since FACS cannot describe dynamic character-
istics of facial expressions, its descriptive capability is con-
fined to rather stereotype ones such as happiness, surprise,
fear, anger, disgust, and sadness. We believe, on the other
hand, in human communication, facial expressions carry
more fine-grained emotional and intentional information;
human facial expression can be considered as being gen-
erated based on two mechanisms: (1) emotional expres-
sion produced by spontaneous muscular action and (2) in-
tentional display to convey some intention to others. To
recognize human emotion and intention from facial expres-
sions, therefore, the analysis of their dynamic structures is
required.

To describe dynamic characteristics of facial expres-
sions, we apply ILHDS to video data of human faces (see
the bottom row of Figure 4):

1. First extract and track each facial part: eyes, eyebrows,
mouth, and nose.

2. The motion of each part is described by a multivariate
vector sequence: each vector represents a shape of the
part at timet.

3. Then, apply ILHDS to each sequence to obtain an in-
terval sequence, which describes the dynamic structure
of that part motion. Note that we assume ILHDS has
been identified beforehand using training data.

4.2. Facial Score

Aligning along the common temporal axis a group of in-
terval sequences obtained by the above process, we have
what we call afacial score(the top right of Figure 4 and
Figure 5), where for each facial part, intervals with the same
mode (i.e. modeled by the same linear dynamical system)
are given the same color and aligned at the same row. The
facial score is similar to a musical score, which describes
the timing of notes in music. Using the score, we can de-
scribe facial expressions as spatio-temporal combination of
the intervals.

Figure 4 depicts the overall flow of our facial expression
recognition and generation system:
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Facial image generation : Once a facial score is obtained
by the learning process described in Section 3.2, we
can activate ILHDS to generate facial expression video
just like as playing music according to a musical sore
(down arrow at the right column in Figure 4).

Facial expression recognition: Comparing onset and ter-
mination timing of intervals of different facial parts,
we can extract various temporal features that can be
used to classify facial expressions (top left in Figure
4).

4.3. Experiments

To evaluate the effectiveness of ILHDS and the descrip-
tive power of the facial score for facial expression recogni-
tion, we compare the timing structure of intentional smiles
with that of spontaneous smiles; in human communication
it is useful to make a distinction between these two smiles,
while most previous systems classified them into the same
category.

Acquisition of facial scores: We tracked feature points
in facial image sequences using the active appearance
model (AAM) [3]. The sequence of features (x,y-
coordinates) in each facial part was converted to an interval
sequence using ILHDS. The upper graph in Figure 6 shows
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a group of temporal sequences of y-coordinates of feature
points in a mouth part and the lower the computed mouth
part score.

Figure 7 shows an example of the full set of the facial
score that describes dynamic characteristics of all facial
parts during intentional smiles. This figure suggests that
the movement of each smile can be segmented into the fol-
lowing four modes: two stationary modes (“neutral” and
“smiling”) and two dynamic modes (“onset” and “offset”
of smiling).

Discrimination of intentional and spontaneous smiles:
To evaluate the descriptive power of the facial score, we
prepared a pair of training data sets: one for intentional
smiles and the other for spontaneous ones and applied the
leaning method described in Section 3.2 to each set respec-
tively. Then, we have ILHDS1 and ILHDS2 to describe
dynamic structures of intentional and spontaneous smiles
respectively.

In the experiments, we used a facial score that consists
of three facial parts: left eye, nose, and mouth. In addi-
tion, since the duration lengths of stationary modes such as
“neutral” and “smiling” closely depend on the context of the
expression, we focus on the two dynamic modes: “onset”
motion Mb (from neutral to smiling), and “offset” motion
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Figure 8. Extracted timing structure distribu-
tions for intentional and spontaneous smiles.

Me (from smiling to neutral).

Let bleye andeleye be the begin and end timing points of
the left eye motion in its facial score. Similarly, letbnose and
enose be those of the nose motion, andbmouth andemouth be
those of the mouth motion, respectively. Then we extract
temporal differences between such timing points; for exam-
ple, we useMb(bnose− bmouth), which denote the temporal
difference between the beginning of nose motion and that
of mouth motion during the onset of smile.

Since preliminary experiments showed that any single
temporal difference cannot discriminate the two smile cat-
egories (i.e., intentional and spontaneous), we employed
a pair of temporal differences as a distinguishing feature.
That is, a feature to characterize each shot of smile is repre-
sented by a point in the two-dimensional space whose axes
denote a selected pair of temporal differences. Since there
exists many possibilities for the combination of temporal
differences, for each pair of temporal differences, we calcu-
lated the Maharanobis generalized distance between a pair
of distributions of two smile categories, and selected such
pair of temporal differences that the two distributions took
the largest distance. Note that since smiling actions may
differ from person to person, we extracted a distinguishing
feature for each subject person.

Figure 8 shows the experimental results for six per-
sons, from which we observe while distinguishing features
vary from person to person, we can discriminate intentional

and spontaneous smiles using their dynamic features. In
fact, the performance evaluation of the smile discrimination
showed that the rate of the correct discrimination ranges
from 79.4% to 100% depending on subjects.

5. Modeling Cross-Media Timing Structures in
Multimedia Signals

5.1. Cross-Media Timing Structures in
Multimedia Signals

Measuring dynamic human actions such as speech and
music performance with multiple sensors, we can obtain
multimedia signal data. We human usually sense/feel cross-
modal dynamic structures fabricated by multimedia signals
such as synchronization and delay. For example, it is well-
known that the simultaneity between auditory and visual
patterns influences human perception.

The cross-modal timing structure is also important to
realize multimedia systems such as human computer in-
terfaces (e.g., audio-visual speech recognition systems [6])
and computer graphics techniques that generate some media
signal from another (e.g., lip sync to input speech [1]).

Dynamic Bayesian networks, such as coupled hidden
Markov models [2, 6], are proposed to describe relations
between cooccurrent or adjacent states of different media
data. They are often used as media integration methods.

While such methods enable us to represent short-term
cross-media relations, they are not well suited to describe
systematic and long-term cross-media relations. For exam-
ple, an opening lip motion is strongly synchronized with an
explosive sound /p/, while the lip motion is loosely synchro-
nized with a vowel sound /e/.

To represent such systematic and long-term synchroniza-
tion/delay and mutual dependency among multimedia sig-
nals, here we propose a novel model based on ILHDS. For
each media signal sequence in multimedia data, we first
apply ILHDS to obtain the interval sequence respectively.
Then, by comparing intervals of different media signals,
we construct across-media timing-structure model, which
is a stochastic model to describe temporal structures across
multimedia signals.

5.2 Modeling Cross-Media Timing Struc-
tures

Applying ILHDS to each media signal sequence in mul-
timedia data, we obtain a group of interval sequences (the
top in Figure 9). LetIk be an interval of modeMi in one of
the obtained interval sequences andI ′k′ an interval of mode
M ′

p in another interval sequence overlapping withIk. Note
that modesMi andM ′

p specify the linear dynamical sys-
tems that describe dynamics in intervalsIk andI ′k′ respec-
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tively. Let bk(ek) andb′k′(e
′
k′) denote the beginning (end-

ing) points of intervalsIk andI ′k′ , respectively.
To model the cross-media relation between modesMi

andM ′
p, we collect all pairs of overlapping intervals that

satisfy the same temporal relation as that betweenIk and
I ′k′ and compute

P (bk − b′k′ , ek − e′k′ |mk = Mi,m
′
k′ = M ′

p), (2)

wheremk and m′
k′ are the modes of intervalIk and I ′k′

( the bottom in Figure 9). We refer to this distribution as
a temporal difference distribution. This distribution repre-
sents rich cross-media synchronization structures between
a pair of different media signals. For example, if the peak
of the distribution comes to the origin, the two modes tend
to be synchronized each other at both beginning and ending
points, while ifbk − bk′ has large variance, the two modes
loosely synchronized at their onset timing.

Note that we compute temporal difference distributions
for all possible mode pairs and record them as fundamental
characteristics of the cross-media timing structure of a given
multimedia signal data. In addition to a set of such tempo-
ral difference distributions, we also model which mode pair
tends to overlap with each other across different media (co-
occurrence probabilities of modes), and which mode pair
tends to appear in neighboring intervals in each media sig-
nal data (mode-transition probabilities). The cross-media
timing structure is defined by these mutual dependency re-
lations between modes.

5.3. Media Conversion Based on Timing
Structures

Once the cross-media timing structure model is learned
from simultaneously captured multimedia signal data, we
can exploit the model for generating one media signal from
another related media signal. The overall flow of the media
conversion from signalS′ to S is as follows:

1. A reference (input) signalS′ is partitioned into an in-
terval sequenceI ′ = {I ′1, ..., I ′K′}.

2. An interval sequenceI = {I1, ..., IK} is generated
from I ′ based on the cross-media timing structure
model. (K andK ′ is the number of intervals inI and
I ′, and note thatK 6= K ′ in general.)

3. SignalS is generated fromI.

The key process of this media conversion lies in step
2. Let Φ be the cross-media timing structure model that
is learned in advance. Then, the problem of generating an
interval sequenceI from I ′ can be formulated by the fol-
lowing optimization:

Î = arg max
I

P (I|I ′, Φ). (3)

In the equation above, we have to determine the num-
ber of intervalsK and their properties, which can be de-
scribed by triples< bk, ek,mk > (k = 1, ...,K), where
bk, ek ≤ T andmk ∈ M. Here,T is the length of sig-
nal S′, andM is the set of modes of intervals, i.e. set of
linear dynamical systems, which was fixed at the learning
process. If we searched for all possible interval sequences
{I}, the computational cost would increase exponentially
asT becomes longer. We therefore use a dynamic program-
ming method to solve Equation (3), where we assume that
generated intervals have no gaps or overlaps; thus, pairs
< ek, mk > (k = 1, ..., K) are required to be estimated
under this assumption.

5.4. Experiments

To evaluate the descriptive power of the proposed cross-
media timing structure model and the performance of the
media conversion method, we conducted experiments on
the lip video generation from an input audio signal.

Feature extraction: A continuous utterance of five vow-
els /a/,/i/,/u/,/e/,/o/ (in this order) was captured using mu-
tually synchronized camera and microphone. The utterance
was repeated nine times (18 sec.). A lip region in each video
image was extracted by AAM, which was used in Section 4.
Filter bank analysis was used for the audio feature extrac-
tion and the principal component analysis (PCA) was used
for visual feature extraction of the lip motion. The extracted
features were used as observed data to train ILHDS.

Learning the cross-media timing structure model: Us-
ing the extracted audio and visual feature vector sequences
as signalS′ andS, we estimated the number of modes and
parameters of each mode, partitioned each signal into an in-
terval sequence, and then computed the cross-media timing
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Figure 11. Average error norm per frame be-
tween generated and original sequences.

structure according to the method described in Section 5.2.
The estimated number of modes was 13 and 8 for audio and
visual modes, respectively. The segmentation results are
shown in Figure 10 (the first and second rows). Because of
the noise, some vowels were divided into several different
audio modes.

Evaluation of timing generation: Based on the esti-
mated cross-media timing-structure, we applied the media
conversion method in Subsection 5.3: we used an audio sig-
nal interval sequence included in the training data of ILHDS
as an input (source) media (top row in Figure 10) and con-
verted it into a video signal interval sequence (third row in
Figure 10).

Then, to verify the performance of the media conver-
sion method, we first compared the converted interval se-
quence with the original one which was generated from the
video data measured simultaneously with the input audio
data (second row in Figure 10). Moreover, we also com-
pared the pair of video data: one generated from the con-
verted interval sequence (second bottom row in Figure 10)
and the originally captured one (bottom row in Figure 10).
From these data, the media conversion method seemed to
work very well.

To quantitatively compare our method with others, we

generated feature vector sequences based on several re-
gression models. Seven regression models were con-
structed, each of which estimated visual feature vec-
tor yt from 2a + 1 frames of audio feature vectors
yt−a, yt−a+1, ..., yt, ..., yt+a, wherea = 1, 2, ..., 5. Figure
11 shows the average error norm per frame of each model.
We see that our method provide the smallest error compared
to the regression models.

6. Conclusion

We proposed ILHDS as a novel computational model
to represent dynamic events and structures. Applying IL-
HDS to human behavior analysis, we can successfully ex-
tract dynamic features based on the relation of temporal in-
tervals, classify fine-grained facial expressions, and analyze
the synchronization/delay mechanism between mouth mo-
tion and speech utterance.

In this paper, we concentrated on modeling a single hu-
man behavior rather than multiparty interaction, because
our first concern is to see the effectiveness of ILHDS for
modeling and learning dynamic events and structures from
multimedia signals. Currently we are extending the pro-
posed scheme to model multiparty interaction and to realize
natural human-machine interaction systems.
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