
Deformable Mesh Model for Complex Multi-Object 3D Motion Estimation
from Multi-Viewpoint Video

Shohei NOBUHARA Takashi MATSUYAMA

Graduate School of Informatics, Kyoto University
Sakyo, Kyoto, 606-8501, Japan

{nob,tm}@vision.kuee.kyoto-u.ac.jp

Abstract

We propose a new algorithm using deformable mesh
model for complex 3D motion estimation of multiple objects
from multi-viewpoint video. In this paper, we define
“complex motion” as motion which includes global change
of the object shape topology. In complex motion, a part
of the object may touch the other parts. To manage this
effect, we introduce (1) “repulsive force” into deformable
mesh model for simple motion estimation which integrates
texture and silhouette information into unified computation
scheme, and (2) efficient collision detection algorithm for
deformable mesh model. Our deformable mesh model
with repulsive force keeps hidden, collided surfaces to be
touched each other, and gives dense, non-rigid complex 3D
motion of the object. Some experimental results show that
our deformation model can estimate motions of multiple
objects and the object’s motion with time-varying global
topology, and gives topologically-consistent mesh models
which can be compressed efficiently by conventional inter-
frame 3D data compression algorithms and be used for 3D
motion analysis.

1. Introduction

3D motion estimation of complex human actions is
an essential requirement for 3D archive and analysis
of human activities, e.g., intangible cultural assets, and
3D data compression based on inter-frame per-vertex
correspondences[3][6]. In this paper, we propose a new
algorithm using deformable mesh model for 3D motion
estimation of multiple, complex human actions from multi-
viewpoint video. One of the most important advantages
of deformable mesh model is integration of multiple
estimation cues such as photo-consistency, silhouette
boundary, smoothness and continuity of the object surface
and motion. That is, once we can represent each of

cues as a force working on vertices of the mesh model
and let them move vertices so as to satisfy the constraint
corresponding to the estimation cue, we can deform the
mesh to be “balanced” form which satisfies multiple
estimation constraints. In recent years, some algorithms
for static 3D shape estimation which integrates texture and
silhouette constraints by deformable mesh model have been
proposed[4][7][8]. We can use deformable mesh model
not only for static 3D shape estimation but dynamic 3D
shape and motion estimation[9]. Suppose we have a 3D
mesh representing of the object shape at frame t given by
conventional algorithm[7][8][11], and deform it so as to be
the object shape at next frame t + 1 based on photometric,
silhouette, and continuity constraints. Here, we have two
mesh models of object shape at both t and t + 1, and we
know how each vertex have been deformed from t to t + 1.
This means that the inter-frame deformation of deformable
mesh model gives dense and non-rigid 3D motion of
the object. However, this inter-frame mesh deformation
approach cannot cope with complex motion which includes
global topological change of the object shape. That is, in
complex motion, a part of the object may touch the other
parts, – e.g., shaking hands by two person, or touching the
arm on the waist. This is because the method defines vertex
forces only based on geodesic distance between vertices of
the mesh and ignores Euclidean distance. In simple motion,
geodesic and Euclidean distance between vertices can be
assumed to be similar, so each vertex can care only for its
geodesical neighbors and it is quite easy to find vertices in
geodesical vicinity from mesh model. However, in complex
motion including global change of object topology, this
assumption will not be true where two surface is about to
collide. Hence, in this paper, we focus on complex 3D
motion estimation including changing of apparent global
shape topology, and propose an efficient algorithm to find
collided surfaces.

This paper is organized as follows. We discuss related
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work in Section 2, and review basic deformation model
briefly in Section 3. Then we introduce our approach for
3D complex motion estimation in Section 4. We show
experimental results in Section 5 and conclude this paper
in Section 6.

2. Related Work

For human action understanding, many papers have
been proposed which use human model given a priori and
change its shape according to some visual information. For
example, Heap[5] proposed a human hand tracking system
from camera images using a given deformable hand model,
and Bottino[1] tracked 3D human action based on multi-
viewpoint silhouettes. However, they only estimate the
motions of model parts, and cannot estimate dense motion
of the object. Toward this problem, Plänkers[10] utilized a
soft object model and deform it so as to fit the observed
2D silhouette. Vedula[12] proposed a method which
estimates 3D shape and dense motion from multi-viewpoint
images simultaneously without any prerequisite model, but
it cannot work effectively for texture-less surfaces since it is
a kind of space-carving method.

Compared to these researches, mesh deformation
approach proposed in [9] does not require any special
human model, and can work even for texture-less surfaces
by integrating multiple estimation cues. However, it can
estimate simple motion only, and cannot estimate complex
motion which includes topological changing of the object
shape.

3. Basic Deformable Mesh Model

We use heterogeneous deformation method proposed in
[9] as the basic deformation model, and we review it briefly
in this section.

The basic idea of 3D motion estimation by
heterogeneous deformation is an inter-frame deformation
of a 3D mesh model. Suppose we have a mesh model
representing the object shape at frame t. If we can deform it
to be the object shape at t + 1 by estimating the translation
vectors of each vertices composing the mesh, we can
obtain the 3D shape at t + 1 and dense, per-vertex motion
between t and t + 1. We estimate the translation vectors
based on videos observed from multiple viewpoints, but as
is well known, we cannot expect that all the points on the
object surface can be observed from cameras, nor observed
images of the object have identifiable prominent textures all
over the scene. Hence, we have to employ some constraints
on translation vectors, i.e., object shape and motion, to
make the estimation be stable. We represent each constraint
as a force working at each vertex and compute how each
vertex moves under these forces.

Figure 1. Roughly estimated motion flow
lines

Figure 2. Clustered motion flow lines

Constraints We employed the following five constraints
to control the frame-to-frame deformation:

1. Photometric constraint: a patch in the mesh model
should be placed so that its texture, which is computed
by projecting the patch onto a captured image at both
frame t and t+1, should be consistent irrespectively of
onto which image it is projected.

2. Silhouette constraint: when the mesh model is
projected onto an image plane, its 2D silhouette should
be coincide with the observed object silhouette at
frame t + 1 on that image plane.

3. Smoothness constraint: the 3D mesh should be
locally smooth and should not intersect with itself.

4. Motion flow constraint: a mesh vertex should drift
in the direction of the motion flow of its vicinity
(Figure 1).

5. Inertia constraint: the motion of a vertex should be
temporally smooth and continuous.
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Motion Property The heterogeneous deformation
change the deformation process of each vertex according
to its physical and photometric properties in order to
represent object actions as a mixture of warping and rigid
motions. We categorize vertices into warping or rigid
part by clustering the estimated motion flow of drift and
the inertia force (Figure 1 and 2). With this clustering
result, we assume that we can categorize the vertices into
following two types:
Rigid part (Ca-1) an element of a rigid part of the object

and should move together with others in the same part,
or

Warping part (Ca-2) a vertex corresponding to a part of
object surface under free deformation.

Vertex Identifiability As is well known, we can not
expect that all the points on the object surface have
prominent texture and can be recovered by stereo method.
Hence not all the vertices of the mesh model are identifiable,
and the photo-consistency constraint, which put a vertex on
the real object surface based on texture correlation, will not
work at such vertices. So we assume that we can categorize
the vertices into two types:
Cb-1 a vertex with prominent texture which should lead its

neighbors, or
Cb-2 others which should be led by its neighbors.
We regard a vertex as identifiable if it has consistent and
prominent textures in visible cameras, and label as Cb-1
(identifiable), and as Cb-2 if not.

Heterogeneous Deformation Algorithm With these two
categorizations, the heterogeneous deformation process is
designed as follows:
Step 1. Set the given object shape at frame t as the initial

shape of the mesh model.
Step 2. Compute roughly estimated motion flow for the

drift and the inertia force.
Step 3. Categorize the vertices based on the motion flow:

Step 3.1. By clustering the estimated motion flow,
label the vertex whether Ca-1: it is an
element of a rigid part, or Ca-2: it is not.

Step 3.2. Make the springs of vertices labeled as
Ca-1 stiff.

Step 4. Deform the model iteratively:
Step 4.1. Compute forces working at each vertex

respectively.
Step 4.2. For a vertex whose identifiability I(v)

exceeds a certain threshold, that is, for
a vertex labeled as Cb-1, let the force of
it diffuse to those of neighbors.

Step 4.3. Move each vertex according to the force.
Step 4.4. Terminate if the vertex motions are small

enough. Otherwise go back to 4.1 .

Step 5. Take the final shape of the mesh model as the object
shape at frame t + 1.

Note that for a vertex of type Ca-2 ∧Cb-2, a vertex without
prominent texture or not a part of a rigid part, its position
is interpolated by the smoothness constraint, and a vertex
of type Ca-1 ∧ Cb-1, a vertex with prominent texture and
a part of a rigid part, deforms so as to lead the rigid part
which the vertex belongs to.

4. Deformable Mesh Model for Complex 3D
Motion Estimation

In this section, we introduce our new algorithm to
estimate complex 3D motion including apparent change of
the object shape topology. For global topological change of
the object, some researches proposed methods to merge or
split surfaces[13][2], but we preserve touched surfaces and
do not apply mesh-merging operations since we estimate
not shape outline but object motion. To preserve touched
surfaces, we need new constraint which make touched
surfaces repel each other. This is because the definitions of
forces employed in the previous sections based on geodesic
distance, and do not consider another vertices which are
close in Euclidean distance but apart in geodesic distance.
So we introduce how we can find such touched, i.e., collided
surfaces efficiently and how we define the repulsive force.

4.1. Efficient Collision Detection for
Deformable Mesh Model

Global collision detection is a well-known problem in
cloth simulation of computer graphics or another physics
based simulation. There are several “short-cuts” to detect
a collision between special elements, e.g., spheres or
functional surfaces, but collision detection for generic
triangle meshes falls back basically to a kind of brute-force
algorithm.

In this section, however, we propose a short-cut of
collision detection for our deformable mesh model. Let us
recall that in our deformation, global collisions occurs only
at surfaces in touching. On such a touching surface, we
can assume that “visible cameras” Cv for each vertex v to
be an empty set ∅. Here, “visible cameras” Cv of a vertex
v is the set of cameras which can observe v and we have
already computed Cv for all vertices to compute another
forces based on photo- and silhouette-consistency (Section
3). So we can drastically cull out vertices such that Cv , ∅
from collision detection target. After this efficient culling,
we apply brute-force algorithm.

We define our collision detection and repulsive force
generation algorithm as follows:
Step 1. For all vertices in the mesh, initialize the repulsive

force Fr(v) to 0.
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Figure 3. Camera arrangement
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Figure 5. Average shape error

Step 2. Suppose we have a set of vertices such that V∅ =
{v |Cv = ∅}.

Step 3. For each vertex v ∈ V∅,
Step 3.1. Compute the Euclidean distances to all

the others.
Step 3.2. Find vertices such that they are within

less than lmin(v) distance, where lmin(v)
denotes the minimal length of edges
connecting to v. Let Vd(v) denote the set
of vertices found for v.

Step 3.3. For each vertex v′ ∈ Vd(v), add following
partial repulsive force fr(v, v′) to Fr(v):

fr(v, v′) =
qv′ − qv

‖qv′ − qv‖3
, (1)

where qv denotes the 3D position of the
vertex v.

Finally, we add this repulsive force into deformation
process described in Section 3.

5. Experiments

5.1. Synthesized Object

Figure 4 shows deformation results of synthesized object
using 9 cameras arranged as shown in Figure 3. The left
column shows synthesized objects at each frame, the center
column shows visual hulls of the object, and the right

Frame Cv = ∅ Cv , ∅ Total Ratio (%)
t 590 7699 8289 92.88

t + 1 595 7694 8289 92.82
t + 2 595 7694 8289 92.82
t + 3 672 7617 8289 91.89

Table 1. Number of vertices such that Cv = ∅
or not

column shows deformed mesh models. Figure 5 shows
average shape error between synthesized object and (a)
visual hull, and (b) the results of inter-frame deformation.
Here, average shape error is defined as the average distance
from each vertex to the nearest point in the synthesized
object with height 100. Table 1 shows, from left to right,
1) the frame number, 2) the number of vertices such that
no cameras can observe it, i.e., Cv = ∅, 3) the number of
vertices such that Cv , ∅, 4) total count of the mesh vertices,
and 5) the percentage of vertices such that Cv , ∅ in the total
of mesh vertices, i.e., the percentage of vertices culled out
in our collision detection, respectively.

Note that 1) the initial shape of our deformation results
are given by an intra-frame shape estimation algorithm, i.e.,
frame-wise, static 3D shape estimation algorithm[8], 2) it
costs about three hours for every frame to deform by PC
(Xeon 3.0GHz).

From these results, we can observe that
• The deformable mesh model can cope with global

change of topology, i.e., can “touch” itself.
• At “elbow” of each deformation results, we can find

folded surfaces in the inter-frame deformation results
while the visual hulls do not have such folds. This
is because that such region is represented as a visible
surface at the first frame, but it is turned to be invisible
after some frames.
• Shape errors of our deformation results increase frame

by frame, since it cannot avoid error accumulation.
• Our collision detection algorithm can cull out most of

vertices based on Cv = ∅ or not (more than 90%, in
Table 1).

5.2. Real Object

Figure 7 illustrates the results of motion estimation of
“hand-shaking” two persons. We reconstructed static 3D
shape at frame t with conventional frame-wise algorithm[8],
and deform it so as to be the shape at t + 1 and t + 2.
In this experiment, we used 15 cameras circumnavigating
the object (Figure 6). Figure 8 and 9 illustrate the inter-
frame deformation for the object with time-varying global
topology. The columns of Figure 8 show, from left to
right, the captured images, the visual hulls generated by the
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Figure 4. Estimation results of synthesized object
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Figure 7. Results of multiple objects estimation

Figure 6. Camera arrangement for “hand-
shaking” sequence

frame-wise discrete marching cubes method, the shape by
a conventional frame-wise shape estimation algorithm, and
the mesh models deformed by our inter-frame deformation
method respectively.

These results show that our multi-object motion
estimation can be used to estimate complex, multiple human
actions including body touching, i.e., global topological
change of the object shape.

6. Conclusion

In this paper, we proposed an algorithm to estimate 3D
complex motion of multiple object using deformable mesh
model. We introduced repulsive force between vertices
based on Euclidean distance and efficient collision detection
algorithm to keep hidden and collided mesh surfaces be
touched each other.

Our inter-frame deformable mesh model produces dense
and non-rigid 3D motion of the objects. It only requires a
3D shape of initial frame given by conventional 3D shape
estimation methods, and does not require any object shape
model given a priori. Moreover, estimated dense and per-
vertex translation vectors can be used as the input data of
inter-frame 3D mesh compression algorithms which require
topologically consistent meshes[3][6].
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