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Abstract— The development of energy management systems
(EMS) has attracted increasing attention during the last years.
One of the main goals of EMS is to balance the power usage
and generation, while also maintaining the quality of life
(QoL) of the users. In this paper, a distributed coordination
framework for on-line scheduling of appliances and control
of the aggregated power demand of households is proposed.
Each household consists of a set of appliances, and each
appliance is modeled using a probabilistic generative model
of its power usage profile, which can be updated through the
day to indicate changes in user preferences. The coordination
framework is formulated as a receding horizon distributed op-
timization, where the households’ QoL, and the deviation from
a scheduled usage are taken into account. The implemented
distributed optimization can be seen as a negotiation among
the households and a coordinator: the coordinator seeks to
balance the aggregated power consumption by minimizing the
deviation from a scheduled aggregated power usage, while each
household tries not to deviate much from its preferred usage
pattern.

I. INTRODUCTION
Power grid management systems are evolving towards a

Internet-like network of distributed devices that produce /
consume energy and that can exchange information about
their energy use. This is allowing to control these networked
devices in a coordinated way, and thus a more effective
management of the available resources. The increasing need
for energy efficiency, together with environmental issues, and
the deployment of advanced metering infrastructure is driv-
ing the design of these energy management systems (EMS).
Within this context, we are interested in the development of
a demand-side management system where: i) the households
in a community coordinate their power usage, and ii) control
is not enforced on the users but the schedule is coordinated
taking into account their Quality of Life (QoL).

Several demand-side management systems exist [1], [2],
[3], going from approaches where the utility applies direct
load control or uses of dynamic pricing to drive power usage
[4], [5], [6], to recently proposed methods that seek to be
consumer-friendly [7], [8], [9], [10], [11] by taking QoL
into account. The scheduling of electric loads that can be
deferred, such as the charging of electric vehicles (EV) [12],
[13], together with the control of thermostatically controlled
loads [14], [8], such as air conditioning, are some of the
enablers and drivers of the development of demand manage-
ment systems. Continuing the line of research proposed in
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[11], we use a distributed coordination method for balancing
the aggregated power of a community of households1 that
takes into account the QoL of each household.

Coordinated and distributed power balancing is growing
in importance because power balancing is directly related
to the cost and stability of the power grid. In particular,
the steadily increase of devices such as EV is requiring
and enabling a coordinated scheduling [15], [13], [12]. This
can help ensure stability by reducing peaks and valleys,
thus addressing the supply-demand balance by smoothing the
demand and responding to frequency variations. The stability
issue has been traditionally managed by ancillary services (in
a reactive way), thought it can be addressed more effectively
when the demand-side contributes to it (see e.g. [16], [17]).
The distributed control of power resources, which has been
studied in the utility side [18], [19], [17] and in the demand
side [15], can reduce the need to pass information about local
cost functions [20] usually determined by a large amounts
of (private) data. In our context this private data consists of
daily appliance power usage patterns.

We propose the on-line distributed coordination of power
usage within a community of households, with the main goal
of balancing the power usage profile but also taking into
account QoL and privacy. Our scenario is close to [21], which
tries to minimize the deviation from a day-ahead power usage
schedule and also takes into account the households’ QoL.
In order to maintain the QoL and to effectively schedule
the appliances, modeling the flexibility of appliance usage
is of key importance. While the modeling of flexibility has
been discussed in the literature (e.g., [5], [22], [23], [10]),
we utilize a generative probabilistic model, which can be
learned from data of daily usage patterns, to describe the
QoL through the flexibility of appliances. This model can
describe controllable and non controllable appliances and can
be updated through the day (similarly to [24]), thus taking
into account load uncertainty and usage information.

Our work builds up on the ideas proposed in recent work
[11], where a coordinated scheduling for balancing the power
consumptions in households by exploiting a distributed algo-
rithm called the alternating direction method of multipliers
(ADMM) [25] and a probabilistic mode-switching model
(which will be described in Section II) was developed. In
particular, ADMM is now attracting great attention of the
control community (e.g., [26], [20], [27], [28], [29]) for its
fast and robust convergence in real problems. In particular,

1A household is understood as any group of appliances that can be
controlled (not only at homes), such as offices, buildings, etc.



it has been used in distributed electric vehicle charging
control [30] [31] and optimal power flow [32] [33] [25].
The main contribution of this paper is to extend the scheme
introduced in [11] to an on-line scheduling problem and
to show in simulation how effective the proposed ADMM-
based receding horizon optimization is for distributed power-
balancing problems. In particular, we show how the proposed
method responds to changes in the households’ behavior,
modeled as changes in the probabilistic generative model.

The paper is structured as follows. We first give an
overview of the framework (Section II), and afterwards we
continue with a detailed formulation (Section III), where we
describe the appliance and household models, the coordinator
role, the receding horizon formulation, the distributed opti-
mization and negotiation, and the optimal mode scheduling
of the appliances. Later we present simulation results (Sec-
tion IV) to finally conclude (Section V).

II. FRAMEWORK

The purpose of the proposed framework (see Fig. 1) is to
implement a system to coordinate the power usage of a com-
munity of households, that takes into account the QoL. The
coordination of the households is done by the community
itself, instead of being controlled directly from the utility
company. The community has a coordinator, which together
with the households seek to balance the aggregated power
usage of the community through the day by following a day-
ahead coordinated plan. In the same way, each household
has an EMS that manages the devices at the household.
(In the following we will use “household” to refer to the
household’s EMS when clear from context). It is assumed
that the households have some degree of flexibility in their
appliance usage, e.g. by controlling the power usage level or
scheduling some appliances.

The coordinator provides support, having two main goals:
to negotiate, with all households, a day-ahead schedule of
the community’s aggregated power usage, and to perform an
on-line negotiation for adjusting to deviations from the plan
that may occur through the day2.

The proposed framework makes a few assumptions, all
of which have been already applied in real-world scenarios:
i) the household can measure the power usage of its appli-
ances, ii) the household can control or schedule some of the
appliances, and iii) in the case when the appliance can not
be controlled, the appliance (or the user) may inform the
household its most likely schedule and power usage.

III. FORMULATION

A. Appliances and Household

Each household i = 1, . . . , N consists of a set of Ni
appliances, ai = 1, . . . , Ni, where appliance ai has a power
consumption profile xi,ai ∈ RT , with T the number of
time-slots within a time period (e.g. a day). For example

2We assume that the community buys energy from the utility and that the
energy cost is related to the flatness of the power usage of the community,
however we do not analyze how this cost may be split among the households
and instead we focus on the coordinated scheduling of the appliances.
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Fig. 1. System diagram. At each time step t, an iterative negotiation takes
places where the coordinator seeks to balance the aggregated power usage
profile, as measured by

∑
i xi, and each household seeks to minimize the

loss in QoL associated to its power usage profile xi, as measured by f ti (xi).

the power usage profile for one day can be represented
with T = 144 time-slots of 10 minutes. In the same way,
each household i, has an aggregated power consumption
profile which corresponds to the sum of the power usage
of the individual appliances: xi =

∑
ai
xi,ai , with xi =

(xi(1), . . . , xi(T )), and xi(t) the aggregated power usage
of household i at time t, with 1 ≤ t ≤ T .

We consider that appliance ai can evaluate how difficult
is to realize a power profile xi,ai through a function fi,ai :
RT → R, and that the appliance ai can be scheduled and
controlled –with a given degree of uncertainty– through its
associated control signal ui,ai ∈ Ui,ai . A control signal
could indicate when to start using the appliance (e.g. in
the case of a washing machine), when to start charging the
appliance (e.g. an electric vehicle), or set the power usage
level of the appliance (e.g. the intensity of the lighting or
the air conditioner). This control should be selected such
that it maximizes the QoL of the household i but taking into
account the uncertainties in achieving the profile xi,ai :

fi,ai(xi,ai) = min
ui,ai

∈Ui,ai

[
fui,ai(ui,ai) + f

x|u
i,ai

(xi,ai , ui,ai)
]
.

(1)
The first term, fui,ai(ui,ai), represents the dissatisfaction
(degree of deviation from common pattern usage) associated
with control ui,ai , and it can be understood as a measure
of the flexibility in the appliance usage, or as a measure
of the uncertainty of the control ui,ai being applied. The
second term, fx|ui,ai

(xi,ai , ui,ai), represents the uncertainty of
achieving the power usage profile xi,ai for the control signal
ui,ai , thus when a profile xi,ai is not achievable by a given
control signal ui,ai , the function fx|ui,ai

(xi,ai , ui,ai) would give
a large (possible infinite) value, thus also allowing to encode
restrictions or uncertainties in achieving certain profiles.
In Section III-F we present an implementation of such
function fi,ai(xi,ai) using a generative probabilistic model.
We assume that the household i has access to fi,ai(xi,ai),
and that it can schedule actions ui,ai for the appliances.

The overall household’s goal is to minimize the aggregated



dissatisfaction and the uncertainty associated with the power
usage profile of all appliances:

min
{xi,ai

}ai

[
Ni∑

ai=1

fi,ai(xi,ai)

]
. (2)

It is important to recall that the control of the appliances
will not be enforced: it is applied only when possible. For
example, the charging of an electric vehicle can start only
once the vehicle has been plugged, or the specific timing
could be specified by the user. Thus for each time step t,
there will be a possible different cost function for appliance
ai. We assume that the appliance (or its user) may inform
the household’s EMS, through the day, the usage timing
of the appliance (e.g. when the rice cooker will be on),
thus the household will have an updated f ti,ai(xi,ai) the
moment this information is given. In general we will consider
that the household may update the model at each time step
f ti,ai(xi,ai), but we will omit the t index unless necessary.
Given that the cost function may change over time, and that
the control may not be applied as planned, at each time
step the households and the coordinator will negotiate a new
power usage profile for the remainder of the day. This is
expected to happen through the day, thus the control signals
will be updated and applied at each time step t.

B. Coordinator
The objective of the community is to balance the aggre-

gated power usage. This will be measured by a shared a
global cost g(

∑N
i=1 xi), with xi =

∑Ni

ai=1 xi,ai , that depends
on the aggregated power usage profile

∑N
i=1 xi (the power

usage profile of the community). The coordinator’s goal
is to help find a good trade-off between the shared cost
g(
∑N
i=1 xi), and the QoL of all households. This multi-

objective optimization problem will be solved through the
following single-objective optimization formulation:

min
{xi,ai

}i,ai

[
N∑

i=1

Ni∑

ai=1

fi,ai(xi,ai) + g

(
N∑

i=1

Ni∑

ai=1

xi,ai

)]
.

(3)
This last problem will be solved by the coordinator and
the households by using a receding horizon formulation,
through a distributed optimization, and will be implemented
as an iterative negotiation between the coordinator and the
households. The negotiation will take place several times
during the day, as the households may deviate from their
scheduled power usage profile.

In order to simplify the notation, in the following we will
consider that each household consists of just one appliance,
although the proposed solution still applies to the general
case. Thus, in this simplified setting, the coordinator and the
households solve the following problem:

J = min
{xi}i

[
N∑

i=1

fi(xi) + g

(
N∑

i=1

xi

)]
, (4)

where in the remainder of the paper xi represents a house-
hold with a single appliance, and fi(xi) is the model of a
single appliance.

C. Receding horizon

The problem formulated in Eq. (4) is solved with a
receding horizon, using the following procedure: at each time
step a new control policy is found for a given future time
range, but that policy is used only in the next time step.

We write x(t1,t2)
i = (xi(t1), . . . , xi(t2)) ∈ Rt2−t1+1, 1 ≤

t1 ≤ t2 ≤ T to refer to a slice of the power profile xi. Then,
at each time step t = 1, . . . T − 1, a new schedule is found
for the time range [t+ 1, T ] by solving the following finite
horizon problem:

Jt = min
{x(t+1,T )

i }i

[
N∑

i=1

f ti (xi) + g

(
N∑

i=1

xi

)]
, (5)

with x
(t+1,T )
i the planned power usage profiles of the i-th

household, and xi = (x
(1,t)
i , x

(t+1,T )
i ). Note that at time t we

can only aim to balance the future power profiles x(t+1,T )
i ,

and that f ti (xi) is the model of household i available at time
t. The policy obtained from this minimization problem is
then used at time step t+ 1, and this procedure is repeated
for all t = 0, . . . , T − 1. Note that g(·) could also change
over time, though for simplicity we consider it is fixed.

Day-ahead schedule: At time step t = 0, a the day-ahead
schedule [11] is found for J0, or equivalently:

{x(1,T )∗

i }i = arg min
{x(1,T )

i }
i

[
N∑

i=1

f0
i (xi) + g0

(
N∑

i=1

xi

)]
, (6)

with f0
i (xi) the day-ahead model of the household i and

g0(
∑N
i=1 xi) the day-ahead global cost. The found solution

can be used as an aggregated reference profile of the com-
munity for the rest of the day:

∑N
i=1 ri =

∑N
i=1 x

(1,T )∗

i .

D. Distributed Optimization

As mentioned, at each time step t we aim to solve Eq.
(5). The goal is to solve this problem in a distributed way.
For this, let zi be duplicate variables of xi, thus:

J = min
{xi,zi}i

[
N∑

i=1

fi(xi) + g

(
N∑

i=1

zi

)]

s.t zi = xi ∀i,
(7)

where we have omitted the time index t for clarity. Letting
νi = λi

ρ be the scaled Lagrangian multipliers, we get the
corresponding augmented Lagrangian in scaled form of J
(refer to [25], [11] for details):

J̃ = min
{xi,zi}i

[
N∑

i=1

fi(xi) + g

(
N∑

i=1

zi

)

+
ρ

2

N∑

i=1

||xi − zi + νi||2 −
ρ

2

N∑

i=1

||νi||2
]
.

(8)

Using this scaled form of the augmented Lagrangian, we
now use the ADMM algorithm [25], which decomposes this
optimization problem in a three step iterative procedure.
In Eq. (7) there are individual costs fi(xi) and a shared
cost g(

∑
i xi), formulation that corresponds to a canonical



problem known as the sharing problem. In this case, by
applying the ADMM procedure, Eq. (8) is solved by the
following three-step iterative procedure. At iteration k:

x
(k+1)
i := arg min

xi

[
fi(xi) +

ρ

2
||xi − z(k)

i + ν
(k)
i ||2

]

z
(k+1)
i := arg min

z

[
g(
∑

i

zi) +
ρ

2

∑

i

||zi − x(k+1)
i − ν(k)

i ||2
]

ν
(k+1)
i := ν

(k)
i + x

(k+1)
i − z(k+1)

i .
(9)

By noting that we only need to use the average of zi, z̄,
that ν(k)

i = ν(k) ∀i (see [25] for details), and by defining
b(k) = x̄(k) − z̄(k) + ν(k) (with q̄ = 1

N

∑
i qi), Eq. (9) can

be rewritten as:

1: x(k+1)
i := arg min

xi

[
fi(xi) +

ρ

2
||xi − x(k)

i + b(k)||2
]

2: z̄(k+1) := arg min
z̄

[
g(Nz̄) +

Nρ

2
||z̄ − x̄(k+1) − ν(k)||2

]

3: ν(k+1) := ν(k) + x̄(k+1) − z̄(k+1),
(10)

with b(0) = 0, ν(0) = 0, and x(0)
i = arg minxi

[fi(xi)].

E. Negotiation protocol

The receding horizon optimization problem stated in Eq.
(5), and formulated as Eq. (7), is solved at each time step t
following the iterative procedure in Eq. (10). In this iterative
process, each household solves the step 1 associated to its
own power profile, while the the coordinator solves the
step two and three. This iterative process can be seen as
negotiation, where at iteration k:
First, each household i = 1, . . . , N

• obtains its power usage profile x(k+1)
i using the current

broadcast signal b(k) (step 1, Eq. (10)).
Second, the coordinator
• collects the profiles x(k+1)

i , i = 1, . . . , N ,
• averages the profiles x̄(k+1) = 1

N

∑
i x

(k+1)
i ,

• calculates z̄k+1 (step 2, Eq. (10)),
• updates the dual variables ν(k+1) (step 3, Eq. (10)), and
• broadcasts b(k+1) to all households.

This negotiation goes on until the number of maximum
iterations, K, is achieved, or until the stopping criteria is
achieved (bounds in the primal and dual residuals [25]).
This algorithm is synchronous at each iteration, with the
coordinator waiting for the profiles of all households, and
the households waiting to receive the broadcast signal from
the coordination to generate new power profiles.

There are two important things to note. First, only the
coordinator has access to the power usage profile of the
households (households do not have access to each other
profiles). This has the advantage of reducing the required
communication bandwidth, and also gives more privacy to
the users. In addition, the coordinator has access only to the
profile of each household, but it does not have access to the
individual cost functions, nor it can control the appliances.

Secondly, the coordinator communicates the same broadcast
signal to all households, thus reducing the communication
bandwidth, but also giving symmetric information to all
households.

F. Generative probabilistic model of the appliances

The control of the appliances is done by the household,
which has access to the appliance model f ti (xi) at time t. In
the following we will omit the time subscript t for clarity.
We recall that the appliance model is:

fi(xi) = min
ui

[
fui (ui) + f

x|u
i (xi, ui)

]
. (11)

We give a particular implementation that can be used to
model different kinds of appliances by following [11]. We
define a generative model P (xi, ui) = P (ui)P (xi|ui), with
P (ui) a measure of how natural is control ui, and P (xi|ui)
a measure of the certainty of achieving a given power usage
profile given a control signal ui. Therefore we define:

fui (ui)
.
= − logP (ui),

f
x|u
i (xi, ui)

.
= − logP (xi|ui),

fi(xi)
.
= min
ui∈Ui

[− logP (xi, ui)] .

(12)

In the cases when P (xi, ui) becomes zero, fi(xi) becomes
+∞, indicating that the associated profile xi is not achiev-
able. A particular instance of this is when P (xi|ui) is given
by the delta function δ(xi − χi(ui)), with χi : Ui → RT .

A key aspect in the balance of the power profiles is to
schedule the power usage of the households and appliances.
In many cases, the usage timing is more important (and
also more controllable) than the power level used. Thus, in
this work we focus on the usage timing of the appliances.
For this, we model the probability of the control ui, P (ui),
using a hidden semi-Markov model (HSMM) [34][35]. This
method explicitly models time-varying signals as a sequence
of time intervals (or modes) and is popular in the speech
recognition community.

Following HSMM, we model the profile xi by a sequence
of discrete states si,t ∈ Qi .= {qi,m}m=1,...,Mi

, where each
of these states, si,t, represents the state of appliance i at time
t (so called modes). We assume that the control variables
ui are these modes at time t = 1, . . . , T . For clarity, in
the following we will omit the i index and we will use yt
instead of xi,t to avoid the abuse of symbol x. Thus xi =
(y1, . . . , yT ) = y1:T . In a HSMM, the output at time t, yt,
is assumed to be determined only by st, thus:

P (xi|ui) = P (y1:T |s1:T ) =

T∏

t=1

P (yt|st), (13)

where P (yt|st) is the output probability distribution.
On the other hand, P (ui) = P (s1:T ) is modeled as a

segment-based process. Following [36], let τt ≥ 1 be a
random variable denoting the remaining time at the current
mode st. Assume that the pair (st, τt) takes the value (qm, d),
i.e. the mode at time t current time is qm and the remaining
time is d, then:



• If d > 1, then (st+1, τt+1) = (qm, d − 1) (no mode
transition occurs), otherwise

• If d = 1, then (st+1, τt+1) = (qm′ , d
′) (mode transition).

This process is modeled by a mode transition probability
P (τt = d|st, τt−1 = 1). The parameters of a HSMM are:
• Initial mode: πm

.
= P (s1 = qm),

• Mode transition: amn
.
= P (st+1 = qn|st = qm, τ = 1),

• Duration: pm(d)
.
= P (τt = d|st = qm, τt−1 = 1),

• Output: bm(yt)
.
= P (yt|st = qm),

where qm, qn ∈ Q, d ≥ 1 and yt ∈ R. These parameters can
be estimated using methods such as the EM-algorithm [36].
Given that our aim at this point is to show the effectiveness
of the proposed distributed on-line coordination framework,
in Section IV we will present simulation results where these
parameters are not learned, but manually determined.

G. Optimal mode scheduling

The step 1 of the distributed optimization procedure de-
scribed in Eq. (10) requires to solve a minimization problem
that takes into account the described probabilistic generative
model. The problem to be solved corresponds to:

x
(k+1)
i = arg min

xi

[
fi(xi) +

ρ

2
||xi − x(k)

i + b(k)||2
]
. (14)

If we note F (k)
i (xi)

.
= ρ

2 ||xi−x
(k)
i + b(k)||2 and include the

generative model, this is equivalent to solve:

arg min
ui

[
− logP (ui) + min

xi

(
− logP (xi|ui) + F

(k)
i (xi)

)]

= − arg max
ui

[
logP (ui) + max

xi

(
logP (xi|ui)− F (k)

i (xi)
)]
.

(15)

Solving this directly requires evaluating MT sequences,
which may be prohibitive for large numbers of modes, M ,
and time slots, T . However we can note that

max
xi

[
logP (xi|ui)− F (k)

i (xi)
]

= max
y1:T

[
T∑

t=1

logP (yt|st)− F (k)
i,t (yt)

]
.

(16)

with F (k)
i,t (yt) the t-th component of F (k)

i (xi). Then we can

define Gt(st)
.
= maxyt

(
logP (yt|st)− F (k)

i,t (xi)
)

, thus

max
y1:T

[
T∑

t=1

logP (yt|st)− F (k)
i,t (yt)

]
=

T∑

t=1

Gt(st). (17)

Using this formulation, Eq. (15) can be solved efficiently by
using dynamic programming. In addition [11]:

P (st = qm, τt = d) =P (st−1 = qm, τt−1 = d+ 1)

+P (τt−1 = 1, st = qm)P (τt = d|τt−1 = 1, st = qm)
(18)

and

P (τt−1 = 1, st = qm) =
∑

n 6=m

anmP (τt−1 = 1, st−1 = qn),

thus, to arrive at (st, τt) = (qm, d) from st−1 there are only
M paths depending on st−1. Thus, by defining Φt(m, d) as:

max
s1:t−1

[
logP (s1:t−1, st = qm, τt = d) +

t−1∑

t′=1

Gt′(st′)
]

(19)

we can write the following recursive formulation:

Φt(m, d) = max
[
Φt−1(m, d+ 1) +Gt−1(qm),

log pm(d) + max
n

(Φt−1(n, 1) + log anm +Gt−1(qn))
]
,

(20)

with the maximization done over all possible st−1. From the
definition, the initialization is given by

Φ1(m, d) = logP (s1 = qm, τ1 = d) = log pm(d) + log πm.
(21)

The solution of Eq. (15) is given by maxm,d(ΦT (m, d) +
GT (qm)) and the corresponding mode scheduling is obtained
by tracing back the optimal path of the recursion. Thus, this
gives the control signal and the associated power profile of
step 1 of the distributed scheduling in Eq. (9).

H. Appliance model update and adjustment

Similarly to [24] we consider that the available information
regarding the appliances may change during the day. In our
formulation, at time t, this information is encoded in the
generative model f ti (xi). A simple example of a change
in f ti (xi), consists in the case when the control ui = ûi
becomes fixed by the appliance, and that the control is
informed to the household at time t (e.g. a rice cooker with
a timer). Then, the probabilities in the generative model at
time t becomes P t(ui = ûi) = 1 and P t(ui 6= ûi) = 0,
and therefore f ti (xi) is minimized at f ti (xi) = 0 for ui = ûi
(but becomes f ti (xi) = ∞ for ui 6= ûi). In the ideal case,
the schedule should be informed to the household as soon as
fixed, so that the on-line negotiation can take this information
into account and a new schedule can be planed to adjust in
advance, instead of being rescheduled in a reactive way.

Also note that f ti (xi) must be adjusted using past obser-
vations of the power profile, that is, the observed values until
time t, x(1,t)

i . In particular, the duration probabilities must be
adjusted over time. For example, if at time t the household
i has not yet started to be used, the duration probability of
the first mode (start time) will be zero for all values smaller
or equal than t. Basically, the probability distribution of the
duration becomes truncated for small values of d (earlier
modes) and for large values of d (later modes).

IV. SIMULATION RESULTS

We evaluate the effectiveness of the proposed framework
in a simulated scenario (similar to [11]) designed to analyze
the effect of two factors related to the on-line scheduling:
i) how well the control handles the inflexibility of a group
households, and ii) how well a notification in advance of
the actual self-defined schedule of inflexible households,
improves the coordinated schedule.

The scenario consists of a group of N = 20 house-
holds, each having a single appliance that corresponds to an



electric vehicle that must be charged (3kWh) continuously
for about 3 hrs during the day. We divided a day into
T = 144, 10-minute slots, thus the charging takes about
18 time-slots. The community tries to minimize its deviation
from a reference aggregated power usage during the day:
g(
∑
i xi) = ||∑i xi − r||2, with r =

∑
i ri the day-ahead

aggregated reference power profile obtained following Eq.
(6). Note that is the community the one that tries to follow the
aggregated reference profile r and not each household trying
to follow its own reference profile ri. In the experiments,
the day-ahead schedule is obtained at time t = 0 for
g0(
∑
i xi) = ||∑i xi||2, i.e. the day-ahead schedule seeks

to balance the aggregated power profile.
Each electric vehicle is represented by three modes (M =

3): Q = {q1, q2, q3}, with q1 representing the period before
charging the electric car, q2 the charging period, and q3 the
period of after the charging (the remaining of the day). In
other words, we assume that the initial mode and the transi-
tion probabilities are identical for all the household, with a
deterministic transition pattern q1 → q2 → q3. In addition, as
we want to focus on the mode scheduling aspect, we consider
an output distribution given by P (yt|st) = 1[yt=X (st)], with
1[◦] the indicator function and X (st) = 0, 1000, 0[W ] for
st = q1, q2, q3 respectively. We assume that each appliance
can present one of the following two behaviors:

Flexible appliance: It follows the coordinated schedule
and it has a fixed model through the day:

f ti (xi) = f0
i (xi) ∀t.

Inflexible appliance: It does not follow the scheduled
control, and it will inform the actual one at time t′i > 0:

f ti (xi) =

{
f0
i (xi), if t < t′i
f
′

i (xi), if t ≥ t′i.
(22)

where f
′

i (xi) is the cost function used by the appliances from
time t′i. An inflexible appliance can not be controlled: it has
fixed duration times for the 3 modes (q1, q2, q3), with the
second mode (charging) starting at time t̃i.

In the experiments a percentage (p = 15%, 30%, 45%) of
households are flexible (out of the N ), and the coordinator
does not know in advance neither p nor which households
are inflexible. An inflexible appliance informs its self-defined
schedule at time t′i = t̃i − δi, where t̃i is the actual starting
time (duration of mode 1), and where δi ∈ R indicates how
early in advance the self-defined scheduled will be informed
to the household (relative to the usage time t̃i). Thus, the
larger the value of δi, the longer the time the community
can to adjust, in advance, to unplanned schedule changes. A
δi ≤ 0 means the appliance does not inform anything to the
household: it just starts charging the vehicle at time t̃i and the
household does not know it in advance. For the simulations
we consider that δi follows a Gaussian distribution with mean
mδ ∈ {0, 10, 20, 30} and standard deviation equal σδ = 18,
while t̃i is sampled from the same distribution as the duration
of mode q1 of the appliance (defined below).

In the day-ahead model, the duration of mode m follows

a Gaussian distribution N (µm, σ
2
m), having the following

parameters (µ1 and µ3 are different for every user):
• µ1 is uniformly distributed in [50, 55]; σ1 = 10.
• µ2 = 18 (3 hrs); σ2 = 1.
• µ3 = T − (µ1 + µ2); σ3 = 10.

The simulation was ran 10 times, each time using different
samples from the corresponding distributions. The obtained
results are summarized in Figure 3, while Figure 2 presents
results for a particular run for four methods:
• Without coordination (dashed black)
• Reference profile r =

∑
i ri (dot-dashed green)

• Without on-line coordination (filled blue)
• With on-line coordination (solid red) (proposed)

The results of with (red) / without (blue) on-line coordination
are analyzed (Figure 3) using three measures (smaller values
are better), where xi represents the case with (without) on-
line coordination:

Power balance: ratio of the `2-norm of the aggregated
power without coordination (x̃i) and the `2-norm of the
aggregated power: ||∑i x̃i||2

/
||∑i xi||2.

Peak Shaving: ratio of the maximum of the aggregated
power power without coordination (x̃i) and the maximum of
the aggregated power: maxt(

∑
i x̃i(t))

/
maxt(

∑
i xi(t)).

Deviation from reference: `2-norm of the difference of
the aggregated power and the reference profile, normalized
by the `2-norm of the reference: ||∑i xi − r||2

/
||r||2.

From the results it can be observed that: i) The day-ahead
control policy can balance the power, reducing both the `2-
norm and the maximum peak, even when only p = 15%
households are flexible (13.7% `2-norm reduction and 9%
peak reduction). ii) The on-line control can further improve
the power balance, further reducing the `2-norm and the
maximum peak. When δ is small (e.g. δ = 0, Figure 2,
first column) the control is basically reactive, postponing the
schedule and thus producing a small peak rebound, but never-
theless flattening power usage. When δ is large (e.g. δ = 30,
Figure 2, fourth column) the control is not reactive, but re-
schedules the charging of more electric vehicles before the
main peak, producing no peak rebounds (achieving a 17.2%
`2-norm reduction, a 15.5% peak reduction). iii) When p =
45% (Figure 3, third column) and the inflexible households
notify their schedule well in advance (δ = 30), the reduction
in `2-norm and maximum peak (first and second row) are
rather large (35% and 45% respectively), also achieving an
aggregated profile (third row) that is much closer to the
reference one (45% normalized difference from reference).

V. CONCLUSION

In the current paper we propose a framework for dis-
tributed on-line power demand balancing of households com-
munities. The framework is designed such that a community
of household coordinates and updates the schedule of their
appliances power usage, instead of the appliances being
controlled by the utility company. The goal is to balance the
aggregated power of the community of households taking
into account the Quality of Life (QoL) of the users. This
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Fig. 2. Aggregated power usage of 20 electric vehicles during one day. Results for (rows) different number of flexible households (p = 15, 30 and 45%),
and (columns) different distributions of notification time (Gaussian parametrized by mean δ ∈ {0, 10, 20, 30} and σδ = 18) of inflexible households.
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Fig. 3. Average results over 10 simulation runs. Results are indicated as percentages relative to the case when no control is applied (power balance, first
row; peak shaving, second row) and to the reference profile (deviation from reference, third row). Lower values are better. Results for (columns) different
number of flexible households (p = 15, 30 and 45%). The x-axis indicates the distribution of the notification time of inflexible households (Gaussian
parametrized by mean δ ∈ {0, 10, 20, 30} and σδ = 18).



is formulated as a receding horizon optimization problem
where we seek not to deviate much from a reference aggre-
gated usage profile and to minimize deviations from common
usage patterns. For this, a generative probabilistic model
of appliance power usage is considered to determine the
optimal coordinated schedule of the appliances. We analyze
the case where the households are not enforced to follow
the coordinated schedule (when some of them do not, they
will negotiate a new schedule for the next time step), and
where the appliances may notify in advance their self-defined
schedule, allowing to update the generative model with actual
usage information, and thus improve the power balancing
and reduce peak rebounds. As future work, and similarly
to the analysis done in [37] for the decentralized consensus
problem, we plan to analyze the proposed framework when
the objective functions change over time.
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