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Abstract

This paper is aimed at calibrating the relative posture
and position, i.e. extrinsic parameters, of a stationary cam-
era against a 3D reference object which is not directly visi-
ble from the camera. We capture the reference object via a
mirror under three different unknown poses, and then cali-
brate the extrinsic parameters from 2D appearances of re-
flections of the reference object in the mirrors.

The key contribution of this paper is to present a new al-
gorithm which returns a unique solution of three P3P prob-
lems from three mirrored images. While each P3P problem
has up to four solutions and therefore a set of three P3P
problems has up to 64 solutions, our method can select a
solution based on an orthogonality constraint which should
be satisfied by all families of reflections of a single reference
object. In addition we propose a new scheme to compute
the extrinsic parameters by solving a large system of linear
equations. These two points enable us to provide a unique
and robust solution.

We demonstrate the advantages of the proposed method
against a state-of-the-art by qualitative and quantitative
evaluations using synthesized and real data.

1. Introduction
Extrinsic camera calibration against 3D reference ob-

jects has been a fundamental research field in computer vi-
sion for long years [7,20]. It is widely used for applications
using cameras such as 3D shape reconstruction from multi-
view images [1,11,17], vision-based robot navigation [3,4],
augmented reality [2], etc.

However standard calibration techniques have a funda-
mental limitation on the field-of-view of the camera; the
camera should observe the 3D reference object directly. For
the cases where this condition does not hold, some studies

1The project web page: http://vision.kuee.kyoto-u.ac.
jp/˜nob/proj/mirror/
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Figure 1. Mirror-based extrinsic calibration (Left: real setup,
Right: illustration). The goal of this paper is to calibrate the cam-
era extrinsic parameter against the reference object observed via a
mirror under three different unknown poses.

proposed algorithm using mirrors [8, 10, 12, 13, 15, 16, 18].
They observe the reference object via mirrors, and then es-
timate the extrinsic parameters from the reflections of the
reference objects in the mirrors.

The applications of mirror-based extrinsic camera cali-
brations are not limited to solve the field-of-view issue only.
This technique is also useful for 3D shape reconstruction
from a single camera and multiple mirrors [10, 19]. Multi-
view videos captured by a single camera are definitely syn-
chronized, and share a single intrinsic parameter.

The key contribution of this paper is to present an al-
gorithm which returns a unique solution of three P3P prob-
lems [6] from three mirrored images. This is based on an or-
thogonality constraint which should be satisfied by all fam-
ilies of reflections of a single reference object. Based on
this constraint, our method calibrates the extrinsic parame-
ter from 2D projections of three known 3D reference points
observed via a mirror under three different unknown poses
(Figure 1). To the best of our knowledge, this is the min-
imum configuration to calibrate a stationary camera from
mirrored images. Establishing a better algorithm for such a
minimum configuration is important especially in RANSAC
scenario since the fewer inputs the algorithm requires, the
better RANSAC performes. Compared with a state-of-the-
art [8] which also works for this configuration but can se-
lect a solution from 64 candidates only by a post-processing
in terms of a reprojection error evaluation, our method can
produce a better solution uniquely and is robust against ob-
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servation noise as demonstrated quantitatively in Section 5.
The rest of this paper is organized as follows. Section

2 provides a review on conventional techniques and clar-
ifies the contribution of this paper. Section 3 describes a
new orthogonality constraint used in our extrinsic calibra-
tion. Section 4 introduces our algorithm, and Section 5
provides qualitative and quantitative evaluations using syn-
thesized and real data to demonstrate the advantages of our
method against the state-of-the-art. Section 6 concludes this
paper with discussions on future work.

2. Related Work
Mirror-based calibration algorithms without using direct

observation of 3D reference objects can be categorized into
two major groups in terms of the assumptions on the mirror
poses: (1) known poses, or (2) unknown poses.

The first group measures mirror poses explicitly [10,13].
Jang et al. [10] attached markers on the mirror plane to cali-
brate the mirror poses from vanishing points estimated from
the markers.

As shown in Table 1, the second group can be catego-
rized into two subgroups: (2a) calibration from 4 (or more)
known 3D reference object points [12, 16, 18] or (2b) cali-
bration from 3 known 3D reference object points [8]. The
biggest difference between (2a) and (2b) is whether the
camera extrinsic parameters can be uniquely determined or
not. This is known as a PnP problem [6]. Given n ≥ 4
2D projections of known 3D reference points, we can deter-
mine the camera extrinsic parameters uniquely. With n = 3
points, we have up to four possible solutions in general.

Our method is categorized as (2b). This configuration
is also studied by Hesch et al. [8]. They first solved P3P
problem and obtained 4 solutions per mirror pose, yielding
64 = 4×4×4 possible combinations of 3D reflected refer-
ence points. Then they computed the extrinsic parameters
for each combination. Finally they select a parameter which
minimizes the reprojection error as a post-processing.

Compared with [8], we first introduce a new orthogonal-
ity constraint which should be satisfied by all families of
reflections of a single reference object, and then show that
this constraint enables us to select the best combination of
3D reflected reference points from 64 candidates without
computing corresponding extrinsic parameters and their re-
projection errors explicitly. In addition we propose a new
scheme to compute the extrinsic parameters by solving a
large system of linear equations. The evaluations in Section
5 demonstrate the advantage of our method qualitatively.

3. Measurement Model and Orthogonality
Constraint

This section introduces our notations, measurement
model, and an orthogonality constraint on reflections.

Table 1. Number of minimum mirror poses and reference points
required.

Mirrors Points
Sturm and Bonfort [18] 3 4

Rodorigues et al. [16] 3 4
Kumar et al. [12] 5 4

Hesch et al. [8] 3 3
Proposed 3 3
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Figure 2. Measurement model

3.1. Notations and Measurement Model

As illustrated by Figure 2, we have a camera C, three
planar mirrors π j ( j = 1,2,3), and three reference 3D points
in the scene. Let X pi (i = 1,2,3) denote the positions of the
reference points given a priori in its local coordinate system
{X}. Here we use Y x to describe the 3D position of x in
{Y}. These positions are modeled as located at

C pi = R · X pi +T (i = 1,2,3), (1)

in the camera coordinate system {C} with a rotation matrix
R and a translation vector T. We model that the reflection
of the reference point C pi mirrored by π j appears as C pi

j
in {C}. This mirrored point is projected to qi

j in the im-
age screen of C. Each mirror π j is modeled by its normal
vector nj and its distance d j from C. The goal of extrinsic
calibration is to estimate R and T from qi

j (i, j = 1,2,3).
In Figure 2, the distance t i

j from the mirror π j to C pi
j

is equal to the distance from π j to C pi by definition. This
relationship is expressed by

C pi = 2t i
j nj +

C pi
j. (2)

This distance t i
j also satisfies

t i
j +d j =−n>j ·C pi

j. (3)

By removing t i
j from these two equations, we obtain

C pi =−2(n>j ·C pi
j +d j)nj +

C pi
j. (4)



Algorithm 1 Extrinsic Calibration from Three Reference Points
Input: qi

j (i = 1,2,3, j = 1,2,3)
Output: R,T

for each image j = 1,2,3 do
Solve P3P and obtain four 3D positions of the reference points in mirror π j: Pjk = {C pi

jk
} (i = 1,2,3, k = 1, . . . ,4).

end for
for each combination of 1k, 2k′ , and 3k′′ (k,k′,k′′ = 1, . . . ,4) do

Compute the eigenvalues of M j j′ (Eq (10)) using P1k , P2k′ and P3k′′ .
end for
Select the combination of 1k, 2k′ and 3k′′ which minimizes Eq (11). Let P1, P2 and P3 denote corresponding P1k , P2k′ and
P3k′′ hereafter.
Compute m12, m23 and m31 as the eigenvectors corresponding to smallest eigenvalues of M12, M23 and M31 (Eq (10))
using P1, P2 and P3.
Compute n1, n2 and n3 by Eq (12) using m12, m23 and m31.
Compute R,T by solving Eq (13) using P1, P2, P3, n1, n2 and n3.

This relationship between C pi and its reflection C pi
j by mir-

ror π j is known as Householder transformation, and this is
the fundamental equation which describes our measurement
model.

3.2. Orthogonality Constraint on Mirrored Points

Consider a reference 3D point C pi and its two mirrored
3D positions C pi

j and C pi
j′ ( j 6= j′) by two different mirrors

π j and π j′ respectively. Let mj j′ = nj× nj′ denote the axis
vector which lies along the intersection of the two mirror
planes. Then mj j′ satisfies the following orthogonality con-
straint.

Proposition 3.1. mj j′ , the axis vector of mirrors π j and
π j′ is orthogonal to the vector C pj −C pj′ between results
of different Householder transformations (Eq (4)) of a point
C p. That is,

(C pj−C pj′)
> ·mj j′ = 0. (5)

Proof. Eq (4) indicates that (1) the 3D mirrored position
of the ith reference point C pi can be estimated from each
of three mirrors π j and the corresponding mirrored position
C pi

j, and (2) the 3D positions estimated from different mir-
rors should be equal to each other. That is,

C pi =−2(n>j ·C pi
j +d j)nj +

C pi
j

=−2(n>j′ ·
C pi

j′ +d j′)nj′ +
C pi

j′ .
(6)

The axis vector mj j′ is a unit vector that lies along the in-
tersection of the two mirror planes, and hence perpendicular
to both mirror plane normals nj and nj′ :

n>j ·mj j′ = 0,

n>j′ ·mj j′ = 0.
(7)

By multiplying mj j′ on the right side of Eq (6), we ob-
tain:

C pi>
j ·mj j′ =

C pi>
j′ ·mj j′

⇔ (C pi
j−C pi

j′)
> ·mj j′ = 0.

(8)

The next section describes our extrinsic calibration
method which utilizes this proposition.

4. Extrinsic Calibration From Mirrored Im-
ages Using the Orthogonality Constraint

In this section we introduce our method which analyti-
cally determines the camera extrinsic parameter from pro-
jections of three reference 3D object points observed via
three different mirror poses.

Algorithm 1 shows an overview of our calibration algo-
rithm. We first solve P3P problem [6] for each camera, and
obtain 64 possible combinations of the mirrored reference
points. Then we select a single combination out of 64 possi-
bilities by exploiting the orthogonality constraint described
in Section 3.2. Once obtained the mirrored reference points,
we compute R and T by solving a large system of linear
equations.

4.1. Unique Solution of Three P3P Problems Using
the Orthogonality Constraint

The original goal of P3P problem is to determine the
3D positions of the three points with respect to the camera
frame {C}, C pi

j (i, j = 1,2,3), by using the corresponding
perspective projection qi

j on the image plane. As is well
known, P3P problem has up to four solutions in general.
We denote these four candidates of C pi

j as Pjk = {C pi
jk
},

(k = 1, . . . ,4). In our case, we use three different mirror
poses and we obtain up to 64 possible combinations.



Here we propose an algorithm to select a unique com-
bination of Pjk ( j = 1,2,3) as P1, P2, and P3 by using the
orthogonality constraint in Section 3.2. By applying the
orthogonality constraint for the mirrored positions of three
reference points C pi (i = 1,2,3), we have:(C p1

j −C p1
j′)
>

(C p2
j −C p2

j′)
>

(C p3
j −C p3

j′)
>

mj j′ = Q j j′mj j′ = 0. (9)

By multiplying Q>j j′ on the left side of Eq (9), we obtain

Q>j j′Q j j′mj j′ = M j j′mj j′ = 0. (10)

Since M j j′ is a 3× 3 positive semidefinite matrix and can
be computed from the result of P3P problems, we can com-
pute mj j′ as the eigenvector corresponding to the smallest
eigenvalue of M j j′ .

In ideal noiseless cases, the smallest eigenvalue of M j j′

should be exactly zero if the 3D points C pi
j and C pi

j′ are
results of Householder transformation since Eq (8) should
hold strictly. This fact allows us to eliminate invalid combi-
nations of P1k , P2k′ and P3k′′ based on the size of the smallest
eigenvalue of M j j′ ; if a combination of P1k , P2k′ and P3k′′ is
invalid in terms of Householder transformation, the value of
the left hand side of (9) cannot be zero and hence the small-
est eigenvalue is not zero even in ideal noiseless situations.

In the presence of observation noise in practice, we eval-
uate the size of the smallest eigenvalue by

ρ = λ3/(λ1 +λ2 +λ3), (11)

where λ1, λ2, and λ3 denote the largest, second, and the
smallest eigenvalues of M j j′ respectively. Since one com-
bination of P3P solutions has three M j j′ : M12, M23 and
M31, we compute the sum of ρ from these matrices. Us-
ing this value, we select P1k , P2k′ and P3k′′ corresponding to
the smallest sum of ρ as P1, P2 and P3 which satisfy House-
holder transformation best.

Notice that the uniqueness of the combination which
makes Eq (9) be zero is not proven theoretically here. How-
ever the evaluations by both synthesized and real data (Sec-
tion 5) practically proves the validity of the solution selected
by the above-mentioned process.

4.2. Linear Solution of Rotation and Translation

Up to this point, we obtained the axis vectors m12, m23
and m31 up to signs as the eigenvectors corresponding to
the smallest eigenvalues of M12, M23 and M31 respectively.
Using these axis vectors, we can compute the normal direc-
tion of the mirrors by:

n1 = (m12×m31)/(‖ m12×m31 ‖),
n2 = (m23×m12)/(‖ m23×m12 ‖),
n3 = (m31×m23)/(‖ m31×m23 ‖).

(12)

Here we can correct the signs of n1, n2 and n3 by exploiting
the fact that the mirrors are facing towards the camera, i.e.
the Z values of these vectors are negative in {C}, as illus-
trated by Figure 2.

Using n1, n2 and n3, we can derive a large system of
linear equations by removing C pi from Eq (1) and (4):

AZ = B, (13)

where

A =



I3 2n1 03×1 03×1 x1I3 y1I3
I3 2n1 03×1 03×1 x2I3 y2I3
I3 2n1 03×1 03×1 x3I3 y3I3
I3 03×1 2n2 03×1 x1I3 y1I3
I3 03×1 2n2 03×1 x2I3 y2I3
I3 03×1 2n2 03×1 x3I3 y3I3
I3 03×1 03×1 2n3 x1I3 y1I3
I3 03×1 03×1 2n3 x2I3 y2I3
I3 03×1 03×1 2n3 x3I3 y3I3


, (14)

Z =
[

T> d1 d2 d3 r>1 r>2
]>

, (15)

B =
[

b1
1 b2

1 b3
1 b1

2 b2
2 b3

2 b1
3 b2

3 b3
3
]>

,
(16)

bi
j = (−2n>j

C pi
j nj +

C pi
j)
>. (17)

In these equations, we used X pi = (xi,yi,0)> without loss of
generality. r1 and r2 are the first and second column vectors
of R, that is, R = (r1 r2 r3).

Since this system has 12 unknowns (Z) and 27 con-
straints (rows of A and B), the least-squares solution for
Z can be computed by Z = A∗B, where A∗ is the Moore-
Penrose pseudo-inverse of A. The third colmun vector of
rotation matrix r3 can be computed as follows.

r3 = (r1× r2)/(‖r1‖ · ‖r2‖), (18)

However, the obtained r1, r2 and r3 are not guaranteed to
satisfy the following constraints to form a valid rotation ma-
trix:

| r1 |=| r2 |=| r3 |= 1,

r>1 r2 = r>2 r3 = r>3 r1 = 0.
(19)

In order to enforce this constraint, here we solve the or-
thogonal Procrustes problem [5, 20]. Given two matrices R
and S in R3×3, an orthognal R̂ ∈R3×3 which minimizes the
frobenius norm |R−SR̂|F is given by

R̂ = UV>, (20)

where U and V are the left and right matrices of SVD of
S>R = UΣV>. In our case, by substituiting S = I3, we
have R̂ which satisfies the above constraint and closest to
R.
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Figure 3. Error rate against apparent observation size. If the ref-
erence object is observed smaller than a certain size, the selection
process (Section 4.1) can chose a wrong solution.

5. Evaluations
This section shows experiments with synthesized and

real data in order to evaluate the performance of our method
quantitatively and qualitatively. In the both cases, we
compare our method against a state-of-the-art proposed by
Hesch et al. [8] which works in the same situation: three ref-
erence 3D points observed via three different mirror poses.
Notice that the original method by Hesch et al. [8] first com-
putes up to 64 extrinsic parameters analytically, and select
the best one by comparing their reprojection errors. Then
it refines the extrinsic parameter by a non-linear optimiza-
tion process which minimizes the reprojection error. In the
comparisons below, we use the extrinsic parameter before
the non-liner refinement.

5.1. Synthesized Data

To synthesize the data, we used the following values by
default. The intrinsic parameter is set to

K =

 500 0 300
0 500 250
0 0 1

 . (21)

The original distance from the camera to mirrors
d is set to 300. The mirror poses nj is set
to (cosθx cosθy,cosθx sinθy,sinθz)

> with (θx,θy,θz) =
(0,150,0) for n1, (−30,180,0) for n2, and (0,210,0) for
n3. The reference points are defined as X p1 = (0,0,0)>,
X p2 = (225,0,0)> and X p3 = (0,225,0)>. The rotation pa-
rameter R of the camera is set to the identity matrix. The
position T is generated for each trial by assigning a random
value within [0 : 20] to each x,y and z element of T.

Error Rate Our algorithm selects the best combination of
P3P solutions based on the values of Eq (11). If the appar-
ent size of the projected reference object is small against
the observation noise level, the quality of P3P solutions be-
come unstable, and hence the value of Eq (11) becomes un-

reliable. As a result, our algorithm can fail to select the best
solution from 64 candidates in terms of the reprojection er-
ror.

Figure 3 shows how likely the proposed algorithm fails
to select the correct solution under different apparent sizes
of 2D projections of the 3D reference object via mirror and
under different observation noise. Here the apparent size is
defined as the minimum distance between 2D projections of
the reference points. We added Gaussian noise with zero-
mean and standard deviation σ = 0.3,0.5,1.0 to the synthe-
sized 2D observation qi

j. From this result, we can conclude
that our method can work properly if the reference object is
observed larger than 50 pixels in presence of Gaussian noise
with zero-mean and standard deviation σ = 1.

Notice that we did not have such failure cases in the eval-
uations hereafter.

Quantitative Evaluation In order to evaluate the perfor-
mance quantitatively, we used synthesized data and evalu-
ated the results by comparing estimation errors of R, T, n
and the reprojection errors. Here the estimation error of R
is defined as the Riemannian distance [14] between R and
synthesized ground truth value Rg:

ER =
1√
2
‖ Log(R>Rg) ‖F (22)

LogR′ =

{
0 (θ = 0),

θ

2sinθ
(R′−R′>) (θ 6= 0).

(23)

where θ = cos−1( trR′−1
2 ). The estimation error of T against

the ground truth Tg is defined as the RMS error:

ET =
√
‖T−Tg‖2/3. (24)

The estimation error of nj is defined as the angle against the
ground truth ng, j:

En =
1
3

3

∑
j=1

arccos(n>j ng, j). (25)

The reprojection error per point is defined as

EP =
1

3×3 ∑
j=1,2,3

(
∑

i=1,2,3
|q̆i

j− qi
j|

)
, (26)

where qi
j is the synthesized 2D observation of ith reference

point reflected by jth mirror. q̆i
j is the corresponding 2D re-

projection of the mirrored reference points computed by Eq
(1), Eq (4), and the synthesized intrinsic camera parameter
K.

Figure 4 shows results of quantitative evaluations. The
top row (a) shows the performance against pixel noise. We
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Figure 4. Calibration errors against different (a) pixel noise, (b) distance between the mirrors and camera, and (c) mirror poses. Note that
(1) all trials of (b) and (c) have Gaussian pixel noise with zero-mean and standard deviation σ = 1.0, and (2) the plots of red and yellow
are almost overlapped. This applies to the magenta and cyan plots as well.

added Gaussian noise with zero-mean and standard devi-
ation σ = 0, . . . ,2 to the synthesized 2D observation qi

j.
The middle row (b) shows the performance against different
camera-to-mirror distances. We set the distance from 300
to 900. The bottom row (c) shows the performance against
different mirror angles. We changed the mirror poses up to
±30 degree. For (b) and (c) we added Gaussian noise with
zero-mean and standard deviation σ = 1.0. The plots of
each row show, from left to right, the average values of ER,
ET , En and EP over 1000 trials for each noise level, distance,
and angle. The plots in magenta and cyan show results
by the proposed and [8] followed by the non-linear opti-
mization of reprojection errors. These results quantitatively
prove that (1) our method outperforms [8] in terms of repro-
jection errors, and (2) that improvement is mainly provided
by the improvement on n. Plus, our result is comparable
with the results after non-linear optimization. Even though
both non-linear optimizations started from ours and [8] con-
verge to almost same results (the magenta and cyan curves),
this fact suggests that our method can provide a better initial
value to the optimizer and help it to converge faster. In ad-
dition, the refinement by Eq (20) does not contribute much
in terms of these estimation accuracies. In this sense, this

Reference object
C1

Mirror C2

Figure 5. Calibration setup

refinement can be regarded just as a numerical process to
ensure R be a rotation matrix, not to improve the result.

5.2. Real Data

Figure 5 shows an overview of the setup for cali-
bration. We have two cameras (PointGrey Chameleon
CMLN01352C) C1 and C2, a flat-panel display and a mirror
in the scene. The goal is to calibrate the extrinsic parameter
of C1 against a 5× 8 chess pattern X1 rendered in the dis-
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Figure 6. Illustration of relationships between the cameras, display
and mirror

Table 2. Comparison of the proposed method and [8] against Eq
(28)

Hesch et al. [8] Proposed
ER (Eq (22)) 0.239 0.057
ET (Eq (24)) 60.57 48.04
EP (Eq (26)) 3.653 0.170

play. C1 is located where it cannot observe X1 directly. It
captures three VGA images of three different mirror poses
π j ( j = 1,2,3) for calibration. C2 is located where it can ob-
serve both X1 and the mirror directly. Using the observation
of X1, we can obtain the extrinsic parameter of C2 against X1
by Zhang’s method [20]. In addition, by attaching another
chess pattern X2 on the mirror, we can obtain the extrinsic
parameters of C1 and C2 against X2 for evaluation.

As illustrated by Figure 6, suppose Xl RCk , Xl TCk denote
the rotations and translations from Xl to Ck respectively.
That is, the 3D position of a 3D point Xl pi of Xl in Ck is
given by

Ck pi = Xl RCk ·
Xl pi + Xl TCk (k = 1,2, l = 1,2). (27)

We can calibrate X1 RC1 , X1TC1 by the proposed method as
well as by [8]. In addition, by calibrating X1 RC2 , X1TC2 ,
X2 RC1 , X2TC1 , X2 RC2 and X2TC2 by Zhang’s method, these
parameters also provide X1 RC1 , X1TC1 as a baseline calibra-
tion:

X1 RC1 =
X2 RC1

X2 R>C2
X1 RC2

X1TC1 =
X2 RC1

X2 R>C2
(X1TC2 −

X2TC2)+
X2TC1 .

(28)

Figure 7 shows results by the proposed method, by [8],
and by Eq (28). This figure renders estimate positions of
C p and X1 in {C}, and therefore C1 is located at (0,0,0)>.
Table 2 reports quantitative comparisons of them. ER and
ET are the differences against Eq (28). EP is the repro-
jection errors against the original observations. Notice that
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even though the chess pattern provides more than 3 refer-
ence points, we used only three points of them for both our
method and [8]. From these results, we can conclude that
our method performs better than [8].

5.3. Discussions

Degenerate cases Our algorithm does not work if it can-
not compute the axis vectors mj j′ (Section 3.2). This hap-
pens in the following two cases. (1) As illustrated by Figure
8, we cannot compute mj j′ if mj j′ , the intersection of two
mirrors, is on the plane formed by the three reference points.
In this case, the intersection of two mirrors does exist phys-
ically, but not be computable by solving Eq (9). In addition,
(2) if two mirrors are parallel, then the intersection of two
mirrors does not exist and therefore not be computable.

These two degenerate cases can be detected by observing
the rank of M j j′ in Eq (10). If the rank is less than 2, we can



discard the mirror pair and try with 4-th or more mirrored
images in practice.

Comparison with [8] The differences between ours and
Hesch et al. [8] are twofold. The first difference is how
they select a solution from 64 candidates given by three P3P
problems. While our method can select a solution directly
from the results of P3P problems (Section 4.1), [8] selects
a solution only by comparing reprojection errors of 64 ex-
trinsic calibration parameters. The other difference is the
number of constraints involved to compute R and T. The
method by [8] computes R candidates from each mirror by a
3×3 matrix computation, and then average them to output a
single R. T is computed by solving a system of linear equa-
tions using 9 constraints. On the other hand, our method
computes R and T by solving a larger system of linear equa-
tions with 27 constraints (Eq (13)). In general solving a
larger system can be more robust against observation noise
than solving smaller systems. This difference appears as
the robustness against observation noise as reported by Fig-
ure 4. Note that this does not mean the selection criterion
of [8] based on the reprojection error computation is not
correct. The criterion is correct, but because of the above-
mentioned difference on the number of involved equations
for computation, ours returns better results than [8].

6. Conclusion
In this paper, we proposed a new algorithm which finds

a unique solution of three P3P problems from three mir-
rored images of three reference 3D points. Our algorithm is
based on an orthogonality constraint which should be sat-
isfied by results of Householder transformations of a same
reference object. Based on this algorithm, we proposed a
new extrinsic calibration algorithm for a stationary camera
using three reference 3D points observed via three different
mirror poses. The evaluations by synthesized and real data
demonstrated our improvement on the calibration accuracy
and robustness against the state-of-the-art quantitatively and
qualitatively.

Future work includes further studies on the proof of the
uniqueness (Section 4.1), workarounds of the degenerated
cases (Section 5.3), and calibration from multiple reflec-
tions [9] using the orthogonality constraint.
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