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Abstract—This paper presents a novel approach that achieves dynamic surface alignment by geodesing mapping. The surfaces
are 3D manifold meshes representing non-rigid objects in motion (e.g., humans) which can be obtained by multiview stereo
reconstruction. The proposed framework consists of a geodesic mapping (i.e., geodesic diffeomorphism) between surfaces which
carry a distance function (namely the global geodesic distance), and a geodesic-based coordinate system (namely the global
geodesic coordinates) defined similarly to generalized barycentric coordinates. The coordinates are used to recursively choose
correspondence points in non-ambiguous regions using a coarse-to-fine strategy to reliably locate all surface points and define
a discrete mapping. Complete point-to-point surface alignment with smooth mapping is then derived by optimizing a piecewise
objective function within a probabilistic framework. The proposed technique only relies on surface intrinsic geometrical properties,
and does not require prior knowledge on surface appearance (e.g., color or texture), shape (e.g., topology) or parameterization
(e.g., mesh connectivity or complexity). The method can be used for numerous applications, such as visual information (e.g.,
texture) transfer between surface models representing different objects, dense motion flow estimation of 3D dynamic surfaces,
wide-timeframe matching, etc. Experiments show compelling results on challenging publicly available real-world datasets.

Index Terms—Geodesic mapping, surface alignment, dynamic surface, non-rigid deformation, 3D video, MRF.
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1 INTRODUCTION

FREE-viewpoint video (i.e., 3D video) representing
real humans or objects in motion immersed in

a virtual world is becoming popular thanks to re-
cent progresses in 3D reconstruction from multiple
view videos (see [1]). As no markers or any special
(wearable) equipment is necessary to perform the
captures, the technique suits to a very wide range
of applications such as surveillance, medicine, sports,
entertainment, behavior understanding [2], etc.

Actually, 3D video consists of a stream of textured
surface models undergoing free-form deformations
and represented by 3D manifold meshes. As each 3D
video frame is usually reconstructed independently
using multiview stereo techniques [3], surface match-
ing and tracking problems are not trivial while they
are crucial for many of the applications cited above. To
date, several solutions exist that: 1) use surface visual
appearance (e.g., color or texture [4], [5]), or 2) per-
form matching by unilateral surface deformations [6].

We present a novel technique that achieves
alignment of dynamic non-rigid surfaces using
geodesic mapping (i.e., geodesic diffeomorphism).
The geodesic mapping is defined on Riemannian
manifolds which carry a distance function (the global
geodesic distance) and a coordinate system (the global
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geodesic coordinates). The proposed algorithm involves
a coarse-to-fine strategy, where correspondences are
found by searching for points with the same geodesic
distances to landmark points; the set of landmark
points being recursively updated with new cor-
respondence points, chosen in specific regions, to
increase the robustness to non-rigid deformations.
When the distribution of correspondence points is
dense enough, a mapping can be derived using
generalized barycentric coordinates defined with re-
spect to those points. Complete point-to-point surface
alignment with smooth mapping is then obtained
by optimizing a piecewise objective function within
a probabilistic framework using a Markov Random
Field (MRF) model. Our approach relies on surface
intrinsic geometrical properties, and does not require
prior knowledge on surface appearance (e.g., color
or texture), shape (e.g., topology) or parameterization
(e.g., mesh connectivity or complexity). Hence align-
ment accuracy is not lost in poorly textured regions
(e.g., due to lack of texture, or poor photoconsis-
tency) and can be achieved without surface remeshing
(i.e., intrinsic geometrical properties are preserved).
Several applications are shown in this paper: texture
transfer, dense motion flow estimation, wide time
frame matching, as well as surface alignment between
models from different sequences. The rest of the paper
is organized as follows. The next section discusses
work related to the techniques involved in this paper.
Section 3 presents our geodesic mapping strategy.
Section 4 describes the 3D surface matching process.
Section 5 shows experimental results. Section 6 con-
cludes with a discussion on our contributions.
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2 RELATED WORK

Several multi-view video capture systems have been
developed since the 90s (see [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16]). Usually, several sensing
devices are spaced around a scene (e.g., in a studio)
and synchronously perform the capture. The devices
can either be a set of calibrated video cameras, or
even handheld depth cameras. Additionally, 3D laser
scanner can be used to leverage the reconstruction
accuracy. With these techniques, subjects are captured
without wearing any special markers, as opposed to
motion capture methods (mocap). The resulting per-
formance capture or 3D video consists of a stream of
textured surface mesh models undergoing free-form
deformation. Similarly, scientific interests related to
3D dynamic surface matching and tracking techniques
have grown as many applications can indeed be de-
rived, such as 3D motion flow estimation, temporal
correspondence finding, labeling, surface deforma-
tion, spatio-temporally coherent reconstruction, etc.

In the past, the literature has provided several
methods directly related to dense non-rigid surface
matching and tracking. In general, the process
consists of: (1) finding a sparse set of correspondence
points between surfaces and (2) perform dense
matching by regularization or mesh deformation.
The correspondence problem is indeed particularly
well-known for surface mesh edition and morphing
(see [17] for a survey). Nevertheless it often requires
that the user interactively defines numerous pairs of
markers on the surfaces, which can be inaccurate and
impracticable when the number of surfaces to match
is high (e.g., like in 3D video). Hence, techniques for
automatic surface feature extraction and matching
are still actively under investigation.

Appearance-based approach. In [18], 3D scene flows
are presented as an extension of optical flows [19] to
represent the 3D motion of points. Optical flows are
extracted and regularized in images and then used
to derive the scene flows (that give point-to-point
surface matching). In [20], scene flows and Laplacian
mesh editing [21] are combined to track the defor-
mation of high-quality a priori shape model obtained
by laser-scan. In [4], the problem is addressed by
combining Speeded Up Robust Features (SURF) [22]
and Laplacian diffusion to obtain a dense displace-
ment field. To guarantee the correctness of resulting
meshes, surface morphing is applied as a final step.
However the main limitation with these methods is
the inability to capture the true deformation of low-
frequency surface details (e.g., fingers, wrinkles in
clothes, etc.) due to the implicit smoothing introduced
by the mesh deformation process.

In [23], temporal correspondences are estimated
by spherical parameterization and matching (but
only for surfaces of genus-0). In [12], the authors

propose to use a set of surface descriptors (color
feature, corner descriptor, edge descriptor and
region descriptor) to derive a sparse set of points
and construct a locally isometric mapping. Sparse-
to-dense surface correspondence is then achieved
using a MAP-MRF formulation. The accuracy is
reported to be in the order of 5-10cm. In [14],
meshes are deformed over time by tracking photo-
consistent surface patches and optimization processes.
In [24], SIFT [25] are used as 2D features to obtain
sparse correspondences between adjacent frames.
Thereafter, dense correspondences are generated
by mapping harmonic functions [26] associated to
the sparse points. This approach assumes isometric
deformations, which is not always verified with real-
world data (e.g., with large cloths). In [5], 2D local
features are extended to 3D feature detectors and
descriptors to improve sparse matching of meshes.
The descriptors can capture photometric properties
as well as local geometric properties (such as mean
curvatures). In [15], 2D features (e.g., SIFT) are
initially used with 3D information to estimate rough
rigid transformations between surfaces (from colored
depth maps). A mesh warping algorithm based on
linear mesh deformation is then used to align the
different partial surfaces. In [27], dense point clouds
from scanner data are registered using a randomized
feature matching algorithm relying on geodesics.
As observed, the advantages of using local features
such as SIFT, SURF and corners are the detection
accuracy and robustness whereas local geometric
features are more subject to surface noises due to
reconstruction artifacts. Nevertheless, photometric
feature matching approaches require surface models
with good texture and color consistency between the
multiple camera views, which is in practice tedious
to obtain. Moreover, high resolution cameras are
necessary to achieve dense matching, and using
photometric features usually bounds the matching to
surfaces having a unique texture (i.e., lighting cannot
vary).

Geometry-based approach. Geometry-based ap-
proaches do not involve photometric features. In [6],
a patch-based approach is used to track dynamic
surfaces by unilateral deformations. However, as it
implies a remeshing of the sequence with patches,
intrinsic geometric properties (e.g., surface topology)
and local geometric details can be lost. In [28] the
authors propose the generalized multidimensional
scaling (GMDS) that measures geodesics distortions
in embedding spaces using Gromov-Hausdorff dis-
tances. GMDS is optimal for near-isometry deforma-
tions and average size surface meshes. Besides, a
multi-scale process is necessary to avoid local minima
during optimization computation. In [29], [30], [31],
[32], the authors propose to use different geometry
diffusion techniques, other than geodesics. However,
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we show in Sect. 5 that these diffusion-based tech-
niques are not as good as the proposed geodesic
mapping to distinguish surface differences when the
differences are very small.

In this paper, we present a novel approach for
non-rigid (dynamic) surface alignment using geodesic
mapping. A preliminary version of this work was
presented in [33]. In particular, our solution is de-
signed for 3D video data representing real-world per-
formance (i.e., non synthetic) where surfaces can lo-
cally undergo non-rigid deformation and can contain
reconstruction artifacts (i.e., surface noise, etc.).

Significant differences can be found compared to
prior work on 3D surface registration that involves
geodesics. In approaches like [34], [35], initial corre-
sponding points based on local geometry properties
(e.g., Euclidean distance or normal orientations) have
to be determined beforehand. Hence, these methods
cannot be well generalized to real-world 3D video
data because of the surface noise inherent to the 3D
reconstruction process. Furthermore in [34], geodesics
are solely used to interpolate the positions of addi-
tional corresponding points by iteratively selecting
mid-points of geodesic paths joining the points. This
hierarchical scheme can only lead to surface alignment
approximation, and no diffeomorphism (i.e., smooth
map) is defined. Besides, an even distribution of initial
points on the surfaces cannot be guaranteed on com-
plex shape. In [35], a geodesic-based constraint is used
for initial correspondence pruning. Additional corre-
spondences are derived by propagation in the point
neighborhoods using a global geodesic-based distor-
tion measure similar to [28]. This method yields good
result on synthetic and piecewise rigid surfaces, but
again requires good initial corresponding points and
is sensitive to surface noise, as there is no mechanism
to ensure geodesic consistency between correspond-
ing surface points. Moreover, the algorithm is applied
only to reduced sample sets for efficiency reason and
correspondence uniqueness is not handled. Thus, no
mapping is explicitly defined.

In [36], [37], the authors perform non-rigid registra-
tion of depth scans using an ICP-based approach. The
current formulation is specifically designed for partial
matching of depth scans and yields good results for
depth data which are initially closely related. The
optimization consists in solving an objective function
assuming a global rigid transformation using non-
linear least squares method. (It can handle topology
changes but has failure cases with wide-timeframe
matching.) However, the convergence is not always
guaranteed for full 3D surface model. The global
minimization can be trapped by local minima and
return locally large errors. Actually in [38] and later
in [6], the authors applied an ICP-based method to
full 3D models in order to track surface points of
a deformable surface across time. Nevertheless, con-
vergence failure can be observed (see Sect. 5.3). A

template is deformed across time (i.e., surface mesh-
ing is lost and topology is fixed), and the method is
computationally expensive.

3 GEODESIC MAPPING

We propose to model a geodesic mapping between
non-rigid surfaces by establishing a new framework
which carries a distance (namely the global geodesic
distance), and a coordinate system (namely the global
geodesic coordinates). Dense sets of correspondence
points are used to define geodesic-based coordinates
(in the same fashion as generalized barycentric co-
ordinates), while being recursively determined in
non-ambiguous regions to robustly locate all surface
points.

3.1 Problem formulation
Definition 1. Let us define two Riemannian manifolds
(S1, g1) and (S2, g2), where g1 and g2 are distance
functions carried by S1 and S2. The function Φ : S1 →
S2 is a geodesic map (or geodesic diffeomorphism) if
and only if:

1) Φ is a diffeomorphism of S1 onto S2 (i.e., a
smooth bijective map),

2) Φ preserves geodesics (i.e., the image under Φ
of a geodesic arc in S1 is a geodesic arc in S2),

3) Φ−1 preserves geodesics.
Assuming Φ defines a surface mapping between S1
and S2, g1 and g2 return geodesic distances on S1 and
S2 respectively.

To evaluate the surface mapping (or alignment)
under a diffeomorphism φ : S1 → S2, one can define
a metric δ : S1 × S2 → R+, so that if ∃ε � 1 : ∀v1 ∈
S1, δ(v1, φ(v1)) ≤ ε, then φ(S1) = S2. Ideally, our goal
is to find Φ such as:

Φ = arg min
φ

( ∑
v1∈S1

δ(v1, φ(v1))

)
. (1)

For example, surface alignment can be measured
by evaluating geodesic distortions through an em-
bedding (see [28], [30]). In this paper, we introduce
the global geodesic distance DN as a metric to define a
geodesic mapping Φ that achieves non-rigid surface
alignment without explicit embedding.

3.2 Global geodesic distance
3.2.1 Geodesic consistency
Definition 2. Assuming a set of N points B =
{b1, ..., bN} defined on a 2-manifold (S, g), the points
v1 and v2 on S are said to be geodesically consistent
with respect to B if and only if:

∀i ∈ {1, ..., N}, |g(v1, bi)− g(v2, bi)| ≤ ε′, (2)

where ε′ � 1. If the points in B do not have any
particular configuration of alignment or symmetry,
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Fig. 1. Surface points (yellow circles) located at inter-
sections of isolines (colored bands) given by geodesic
distances to head and limb extremities.

the geodesic consistency property can be used to
uniquely locate points on S when N > 2. In practice,
uniqueness is verified by checking the number of
isovalue line intersections from B (see Fig. 1).

3.2.2 Global geodesic coordinates

Definition 3. Assuming a set of N points B =
{b1, ..., bN} defined on a 2-manifold (S, g). For all
v ∈ S , v can be located by its global geodesic co-
ordinates with respect to B, where the components
are the N geodesic paths {g(v, bi), ..., g(v, bN )}. The
global geodesic coordinates can be seen as general-
ized barycentric coordinates defined on a Riemannian
manifold. Hence, if S is a deformable surface and B
are fixed landmarks, the global geodesic coordinates
can be used to locate surface points across time while
S undergoes deformations. Besides, each component
g(v, bi) is made invariant to isometric transformations
by normalization with respect to maxv∈S(g(v, bi)).

3.2.3 Distance definition

Definition 4. Let us assume two manifold sur-
faces (St, gt) and (St+1, gt+1), where gt and gt+1

are geodesic distance functions defined on St and
St+1 respectively, and Bt = {bt1, ..., btN} and Bt+1 =
{bt+1

1 , ..., bt+1
N } two sets of points defined on St and

St+1 respectively. We define the global geodesic dis-
tance DN : St × St+1 → R+ with respect to Bt and
Bt+1 as follows:

∀(v, v′) ∈ St × St+1,

DN (v, v′) =
(∑N

i=1 |gt(v, bti)− gt+1(v′, bt+1
i )|n

) 1
n

,

(3)
where n = 2 (i.e., quadratic distance). Hence, as-
suming St undergoes temporal non-rigid deforma-
tions and Bt are landmarks or surface points that
are tracked over time such as critical points (see
below), (v, v′) forms a pair of matching points (namely
correspondence points) if and only if DN (v, v′) ≤ ε”,
where ε” � 1 is introduced to cope with distance
approximations.

3.2.4 Initial feature extraction

Critical points. Let us assume that dynamic sur-
faces representing non-rigid objects in motion can
be approximated by compact 2-manifold meshes. We
choose geodesic distances to characterize surface in-
trinsic properties, as geodesic distances are invariant
to pose (i.e., rotation and translation), and robust
to shape variations (e.g., scaling) when normalized
(see [41], [28]). Let µ : S → R denote the continuous
function defined on the object surface S:

µ(v) =

∫
S
g(v, s)dS, (4)

where g : S2 → R is the geodesic distance between
two points on S. Eq. 4 is the geodesic integral function
whose critical points can be used to characterize shape
(see Morse theory [42], [43]). The function µ is normal-
ized with respect to its minimal and maximal values
µmin and µmax as µN : S → [0, 1], where µN (v) =
µ(v)−µmin

µmax−µmin
. Maximal values of µN usually correspond

to limb extremities (e.g., of human or animal models)
while global minimum corresponds to body center.
As illustrated in Fig. 2a, we can use µN to build Reeb
graphs in order to identify and match critical points
over time using geometry and topology information.
Reeb graphs are high level shape descriptors that can
be used for shape matching and retrieval in large
datasets (see [41], [40], [44], [45]).

The graph construction relies on surface critical
points, while the graph structure captures surface
topology. Various local, global, geometry or topology
information can then be embedded in the graph nodes
with different weights, and graph matching can be
achieved by defining a similarity function between
graph nodes. In our experiments with real-world
datasets (see Sect. 5), each node contains information
about relative surface area, µN values, topology (i.e.,
valence), and shape distribution as described in [40],
[2]. In practice, we do not observe any ambiguity
when matching nodes of graphs extracted from con-
secutive frames of 3D video sequence. As natural
(human) shapes and poses are usually asymmetric,
nodes can be easily discriminated. However, in the
case of data containing symmetry (e.g., if two legs
are exactly similar), node trajectory or model priors
(e.g., on shape, orientation, color, etc.) can also be
embedded to prevent ambiguity.

Note that global geodesic distances between
matching critical points are usually small (≤ ε”)
when the matchings are correct. For complex
scenario of critical point tracking, one can refer
to [46] and [47]. Thus, just as 3 points are sufficient
to define a barycentric coordinate system, all vertices
of S can be uniquely identified by global geodesic
coordinates with N ≥ 3 components. Uniqueness is
discussed in Sect. 3.3.1.
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Fig. 2. a) Critical points extracted on two surface meshes from [39] using Reeb graphs [40] (red circles). b) Point
localization ambiguity with respect to critical points (darker means less ambiguity). c) 50 correspondence points
found between the two surfaces using global geodesic coordinates.

Robustness. 3D video data usually contain 3D models
with reconstruction artifacts. Fortunately, the Morse
function µ is robust to local surface noise thanks to the
integral formulation on S which smooths out outlier
geodesics. For additional discussions on robustness of
µ, refer to [2]. In what follows, we present a coarse-
to-fine strategy to determine robust correspondence
points between dynamic surfaces by evaluating point
localization ambiguity.

3.3 Correspondence point matching
3.3.1 Correspondence points
As presented in the previous sections, global geodesic
coordinates can be used to match points located on
deformable manifold surfaces. Assuming the set of M
points {vt1, ..., vtM} ∈ St, the correspondence problem
consists of finding the geodesic map Φ such that:

∀vt ∈ St : Φ(vt) = arg min
vt+1∈St+1

(DN (vt, vt+1)), (5)

where DN : St×St+1 → R+ defines a global geodesic
distance with respect to a set of N local features (e.g.,
critical points) as introduced in Def. 4. The set of pairs
{(vt1, vt+1

1 ), ..., (vtM , v
t+1
M )} where vt+1

i = Φ(vti),∀i ∈
{1, ...,M}, forms the correspondence points between
St and St+1 (see Fig.2b).

However, when surfaces undergo non-rigid defor-
mations (e.g., non-isometric), geodesic distances may
not be preserved and global geodesic coordinates
may not be sufficient to uniquely determine a point
position. Hence, we propose to adopt a coarse-to-fine
strategy to recursively choose correspondence points
in regions where position ambiguity is low.

3.3.2 Ambiguity estimation
As mentioned in the previous sections, non-rigid
deformations can affect geodesics consistency. As a
consequence, surface point localization can become
ambiguous.

Definition 6. Assuming a manifold S and a set of
N points B ∈ S , we can estimate point localization
ambiguity on S with respect to B by defining a local
ambiguity degree A(v), ∀v ∈ S , which is obtained as

the measure of the number of points geodesically
consistent to v with respect to B (see Sect. 3.2.1). When
the ambiguity degree is computed for all points v ∈ S,
we can represent {A(v)} as an ambiguity map (see
Fig. 2c).

However, when B contains points located only at
distant surface extrema (e.g., extremities of human
limbs), one can observe that regions located around
the object center have very low ambiguity degree (i.e.,
geodesic consistency uniqueness can be established),
while regions around the extrema are more ambigu-
ous. Nevertheless, ambiguity issues can be solved by:
1) increasing N , and 2) having points of B closer to
regions of high ambiguity degree.

3.3.3 Recursive mapping
To guarantee that all surface point positions can be
determined without ambiguity, we propose to recur-
sively populate B with points located in regions with
low ambiguity. When applying this strategy simul-
taneously for two surfaces St and St+1, and recur-
sively populating the sets Bt ∈ St and Bt+1 ∈ St+1

with pairs of correspondence points (see Sect. 3.3.1),
we obtain a discrete geodesic map ΦN (i.e., using
N landmarks) of St onto St+1. Figure 3 illustrates
the recursive (coarse-to-fine) mapping process. The
algorithm is as follows:

1) Initialize Bt and Bt+1 with sets of local features
that can be matched and tracked (e.g., critical
points as described in Sect. 3.2.4).

2) Compute ambiguity maps for St and St+1 with
respect to Bt and Bt+1 respectively.

3) Choose randomly Ni pairs of correspondence
points between St and St+1, where both points
in each pair are located in regions with low
ambiguity with respect to Bt and Bt+1 respec-
tively. Points are chosen to be spaced by at least√

area(St)
(N+Ni)π

. In practice, correspondence points
are chosen among vertices with low ambiguity
degree: {v ∈ S : A(v) < τ}, where τ =
min(A(v)) + 0.1 ∗ (max(A(v))−min(A(v))).

4) Insert the 2Ni pair points in Bt and Bt+1 respec-
tively.

5) Set N =
∑
iNi.
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Fig. 3. Coarse-to-fine process to determine N correspondence points. Top) Ambiguity degree A of each surface
point with respect to N . Bottom) Correspondence points in non-ambiguous regions.

6) Repeat 2) to 5) until no regions with high ambi-
guity degree remain (e.g., ∀v ∈ S : A(v) < 2).

Finally, we obtain a mapping function ΦN : St → St+1

that relates surface points which are geodesically
consistent and should ideally represent a geodesic
mapping. However, if surfaces are modeled by mani-
fold meshes reconstructed independently (as with 3D
video data), surface mesh connectivity and number
of vertices can be different. A real bijection between
the surface models is then impracticable to realize, as
mesh edge lengths would have to be smaller than ε.
Hence, we consider ΦN as a surjective function where
each point position in St+1 is approximated by the
nearest vertex in the corresponding mesh model. This
choice is reasonable when the vertex number is high,
and guarantees that all surface point of St is matched.

Nevertheless, with large meshes (e.g., 300,000 ver-
tices), the process can become computationally expen-
sive as N can become very high (the iteration steps
2) and 3) have quadratic complexity). Thus, we use
only around N = 200 correspondence points. Com-
plete surface alignment is achieved by propagation
as described in the next section. For example, Fig. 4
presents the ratio of non-ambiguous surface regions
with respect to the number N of correspondence
points computed on the sequence Crane (obtained
from real-word capture [48]). When the ratio is 100%,
then ∀v ∈ S : A(v) < τ .

4 NON-RIGID SURFACE ALIGNMENT

We present an MRF energy formulation to achieve
dense and point-to-point smooth alignment of non-
rigid manifold surfaces, where the correspondence
points defined in the previous section serve as priors.

4.1 MRF formulation

Let P = {pi} be the set of vertex sites on a surface
mesh S1, and L = {lp} be a discrete set of labels

Fig. 4. Percentage of non-ambiguous surface points
with respect to the number N of correspondence
points.

corresponding to the candidate vertices on a surface
mesh S2. We propose to minimize the following MRF
energy in order to achieve complete mapping of S1
onto S2:

E(f) = Ed(f) + Es(f). (6)

E(f) is the total energy of the labeling (or mapping)
f : P → L, Ed(f) is the data term and Es(f) the
smoothness term:

Ed(f) = λd ·
∑
p∈P DN (pi, lp),

Es(f) = λs ·
∑
{p,q}∈N |Tp(lp)− Tq(lq)|,

(7)

where N is a neighborhood configuration in S1, λd =
0.75 and λs = 0.25 are a constant factors, and Tp(lp)
and Tq(lq) are vector flows joining p to lp, and q to
lq respectively. Actually, this is an NP-complete prob-
lem for which minimization is very computationally
expensive using the usual techniques [49], [50].

4.2 Divide and conquer
We propose to dramatically reduce the label search
space by dividing the global optimization problem
into smaller local ones, and consequently make the
optimization process tractable. This is valid as the pri-
ors (i.e., the correspondence points) are independent
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of each other. The strategy consists of sweeping the
surface mesh using front propagations from an initial
point in B located near the center of the object (e.g.,
given by minv∈S(µN (v))), propagate the mesh vertex
matching to neighbor regions (i.e., the closest corre-
spondence points), and process unmatched vertices.

Let us denote N (p) the neighborhood of p ∈ S1
and N (lq) the neighborhood of lq ∈ S2, and let us as-
sume the local continuity property of diffeomorphism:
∀q ∈ N (p),∃lp ∈ N (lq). Hence, for every vertex site
p: 1) we can look for the closest (already matched)
correspondence points {q} ⊂ N (p), and 2) find lp in⋃
{q}⊂N (p)N (lq) by minimizing the energy as defined

in Eq. 6. Note that in our experiments, we use two-
ring neighborhoods (i.e., 15 to 20 vertices).

Figure 5 illustrates surface mapping between two
surface models. In a), we show piecewise mapping
using N = 195 correspondence points (and their
neighborhood). In b), we show complete surface map-
ping after optimization. The color codes of surfaces
represent global geodesic coordinates using 3 refer-
ence points (located on the head and at the feet of
the models) encoded as RGB color channels. Note
that here, local geometry-based descriptors (e.g., [5])
cannot be used to find correspondence points as the
models contain too much surface noise.

Fig. 5. Surface mapping between two models (left
and right) before and after optimization: a) 195 corre-
spondence points found on the model on the right give
piecewise mapping. b) After optimization, we obtain
complete surface alignment.

4.3 Implementation details
4.3.1 Non-rigid deformation management
Although global geodesic coordinates are defined
with respect to landmarks which are chosen in non-
ambiguous regions, some coordinate components can
be unreliable if their corresponding geodesic paths
pass through surface regions undergoing large non-
rigid deformations. As a consequence, the set of can-
didates among which to choose the correspondence
points as presented in Sect. 3.3.2 can remain large
(i.e., A(v) > 1), and the landmark positions can be
unoptimally defined (e.g., the most central candidate
is not always the best).

Hence, we introduce additional conditions at step
3) in Sect. 3.3.3 to avoid false candidates. As-
suming a set of N pairs of corresponding points
{(b11, b21), ..., (b1N , b

2
N )} in (S1, g1)× (S2, g2), and a point

p ∈ S1 to be matched, we find the matching point
q ∈ S2 determined by:
• a maximum number Npq of reliable pairs of co-

ordinate components, i.e., where most isovalue
lines intersect, as discussed Sect. 3.2.1,

• the minimum global geodesic distance to p ∈ S1:
q = arg minq′∈S2 DNpq′ (p, q

′).
Hence, each candidate point q′ has to comply with the
following two conditions:

∀i ∈ {j1, ..., jNpq′}, |g1(p, b1i )− g2(q′, b2i )| < ε′,

and DNpq′ (p, q
′) < ε,

(8)

where {j1, ..., jNpq′ } ∈ {1, ..., N} are Npq′ indices of
reliable coordinate components verifying Eq. 8.

Furthermore, the positions of the correspondence
points {b21, ..., b2N} in S2 are globally optimized after
each iteration of the recursive mapping described in
Sect. 3.3.3 to correct eventual error propagations as
follows:

{b21, ..., b2N} = arg min
b′2i∈N (b2i )

N∑
i=1

DN
b1
i
b′2

i

(b1i , b
′2
i ), (9)

whereN (b2i ) is the neighborhood of b2i (e.g., two-ring).
Hence, by choosing the number N of landmark

high enough, inaccurate coordinate components be-
come less significant. The assumption is that there
always exists a subset of coordinate components that
allows any pair of points (p, q) ∈ S1 × S2 to remain
geodesically consistent (i.e, Npq′ > 2). However, the
continuity condition introduced in the previous sec-
tion does not leave unmatched surface points.

For example, to illustrate the implementation de-
tails we reported in Table. 1 the average errors (i.e.,
distance to ground truth) when calculating the N
correspondence points between successive frames of
a 3D video sequence. We used the sequence Crane
(173 frames) processed by [6] as ground truth, as each
of the 3407 vertices is tracked across the sequence.
Errors Err1 and Err2 correspond to the number
of correspondence points {b21, ..., b2N} which are not
exactly correctly placed (i.e., b1i and b2i have different
vertex indices), after each iteration of the recursive
mapping, before and after the optimization process
respectively (Eq. 9). Note that this is a very strict
condition for error evaluation. As well, the errors of
complete surface alignment Errtot is given after each
iteration. They correspond to the average distance to
ground truth, and are expressed as a percentage of
the mesh size.

As can be observed in Table 1 and Fig. 6, surface
alignment accuracy is improved by the proposed
recursive geodesic mapping, and reach near optimal
mapping after few iterations (Errtot = 0.55%). Addi-
tional experimental results are presented in Sect. 5.
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iteration 0 1 2 3 4
N 5 25 75 135 195
Err1 8 30 47 57
Err2 7 25 32 43
Errtot(%) 2.20 1.61 0.84 0.60 0.55

TABLE 1
Number of mismatchings of N correspondence points

before (Err1) and after (Err2) optimization (see
Eq. 9), and average distance errors (Errtot) after each

iteration of the recursive mapping obtained on the
sequence Crane (ground truth from [6]).

Fig. 6. Surface alignment errors with respect to the
number of landmark points N . Err represents the dis-
tance to ground truth as a percentage of the mesh size.
Errtot is the average error over the whole 3D video
sequence (sequence Crane contains 173 frames).

4.3.2 Topology change management

Topology-based approaches that involve geodesics
computed over object surface are usually sensitive to
surface topology changes. For example, when body
parts touch each other (e.g., arms akimbo), the global
distribution of geodesics is usually altered. Although
it can be desirable for some applications (e.g., shape
matching [51], scene understanding [2]), surface topol-
ogy invariance is rather desirable in our context.

However, as presented in the previous sections, our
algorithm relies on a piecewise mapping where the
priors (i.e., correspondence points) are located in non-
ambiguous regions. Particularly, the recursive process
presented in Sect. 3.3.3 prevents surface point match-
ing in ambiguous regions. As illustrated in Fig. 7,
after few iterations, surface regions where no topology
change occurs do not suffer from misalignment, and
correspondence points can be found close to dis-
turbed regions where topology changes occur. On the
other hand, even a method using several conformal
maps [31] cannot cope directly with topology change
(see wrong surface matchings in green in Fig. 7d).

Note that in [6], the patch-based alignment method
implicitly handles topology changes across 3D video
sequence. However, the optimization process can lo-
cally converge to a wrong solution during few frames
(see next Sect. 5). Besides, surface mesh connectivity

is lost (as surfaces are remeshed) as well as local
geometry information (i.e., surface details are lost).

5 EXPERIMENTAL RESULTS

3D video datasets and ground truth. For surface
alignment evaluation, we use several publicly avail-
able datasets of 3D video sequences, such as the
sequences Kickup, Lock, Pop and Free from the Uni-
versity of Surrey [12], the sequences Bouncing, Crane,
Handstand and Samba from MIT-CSAIL [48], and the
sequences Yoga and Capoeira from Kyoto Univer-
sity [8]. In the sequences from [12], the subject wears
a loose T-shirt and performs quick dance steps. Every
mesh is high-resolution (140,000 vertices) and has a
smooth surface which contains local reconstruction ar-
tifacts. The sequences from [48] have similar features,
while the surfaces are smoother (i.e, less surface noise)
but more rigid. The sequences from [8] contain high-
resolution meshes (around 15,000 vertices) with more
reconstruction artifacts caused by non-homogeneous
lighting from different viewpoints and poorly tex-
tured surface regions.

These datasets are relevant as they are obtained
from real human performances, and challenging as
they contain complex surface motions of human body
and cloths, as opposed to synthesized datasets which
usually consist only of piecewise rigid surfaces (and
usually serve for shape matching and retrieval).

In [6] the authors have proposed a patch-based
surface tracking technique that is robust across time,
and consistently remeshed the datasets cited above
(all mesh models in each sequence share the same
connectivity). Hence, we will consider the datasets
provided by [6] as ground truth data, and discard
from evaluations erroneous frames (identified by
hand).

Computation cost. The algorithms were developed
in C++ on standard machines (Corei7 CPU).
Geodesic distances on surface mesh models are
approximated by shortest paths on edges, and are
computed using the Dijkstra’s algorithm with a
binary heap which complexity is |V | log |V |, where
|V | is the number of vertices in a surface mesh.
Although the current implementation has not been
optimized for high computation time performance,
the alignment process duration is reasonable even
without GPU implementation (e.g., in the order of
seconds with |V | = 15, 000 if N < 50, and 1min if
N = 195). Computation time between two surfaces is
proportional to the size of both source and destination
meshes (e.g., around 20s if |V | = 30, 000 and N = 75).
The most time consuming step is actually the
computation of the geodesic integral (Eq. 4) which
takes around 65% of the total calculation (see Fig. 8).
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Fig. 7. Matching of N pairs of correspondence points between surfaces of different topology. The surface mesh
on the right (in a), b) and c)) has a self-intersection as the left hand is touching the hip (see red circle). However,
the iterative computation of non-ambiguous regions allows accurate matching of correspondence points (where
A = 1), except for the local region around the disturbed area. In d), our method is compared to [31] for point-to-
point surface alignment (10% of matchings are represented).

Fig. 8. Computational cost details.

Baseline. We evaluate point-to-point surface align-
ment against state-of-the-art surface alignment tech-
niques [31], [32]. In [31], correspondences are ob-
tained from multiple conformal maps that are blended
together. This method (Blended Intrinsic Maps) is
known to outperform several other approaches (e.g.,
[28]) on various datasets. In [32], the authors pro-
pose to perform matching in the spectral domain
using spectral embeddings, as they are less dependent
to rigid and non-rigid deformations. This method
(FOCUSR) has been tested on various datasets and
showed good performances. In our evaluations, we
use FOCUSR with simple spectral coordinates (as
described in [32]). As our approach, these methods
do not need prior information, do not rely on color
or texture, and do not depend on local geometry infor-
mation. The latter point is essential as 3D video data
can contain strong surface noise. As surface alignment
can be used for numerous applications, we show some
examples of wide-timeframe matching [52], texture
transfer, and 3D motion flow estimation [4].

5.1 Surface alignment evaluation
Frame-to-frame alignment. We start our evaluation
by showing that the proposed geodesic mapping is
accurate for point-to-point surface alignment across
3D video sequences. Although the global shapes
can look similar from frame to frame, the problem
is actually not trivial when surfaces undergo non-
rigid deformations. Figure 9 (top) illustrates point-

to-point surface alignment between frames of the
sequence Bouncing. The sequence consists of 174
frames and contains large non-rigid surface defor-
mations (a subject wears loose clothing and jumps
around). Our method yields an average distance error
of 1.18%(±0.75%) to ground truth (percentage calcu-
lated with respect to the mesh size), and the Blended
Intrinsic Maps [31] return 1.05%(±0.58%). Both sig-
nificantly outperforms the spectral method (FOCUSR
with simple spectral coordinates) [32] which achieves
10.70%(±1.96%). Furthermore, as shown on the right,
the patch-based tracking method [6] can converge
to local optima and produce erroneous surface ge-
ometry. In that case, a complete mapping cannot be
performed (see circle). In comparison, our method can
be applied directly to original data. Similarly, Fig. 9
(bottom) illustrates point-to-point surface alignments
between frames of the sequence Free (499 frames).
Our method returns an average distance error of
1.35%(±1.03%), [31] returns 0.97%(±0.62%), and [32]
achieves 10.05%(±1.45%). As well, the figure on the
right shows erroneous convergence of [6], and we
show the surface matching obtained on the original
dataset using our method.

Supplemental evaluations on sequences Pop, Lock,
Crane, Samba, Handstand and Kickup are presented
in Fig. 10, where we show examples of alignments
using [32] and our method. Note that we do not
illustrate the results obtained with [31] as they are
visually similar to ours. All average distance errors
to ground truth are reported in Table. 2. Graphs
representing comparisons of point-to-point alignment
methods ([32], [31] and ours) computed between
consecutive frames of sequences are shown in Fig. 11.
In general, we observe that the spectral method [32]
is not as accurate as the proposed geodesic mapping
for point-to-point surface alignment across 3D video
data, while [31] shows similar performances than our
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Dataset Free Pop Lock Bouncing Crane Samba Handstand Kickup
#frames 499 249 249 174 173 174 173 219
[32] (%) 10.05(±1.45) 6.69(±0.64) 7.40(±1.11) 10.70(±1.96) 8.33(±0.79) 4.93(±0.66) 9.15(±2.93) 8.68(±0.94)
[31] (%) 0.97(±0.62) 0.22(±0.22) 0.64(±0.55) 1.05(±0.58) 0.58(±0.24) 0.70(±0.31) 0.63(±0.46) 0.41(±0.39)
[ours] (%) 1.35(±1.03) 0.19(±0.27) 0.73(±1.74) 1.18(±0.75) 0.55(±0.28) 0.70(±0.30) 0.75(±0.55) 0.40(±0.51)

TABLE 2
Average of relative distance errors from ground truth (with standard deviation) for surface alignments between

consecutive frames of various 3D video sequences.

propose method. However, [31] relies on multiple
conformal maps (whereas we use only one), and does
not cope well with topology change (see Sect. 4.3.2
and Fig. 7d).

Wide-timeframe alignment. Figure 12 illustrates sur-
face alignment for wide-timeframe matching (as
in [52]). The process is also achieved without using
any prior articulated shape model or frame-to-frame
surface tracking, while they are the usual straightfor-
ward (non-optimal) solutions. Our approach returns
complete alignment of surfaces, where all points are
mapped. We ran several tests on the datasets and
found our method performs much better than the
spectral matching method [32] and the blended in-
trinsic maps [31] when they fail at correctly matching
surface protrusions. For example alignment errors
(Ērr) between frames #29 and #125 of sequence Free
are 38.16% for [32], 32.48% for [31], and 4.14% for our
approach.

5.2 Applications
Texture transfer. As illustrated in Fig. 13, the accuracy
of our approach allows us to perform texture transfer
between dynamic surfaces. In a), texture transfer
is performed between a model from the sequence
Capoeira and a model from the sequence Free.
The texture transfer returns globally good visual
results although some minor local artifacts can be
observed. Note that the wrinkles on the shirts are
particularly well transferred. In b), a model from the
sequence Yoga with real texture is matched with an
untextured model, and texture transfer is performed
efficiently (see front and back). In c), d), e) and f),
various effective texture transfers are shown between
textured mesh sequences from [6] (from the models
on the left to the models on the right).

3D flow estimation. Motion flows are obtained
by alignment of consecutive frames of 3D video
data. Figure 14a) shows motion flows computed
on the sequence Capoeira, where we can observe
dense motion flows. Figure 14b) shows motion flows
computed on two clips of the sequence Samba.
Here, all surface points are mapped using geodesic
mapping. As a comparison, in [4], the authors could
not perform well on that sequence due to the poor

surface texture. Note that as no vertex tracking
over time is performed directly, we do not have
connectivity consistency between consecutive frames.
Nevertheless, this could be naively obtained by
choosing nearest neighbor flows.

5.3 Failure case
According to our experiments, despite overall good
performance, mapping can be locally unperfect when
severe variations of topology or shape occur. In
Fig. 15, we show examples of alignments with sur-
faces containing errors found in some sequences of [6].
Unfortunately here, ground-truth is only partially cor-
rect. When reconstruction errors are not too severe, we
can observe that surface alignment is globally correct
(e.g., see Bouncing).

Note that, as our current implementation requires
surface mesh edges to compute geodesics, a meshing
or remeshing step is mandatory when applying the
method directly to point clouds and partial scans. As
well, we expect the surfaces to be aligned to have
globally consistent shape. For example, matching hu-
man to gorilla is problematic because of the different
proportions of limbs.

Fig. 15. Misalignments caused by strong variations in
shape or topology.

6 CONCLUSION

In this paper, we present a novel approach to perform
dynamic surface alignments. We define a geodesic
mapping (i.e., diffeomorphism) between surfaces con-
sidered as Riemannian manifolds that carry a specific
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Fig. 9. Left) Surface alignment errors on the datasets Bouncing (top) and Free (bottom). Our approach
outperforms the spectral method. Right) Patch-based tracking can return local reconstruction errors, whereas our
matching method performs alignment without altering surface geometry. (10% of matchings are represented.)

distance function we call global geodesic distance.
Particularly, as non-rigid deformations are known
to affects geodesics, the morphism is built using a
coarse-to-fine strategy where correspondence points
between surfaces are sought in non-ambiguous re-
gions. The correspondence points are recursively used
to define the global geodesic coordinates (similar
to generalized barycentric coordinates) that serve to
uniquely locate surface points. Complete point-to-
point surface mapping is then obtained by formu-
lating the problem as a piecewise MRF optimization
problem in order to make the problem tractable,
and using the correspondence points as priors. Our
approach does not require color-based feature ex-
traction (unlike [4], [5], nor surface remeshing or
deformation (unlike [6]), and can handle very large
meshes (unlike [28]). As well, sensitivity to topology
change is discussed and we show that our approach is
competitive compared to the state-of-the-art. Finally,
this algorithm is used for numerous applications such
as texture transfer, 3D motion flow estimation in
3D video, wide-timeframe matching, etc. The perfor-
mances are obtained on high-resolution mesh models
from publicly available real-world datasets.

For further improvements, we believe that color
information could be used when available, and as
well, different geometry diffusion methods could be
explored to improve the robustness to topology vari-
ations.
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S. Rusinkiewicz, “Temporally coherent completion of dynamic
shapes,” ACM Trans. on Graphics, vol. 31, no. 1, 2012.

[38] C. Cagniart, E. Boyer, and S. Ilic, “Iterative mesh deformation
for dense surface tracking,” Proc. IEEE Int’l Workshop on 3-D
Digital Imaging and Modeling, 2009.

[39] R. W. Sumner and J.Popovic, “Deformation transfer for trian-
gle meshes,” SIGGRAPH, pp. 399–405, 2004.

[40] T. Tung and F. Schmitt, “The augmented multiresolution Reeb
graph approach for content-based retrieval of 3D shapes,” Int.
Jour. of Shape Modeling, vol. 11, no. 1, pp. 91–120, 2005.

[41] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii, “Topol-
ogy matching for fully automatic similarity estimation of 3D
shapes,” SIGGRAPH, pp. 203–212, 2001.

[42] M. Morse, “The calculus of variations in the large,” American
Mathematical Society, Colloquium Publication 18, New York, 1934.

[43] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas,
“Robust on-line computation of Reeb graphs: Simplicity and
speed,” SIGGRAPH, 2007.

[44] P. Huang, A.Hilton, and J. Starck, “Shape similarity for 3D
video sequences of people,” Int’l J. Computer Vision (IJCV),
vol. 89, no. 2-3, pp. 362–381, 2010.

[45] P. Huang, T. Tung, S. Nobuhara, A. Hilton, and T. Matsuyama,
“Comparison of skeleton and non-skeleton shape descriptors
for 3D video,” Proc. Int’l Symp. 3D Data Processing, Visualiza-
tion, and Transmission (3DPVT), 2010.

[46] H. Edelsbrunner, J. Harer, A. Mascarenhas, and V. Pascucci,
“Time-varying Reeb graphs for continuous space-time data,”
Symp. Computational Geometry, 2004.

[47] T. Klein and T. Ertl, “Scale-space tracking of critical points in
3D vector fields,” Proc. Topology-Based Methods in Visualization,
2005.

[48] D. Vlasic, I. Baran, W. Matusik, and J. Popovic, “Articulated
mesh animation from multi-view silhouettes,” ACM Trans.
Graphics, vol. 27, no. 3, 2008.

[49] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy
minimization via graph cuts,” IEEE Trans. Pattern Analysis
Machine Intelligence, vol. 23, no. 11, pp. 1222–1239, 2001.

[50] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov,
A. Agarwala, M. Tappen, and C. Rother, “A comparative study
of energy minimization methods for Markov random fields
with smoothness-based priors export,” IEEE Trans. Pattern
Analysis Machine Intelligence, vol. 30, no. 6, pp. 1068–1080, 2008.

[51] A. M. Bronstein, M. M. Bronstein, and R. Kimmel, “Topology-
invariant similarity of nonrigid shapes,” Int’l Jour. Computer
Vision (IJCV), vol. 81, pp. 281–301, 2009.

[52] J. Starck and A. Hilton, “Correspondence labelling for wide-
timeframe free-form surface matching,” Proc. IEEE Int’l Conf
Computer Vision, 2007.

Tony Tung received the M.Sc. degree
in Physics and Computer Science from
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