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ABSTRACT

We present a novel approach that achieves segmentation of
subject body parts in 3D videos. 3D video consists in a free-
viewpoint video of real-world subjects in motion immersed in
a virtual world. Each 3D video frame is composed of one or
several 3D models. A topology dictionary is used to cluster
3D video sequences with respect to the model topology and
shape. The topology is characterized using Reeb graph-based
descriptors and no prior explicit model on the subject shape
is necessary to perform the clustering process. In this frame-
work, the dictionary consists in a set of training input poses
with a priori segmentation and labels. As a consequence, all
identified frames of 3D video sequences can be automatically
segmented. Finally, motion flows computed between consec-
utive frames are used to transfer segmented region labels to
unidentified frames. Our method allows us to perform robust
body part segmentation and tracking in 3D cinema sequences.

Index Terms— 3D video, topology dictionary, shape
matching, body segmentation

1. INTRODUCTION

Performance captures have become popular since the recent
advance of digital technologies. Solutions produce free-
viewpoint videos of real-world subjects in motion that can
be immersed in virtual worlds. In particular the 3D video
technology enables us to capture subjects without using any
special suit or markers as opposed to motion capture methods
(and thus the subjects can wear loose clothing). In order
to perform the acquisitions, several calibrated and synchro-
nized video cameras are set around the scene (e.g. a studio
or a stadium). 3D video sequences are reconstructed using
multiple-view stereo techniques. Each 3D video frame is
therefore composed of one or several 3D models. The tech-
nique suits to a very wide range of applications such as 3D
cinema, video game, medicine, sports, surveillance, etc.

We present a novel approach that achieves segmentation
of subject body parts (such as head, body, limbs) in 3D videos
using a topology-based shape descriptor dictionary. The dic-
tionary is used to cluster 3D video sequences with respect to
the model topology and shape. As Reeb graph-based descrip-
tors are used as topology descriptors, no prior explicit model
on the subject shape (such as a skeleton) is necessary to per-

Fig. 1. 3D video performance segmentation. 3D video se-
quences are modeled by a topology dictionary whosewords
contain segmentation informations. Here, a model (left) from
the dictionary is used to segment a set of similar models
(right) retrieved from a 3D video sequence.

form pose recognition. In our framework, the revisited dictio-
nary consists in a set of training input sequences with a pri-
ori segmentation and labels. As a consequence, using topol-
ogy and shape matching, all identified frames of 3D video
sequences are automatically segmented. Finally motion flows
computed between consecutive frames are used to validate re-
gion segmentation and transfer labels to unidentified regions.
Our method allows us to perform robust body part segmenta-
tion and tracking in 3D cinema sequences. This can be useful,
for example, to edit a body part in one frame and then au-
tomatically transfer the modification to the whole sequence.
The rest of the paper is organized as follows. The next sec-
tion discusses work related to the techniques presented in this
paper. Section 3 makes a brief recap on the topology dictio-
nary concept. Section 4 describes the 3D video performance
segmentation process. Section 5 shows experimental results.
Section 6 concludes with a discussion on our contributions.

2. RELATED WORK

Since a decade an increasing number of research groups have
been working on 3D performance capture using multiple view
camera settings [1, 2, 3, 4, 5, 6]. The systems usually require
a dedicated studio or area, where video cameras are set to
surround a scene (cf. Fig. 2). The video cameras are synchro-



Fig. 2. 3D video performance.The subject model is repre-
sented in a virtual environment with video cameras.

nized and geometrically (and eventually color) calibrated. It
is then possible to reconstruct 3D videos (as a streaming of
3D models) of subjects in motion using multi-view stereo
techniques applied to every set of frames simultaneously ac-
quired. According to the literature the best performing tech-
niques to achieve 3D shape reconstruction from multi-view
images (without using additional HR device such as 3D scan-
ner) combine silhouettes and stereo (see [7] for a survey). In
addition textures are mapped onto the reconstructed 3D ob-
ject surfaces to deliver high quality visual effects (e.g. for
cloth rendering).

Many methods have focused on reconstruction quality [8,
9, 10, 11]. Nevertheless few have addressed the management
of the overall data produced by 3D video systems whereas
it is crucial as 3D video sequences are very tedious to han-
dle due to the huge size of datasets. Recently [12, 13] have
proposed methods to produce new synthesized 3D video se-
quences from original 3D video sequences by: (1) cluster-
ing similar frames using shape matching methods, and (2)
producing comprehensive motion graphs. In particular, [13]
proposed a content-based encoding strategy to achieve 3D
video compression, skimming and description. 3D video se-
quences are modeled by a topology dictionary with Markov
network: a weighted directed graph where nodes represent
clusters of topology descriptors, and edges represent transi-
tions between different poses. The topology dictionary is used
to learn and index 3D video patterns. In addition, semantic
annotations provide automatic video description and action
recognition [14, 15].

In our framework, we extend the application of the topol-
ogy dictionary to 3D video performance segmentation. To
date, human body segmentation has been mainly performed
in monocular videos using explicit human models (e.g. skele-
tal graph) [16, 17]. The system recognition ability is there-
fore bounded to predesigned descriptions learned from train-
ing datasets and cannot cope with arbitrary articulated mod-
els. Furthermore to our knowledge no strategy to segment 3D
video performance has been proposed so far. Hence we pro-
pose to use the topology dictionary with Reeb graphs as shape
descriptors to identify subject body parts in 3D videos. The
Reeb graph allows us indeed to automatically extract shape
and topology information without fitting a predesigned model

Fig. 3. Multiresolution Reeb graphs at resolution r=4, 3
and 2.

on the model shape. The training dataset consists in extracted
poses or sequences with segmented regions (and labels). As
in [18, 13], the recognition step relies on a fast and efficient
multiresolution topology matching process where 3D video
frames are segmented as frames are identified by the system.
Finally a post-processing step transfers labels from identified
frames to unidentified frames using a surface matching ap-
proach [20, 19].

3. THE TOPOLOGY DICTIONARY

The topology dictionary is generated from a set of extracted
patterns or learned from training input sequences. Patternex-
traction is obtained by unsupervised clustering of the dataset
using enhanced Reeb graphs. The Reeb graphs are canonical
representations of the topology of surface models. They have
been designed for shape matching in large database and can
perform efficient shape retrieval queries [18]. The dictionary
features a weighted directed graph structureG = (C, E)
where nodes (or states)C = {ci} represent patterns and
edgesE = {eij} characterize topological changes (state
transitions). The Markov network structure allows to draw
statistical information on the video content such as dura-
tion and occurrence probability of frame sets: each edge
eij 6= ∅ carries a weightwij that models the transition prob-
ability between the two statesci andcj . Those informations
are combined with a Reeb graph multiresolution matching
scheme in order to accelerate queries [13].

3.1. Multiresolution Reeb graph

The Reeb graph is a high level 3D shape descriptor. It is
an elegant solution to analyze 3D mesh topology and shape
as it gives a graphical representation of surface properties.
As designed, Reeb graphs at coarser resolution levelsr <
R can be derived from finer resolution representations (cf.
Fig. 3). This is a great advantage in practice as it enables
us to perform graph matchings at lower resolution levels, thus
avoiding NP-completeness complexity. Furthermore the aug-
mented Multiresolution Reeb Graph (aMRG) is an enhanced
version of a multiresolution Reeb graph. It embeds topologi-



cal and geometrical informations in order to perform accurate
shape matching in large database (cf. [18] for a detailed de-
scription).

3.2. Motion graph structure

We propose to analyze the content of training 3D data to iden-
tify poses, and encode sequences using pattern references.
The search is operated by Reeb graph matchings. The dataset
is clustered into topology classesC and a weighted directed
graphG is built upon the timing of the sequence as a Markov
network (cf. Fig. 4). The overall structure stands for the
topology-based shape descriptor dictionary.

Fig. 4. Motion graph . 3D video sequences are clustered in
topology classes.

4. PERFORMANCE SEGMENTATION

The topology dictionary introduced in [13] is revisited to
serve for 3D video performance segmentation. Training
datasets consist in segmented and labeled sequences. Topol-
ogy and shape matchings (as in [18]) are performed to identify
and automatically segment 3D video sequences. Finally mo-
tion flows computed between consecutive frames are used to
transfer labels to unclassified frames. Our method allows us
to perform robust body part segmentation and tracking in 3D
sequences.

4.1. Body part learning

The system is trained with extracted patterns from test se-
quences. The patternsC = {c1, ..., cN} can be chosen by
clustering the sequenceS = {s1, ..., sT } using a topology-
based descriptor as the Reeb graph, and selecting a pattern
from each clusterci (cf. Fig. 4); therefore the training dataset
contains segmented models with labels. In practice, models
are partitioned according to Reeb graph nodes computed at a
fine resolution levelr = 4 and a region label is associated to
each node (cf. Fig. 3).

4.2. Body part recognition

Similar poses of a model can be retrieved in 3D videos by
queries with respect to topology and shape. The matching

process involves a multiresolution strategy were similarity be-
tween Reeb graphs are evaluated using coarse-to-fine repre-
sentations [18, 13]. The motion graph structureG (cf. 3.2)
allows us to quickly select the best candidates inC to be eval-
uated based on occurrence statisticswij . Hence as a frame
s is classifieds ∈ ci, all the frames belonging to the same
topology clusterci are then segmented and labeled accord-
ingly. Furthermore, we assume that unclassified frames{s ∈
S∩s /∈ C} can be correctly segmented using the closest iden-
tified frame inC. Labels are transfered using dense surface
matching [20, 19].

5. EXPERIMENTAL RESULTS

The algorithms were developed in C++ using a PC Core2Duo
3.0GHz 4GB RAM. The performances of our approach have
been evaluated on real-world 3D videos of human perfor-
mances such as yoga, martial arts, aerobic. Every 3D video
frame contains a 3D mesh of approximatively 15000-30000
triangles with texture. The current unoptimized implementa-
tion takes 15s to generate an augmented multiresolution Reeb
graph at resolution levelR = 4. The similarity computation
between two models takes 10ms. The sequences were cap-
tured in a dedicated studio using a set of 15 video cameras
synchronized at 25fps. Figures 1 and 5 illustrate the segmen-
tation performances of our approach on challenging datasets.
In Fig. 1, the segmentations are performed with respect to a
model from a different sequence. In Fig. 5, similar frames
are efficiently retrieved and similarly segmented disregarding
timeframe.

6. CONCLUSION

In this paper we present a new scheme to achieve 3D video
performance segmentation. 3D video sequences of subjects
in motion are modeled by a revisited topology dictionary. The
dictionary consists in topology classes obtained by sequence
clustering. The extracted sequences contain user-defined
segmentations and labels. The dictionary features as well a
comprehensive motion graph that allows us to easily navigate
through the sequences. The Reeb graph is used as topology-
based shape descriptor as it enables us to represent arbitrary
subjects without using predesign explicit models such as hu-
man skeleton. Identified frames that are similar to a topology
dictionary word are classified and then segmented accord-
ingly. Finally, motion flows computed between consecutive
frames are used to transfer labels to eventual unidentified
frames. Our method allows us to perform robust body part
segmentation and tracking in 3D cinema sequences.
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Fig. 5. 3D video performance segmentation.The subjects are segmented according to the topology class they belong to.
(Top) Yoga sequences. (Bottom left) Capoeira sequence. (Bottom right) Aerobic sequence.
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