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Abstract
Most of behavior recognition methods proposed so far

share the limitations of bottom-up analysis, and single-
object assumption; the bottom-up analysis can be confused
by erroneous and missing image features and the single-
object assumption prevents us from analyzing image se-
quences including multiple moving objects. This paper
presents a robust behavior recognition method free from
these limitations. Our method is best characterized by
1) top-down image feature extraction by selective atten-
tion mechanism, 2) object discrimination by colored-token
propagation, and 3) integration of multi-viewpoint images.
Extensive experiments of human behavior recognition in
real world environments demonstrate the soundness and
robustness of our method.

1 Introduction
Motion understanding is essential for wide varieties of

vision applications, such as visual surveillance, human in-
terface and virtual reality. Motion understanding problems
can be categorized into the following three levels:
Physical motion analysis: Measure the time sequence of

3D or 2D object locations and shapes.
Object behavior recognition: Classify object motions

into a set of behavior patterns (i.e. classes), which emerge
from constraints on object properties and surrounding
physical environments.

Object action understanding: Reason about the object
intention from motions, e.g. gesture, sign language, flag
semaphore, and so on.

In this paper, we address the object behavior recognition
problem.

In general, the visual object behavior recognition con-
sists of 1) image feature extraction and 2) temporal se-
quence analysis of extracted features.

Most of the methods proposed so far (e.g. [1], [2], [3],
[4]) employ Hidden Markov Model (HMM) for sequence
analysis. HMM realizes flexible matching between the
detected feature sequence and given model sequences by
finding the optimal state transition path which maximizes
a matching measure(probability) under the assumption of
Markov property. Since the state transitions are obtained
by the optimization, current states in HMM are hidden.

These systems share the following limitations:
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Figure 1: Behavior recognition system. (a): Bottom-up
system, (b): Bottom-up and Top-down system.

1 Bottom-up analysis: Feature extraction is followed by
sequence analysis as shown in Figure.1 (a). This means
severe limitation on stability and robustness; erroneous
and missing feature will confuse sequence analysis and
cause fatal errors.

2 Single-object assumption: Number of objects in each
image frame is assumed to be one or zero. This assump-
tion limits the applicability; multiple object behaviors
cannot be classified simultaneously.
These limitations prevents the systems from recognizing

multiple object behaviors in a single image sequence,which
is essential for visual surveillance tasks.

To remove these limitations, we propose the following
methods:
1 Selective attention mechanism: Feature sequence anal-

ysis and feature extraction are designed as:
Sequence analysis: Nondeterministic Finite Automa-
ton(NFA: described in section2) is employed as a se-
quence analyser. NFA is a simple state transition model
which allows state transitions from a single state to mul-
tiple states for an input. The reason why we use NFA
instead of HMM are:
1. Active states of NFA are not hidden, i.e., they can
be monitored at any time. Based on this property, we
can design top-down feature extraction referring active
states.
2. We can track all possible feature sequences by using
NFA, i.e., multi-context behavior analysis can be real-
ized.
Feature extraction: Image features are extracted in
specified image regions which varies with active states



of NFA. This can be regarded as a top-down feature ex-
traction.
We call the above behavior recognition mechanism se-
lective attention mechanism(Figure.1 (b) ).

2 Object discrimination mechanism: In selective atten-
tion mechanism, however, multiple states are simultane-
ously activated for a single object behavior and the num-
ber of objects cannot be recognized. To eliminate this
drawback, the following mechanism is also employed:
� The activated states are marked by colored tokens,
where a color corresponds to an object. By propagat-
ing colored tokens on activated states, different object
behaviors are discriminated.
Based on these ideas, we can realize a robust multi-

behavior recognition system.
However, the appearance based behavior recognition

methods share a limitation that 3D object behaviors along
viewing direction are degenerated on 2D image plane and
hardly recognized. To remove this limitation, we further
extend the above method for multi-viewpoint images.

In the following sections, behavior recognition method,
multi-viewpoint extension,practical design and experimen-
tal results are described.

2 Behavior Recognition
Here we describe the behavior recognition method con-

sists of selective attention and object discrimination mech-
anism.

2.1 Selective Attention Mechanism
In image sequences of object behaviors belonging to a

class, we can find an image variation sequence specifying
the behavior class. For example, when we open and go out
through a door, we can find image variations at 1) the door
knob, 2) the edge of the door, and so on.

If the camera is fixed, such image variations can be
detected in specific image regions1. We call this region
focusing region. If a focusing region sequence specifying
a behavior class is given, we can identify behaviors be-
longing to the class by detecting image variations(events)
in focusing regions.

In this case, focusing regions should be changed accord-
ing to the behavior stages. This can be realized by corre-
sponding states in sequence analyser (NFA) to the focusing
regions. That is, the detected events activate states in NFA,
and the event detector changes its focusing regions accord-
ing to the activated states. We call this bottom-up and top-
down behavior identification mechanism selective attention
mechanism(Figure.2). The behavior identifier based on se-
lective attention mechanism is described below:

A behavior identifier is a simple classifier which accepts
image sequences of a behavior class and rejects those in
the others. The behavior identifier consists of 1) a focusing
region sequence, 2) a sequence analyzer, and 3) an event
detector:

1In this paper, we will use a word “region” as a set of pixels.
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Figure 2: Behavior identifier

Definition 1 (Focusing region sequence)
A focusing-region sequence f�q� is a sequence of image
regions where the event detection is performed at state q.

A practical method to acquire a focusing region sequence
from training samples is described in section 4.

Definition 2 (Sequence analyzer) The sequence analyzer
(NFA) is represented by �Q� q0�Σ� �� F �, where
� Q : finite set of states2, Q � fq0� q1� � � � � qm� qrejg,
� q0: initial state ,q0 � Q ,
� Σ: finite set of event codes,
� �: state transition function, ��q� ��: Q� Σ �� Q,
� F : finite set of final states, F � fqm� qrejg.
When an input sequence �i � Σ �i � 0� 1� � � �� is given,
the active state �i at i-th input is defined by � as:�

�0 � q0�
�i�1 � ���i� �i��

(1)

Note that:
� The state transition is not applied to states in F ,
� � may have multiple values for a single input. This is
called non-deterministic state transition.
� A state qm represents that the input sequence is accepted
as the behavior class. Hence, qm is also represented by
qacc.
� A state qrej represents that the input is rejected.

Definition 3 (Event Detector) An event is a predicate rep-
resenting the presence of an image feature in a focusing
region. The event of an image I with a focusing region f is
represented by e�f� I� �� f0� 1g�.

2A state sequence �q1
� � � � � q

m� represents an abstracted time axis,
i.e., each state in this sequence corresponds to a time interval. See section
4.



Table 1: State transition table at �i � qk for event code
length=2.

e�f�qk�� Ii� � e�f�q
k�1�� Ii� �i�1

0 � 0 qrej

0 � 1 qk�1

1 � 0 qk

1 � 1 qk or qk�1

Event detector detects events at successive states and
combines them into an event code. For example, event
code of length 2 at state � is represented by:

� � e�f���� I� � e�f�succ����� I�� (2)

where succ��� represents the successor function, i.e., if � �
qk , then succ��� � qk�1.

An example of event detection method is described in sec-
tion 4.

Definition 4 (Behavior identifier) These components de-
scribed above are assembled into an identifier in the fol-
lowing manner:
� The event code is used as an input to the sequence anal-

yser,
� The active states of sequence analyser are used to search

keys of focusing regions,
� The focusing region is used in the event detector.

In the case that the event code length is 2, the active
state �i at i-th input is defined as:�

�0 � q0�
�i�1 � ���i� �i��
�i � e�f��i�� Ii� � e�f�succ��i��� Ii��

(3)

If a final state qacc is activated, then the input sequence is
identified as the behavior.

In the case that the event code length is 2 and � i � qk,
�i�1 can be determined by e�f�qk�� Ii� and e�f�qk�1�� Ii�,
because an event e�f�qk�� Ii� � 1 represents the evidence
of �i�1 � qk, and e�f�qk�1�� Ii� � 1 represents �i�1 �
qk�1. Such homogeneous state transition can be described
by a state transition table. An example of the state transition
table is shown in Table.1.

In Table1, an event code �i � 1 �1 will cause a nondeter-
ministic state transition from qk to both qk and qk�1. This
property enables tracking of all possible event sequences.
2.2 Object Discrimination Mechanism

By using selective attention mechanism, multiple object
behaviors can be identified from a single image sequence.
In this mechanism, however, multiple states are simulta-
neously activated for a single object. This means that the
number of objects cannot be recognized. To solve this prob-
lem, we have to correspond the activated states to objects.
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Figure 3: Token propagation patterns

In practice, since the focusing regions at neighboring
states are similar with each other for continuous object be-
haviors, neighboring states are activated for a single object.
Hence, the neighboring active states are considered to be
activated by an object.

A neighboring active state set C is a subset of active
states connected by state transition function �, that is:

���Σ��� � C � ���� �� � C� � ����� �� � C � � � C��� (4)

An active state set P can be decomposed into disjoint
sets of neighboring active states Ck, i.e. , P � �Cj , and
Ck 	 Cj � � for any Ck 
� Cj .

By marking all states in Ck by a token having a color
zk � Z, active states can be corresponded to objects, where
Z represents integer set, and Ck 
� Cj � zk 
� zj .

In this method, however, the number of token colors z k

may vary with time even if the number of objects is con-
stant. To count the correct number of objects, token colors
must be consistently assigned to Ck. This can be real-
ized by propagating tokens along the time axis. Since state
transitions represent progress of object behaviors, tokens
should also be propagated by state transition function �.
That is, tokens are propagated from C

j
i to Ck

i�1 satisfying:�
��

��Σ

�
��Cj

i

���� ��

�
A 	 Ck

i�1 
� �� (5)

where C
j
i represents a neighboring active state set at i-th

input. In this case, C j
i has a link to Ck

i�1.

But, when C
j
i has multiple links, we should not propa-

gate the copies of tokens through those links, because any
active states in differentCks should not have the same token
simultaneously.

Based on the discussion above, tokens should be propa-
gated as follows (Figure.3):

� When C
j
i has no links, tokens are discarded.

� WhenCj
i has a single link, tokens are propagated through

the link.
� When C

j
i has multiple links, tokens are divided into dis-

joint sets, which are distributed through the links. If the
number of links is greater than that of tokens, new tokens
should be generated after the propagation. Any division
minimizing the token generation is feasible.
By incorporating this token propagation, behavior iden-

tification procedure can be described as:
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Figure 4: Behavior classifier

1 For eachCj
i � Pi, if no token is assigned, then new token

is generated and assigned to it.
2 Compute state transitions for Ii and form fCk

i�1g from
activated states �i�1.

3 Propagate tokens from fC j
i g to fCk

i�1g through links
among them.

4 Count the token colors at qacc. Increment i and goto 1.
By using this procedure, we can identify object behav-

iors.

2.3 Behavior Classification
To recognize object behaviors, we have to classify be-

havior patterns. The classifier consists of independent be-
havior identifiers. By introducing an initial state q 0 and �-
state transitions3 from q0 to initial states of these identifiers,
the classifier can easily be realized as shown in Figure.4.

3 Multi-Viewpoint Behavior Recognition
Appearance based behavior recognition methods share

a limitation that 3D object behaviors along viewing direc-
tion are degenerated on 2D image plane and hardly rec-
ognized. To remove this limitation, we further extend the
above method for multi-viewpoint images.

This extension is to integrate multi-viewpoint informa-
tion, which can be categorized into the following three
levels(Figure.5):
Image-level integration : Multi-viewpoint images are

pasted into an image and the recognition system takes
it as input.

Event-level integration : Independently detected event
codes from multi-viewpoint images are integrated into
an event code, which drives a sequence analyzer.

State-level integration : Independent behavior identifica-
tion systems mutually interact to inhibit redundant state
transitions.

Image-level integration cannot verify the cooccurence of
image features in multi-viewpoint images, i.e., this method
neglects the difference of viewpoints.

In event-level integration, event codes detected at differ-
ent viewpoints are integrated by bitwise ‘AND’ operation,

3The �-state transition means a state transition caused by null input.
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which checks the cooccurence of events corresponding to
an event in 3D space4.

State-level integration inhibits redundant active states
according to feasible state combinations, which represent
the valid combinations of active states in identifiers at differ-
ent viewpoints. Feasible state combinations can be learned
from training samples as shown in section 4. When the time
intervals corresponding to states are synchronized among
the identifiers at different viewpoints, this integration is
equivalent to the event-level integration. That is, this in-
tegration includes the event-level integration as a special
case.

The feasible state combinations can be represented by a
set of points in state product space of identifiers at different
viewpoints (Figure.6). This integration can be regarded as

4“An event in 3D space” does not mean 3D object location but the
occurrence of an event when the cameras are not calibrated.
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an augmentation of domain of state transition and token
propagation from states to feasible state combinations.

4 A Practical Design
By using background subtraction, anomalous region at

time t can be obtained as:

a�t� � f�x� y� j jI�x� y; t� � Ibg�x� y�j � 	g� (6)

where I��� �; t� represents input image at time t, Ibg��� ��
background image, and 	 threshold. Here we describe a
practical event detection and learning method using anoma-
lous features.

Event Detection
An event can be detected when anomalous pixels fill the

focusing region, which is defined as:

e�f� I�t�� �

�
1� f � � or

jf�a�t�j
jf j � 


0� otherwise �
(7)

where 
 (0 � 
 
 1) represents a threshold, f the focusing
region, and � the null focusing region.

Focusing Region at Initial state
We assign null focusing region � to state q0. This guar-

antees that the current state set always includes the initial
state q0 as a gatekeeper. Hence, we can recognize behaviors
successively by using this configuration.

Learning a Focusing Region Sequences
A focusing-region sequence can easily be acquired from

the anomalous region a�t�. When n samples of anomalous
region sequences ai�t� �i � 1� 2� � � � � n� in a class are
given, time axes of these samples can be normalized so
as to maximize the following matching measure by the
dynamic programming:Z

ja�t� 	 ai��i�t��j

ja�t� � ai�� i�t��j
dt� (8)

where a�t� is the standard sample of the class, � i is a
monotone increasing function,and j�j represents the number
of pixels.
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Figure 8: Learning a focusing region sequence

From the normalized anomalous region sequences, the
common anomalous region sequence among the training
samples f�t� can be extracted as:

f�t� �

n�
i�1

ai�� i�t��� (9)

The common anomalous region sequence is represented in
the normalized time axis t. Intervals along this time axis
corresponds to the states of an NFA. If a state q corresponds
to a given time interval ts 
 t � te, focusing region f�q�
at the state q is computed as:

f�q� �

te�1�
t�ts

f�t� (10)

Learning Feasible State Combinations
For the multi-viewpoint behavior recognition, feasible

state combinations must be learned from training samples.
By using standard samples of acam1�t�� � � � � acamN�t�
for the same behavior where the time axes are synchro-
nized, we obtain common anomalous region sequences
fcam1�t�� � � � � fcamN�t�. Note that these sequences share
a common time axes. When we generate focusing region
sequences f cami�q�, we can refer the corresponding time
intervals, and hence, the feasible state combinations can be
obtained.

5 Experiments

� time(a) ‘enter’

� time(a) ‘exit’

Figure 9: Examples of training data (gray-level image,
anomalous region)

Here we show experimental results of recognizing hu-
man behaviors incoming and outgoing through a door



� time(a) ‘enter’

� time(a) ‘exit’
Figure 10: Focusing region sequences

(Figure.9 (a),(b)) by using 2 cameras. These behaviors
are named “enter” and “exit”. For each behavior class,
20 training data, i.e., 40 image sequences of single object
behaviors, are used for acquiring focusing regions. The
acquired focusing regions are shown in Figure.10.

Possible methods are non-integrated classifications us-
ing (a) camera1, (b) camera2, and integrated classifications
at (c) image level, (d) event level, (e) state level. These
methods are applied to 60 test data, i.e., 120 image se-
quences of multiple object behaviors. Examples of test
data and state transitions in independent identifiers (state-
level integration) are shown in Figure.11 and 12. In this
case, 2 ‘enter’s and 2 ‘exit’s are correctly recognized.

camera1

camera2 � time
Figure 11: An example of test data

q0

qacc
qacc

qacc

qacc

q0 q0

q0

t

t t

t‘enter’ camera1 ‘enter’ camera2

‘exit’ camera1 ‘exit’ camera2

Figure 12: State Transitions for Fig. 11 (gray: inhibited
states. black: activated states).

The classification results are shown in Figure.13. In each
graph, vertical axis represents the number of data which are
correctly recognized in both senses of ‘classification’ and
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Figure 13: Recognition results (Horizontal: threshold 
,
Vertical:Number of correct recognition).

‘number of objects’. Horizontal axis represents the thresh-
old 
 for event detection. From this figure, we can notice
that event and state level integrations are effective than the
others. State-level integration includes event-level integra-
tion as a special case. However, the latter is slightly superior
to the former in this result. This can be supposed that each
class has been excessively specialized at the learning stage
in state-level integration because of its superiority. In other
word, 20 training data are insufficient for generalizing these
behavior classes.

6 Conclusion
In this paper, we proposed a behavior recognition

method for multiple objects. It is designed based on selec-
tive attention and object discrimination mechanisms. Also,
integrated recognition methods for multi-viewpoint images
are proposed and examined by extensive experiments of
human behaviors. In this experiment, we have confirmed
that event and state level integration methods correctly rec-
ognize even for complex behaviors. Currently this method
can be applied only to the position dependent behaviors.
This limitation will be removed in the future work.
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