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Abstract

Most of behavior recognition methods proposed so far
share the limitations of bottom-up analysis, and single-
object assumption; the bottom-up analysis can be confused
by erroneous and missing image features and the single-
object assumption prevents us from analyzing image se-
guences including multiple moving objects. This paper
presents a robust behavior recognition method free from
these limitations. Our method is best characterized by
1) top-down image feature extraction by selective atten-
tion mechanism, 2) object discrimination by colored-token
propagation, and 3) integration of multi-viewpoint images.
Extensive experiments of human behavior recognition in
real world environments demonstrate the soundness and
robustness of our method.

1 Introduction

Motion understanding is essential for wide varieties of
vision applications, such as visual surveillance, human in-
terface and virtual reality. Motion understanding problems
can be categorized into the following three levels:

Physical motion analysis. Measure the time sequence of
3D or 2D object locations and shapes.

Object behavior recognition: Classify object motions
into aset of behavior patterns (i.e. classes), which emerge
from constraints on object properties and surrounding
physical environments.

Object action understanding: Reason about the object
intention from motions, e.g. gesture, sign language, flag
semaphore, and so on.

In this paper, we address the object behavior recognition

problem.

In general, the visual object behavior recognition con-
sists of 1) image feature extraction and 2) tempora se-
guence analysis of extracted features.

Most of the methods proposed so far (e.g. [1], [2], [3],
[4]) employ Hidden Markov Model (HMM) for sequence
anaysis. HMM redlizes flexible matching between the
detected feature sequence and given model sequences by
finding the optimal state transition path which maximizes
a matching measure(probability) under the assumption of
Markov property. Since the state transitions are obtained
by the optimization, current statesin HMM are hidden.

These systems share the following limitations:
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Figure 1. Behavior recognition system. (a): Bottom-up
system, (b): Bottom-up and Top-down system.

1 Bottom-up analysis: Feature extraction is followed by
sequence analysis as shown in Figure.1 (). This means
severe limitation on stability and robustness; erroneous
and missing feature will confuse sequence analysis and
cause fatal errors.

2 Single-object assumption: Number of objects in each
image frame is assumed to be one or zero. Thisassump-
tion limits the applicability; multiple object behaviors
cannot be classified simultaneously.

Theselimitations preventsthe systemsfrom recognizing
multiple obj ect behaviorsin asingleimage sequence, which
is essential for visual surveillance tasks.

To remove these limitations, we propose the following
methods:

1 Selectiveattention mechanism: Feature sequence anal-
ysis and feature extraction are designed as;

Sequence analysis. Nondeterministic Finite Automa-
ton(NFA: described in section?) is employed as a se-
guence analyser. NFA is asimple state transition model
which allows state transitions from a single state to mul-
tiple states for an input. The reason why we use NFA
instead of HMM are:

1. Active states of NFA are not hidden, i.e., they can
be monitored at any time. Based on this property, we
can design top-down feature extraction referring active
states.

2. We can track all possible feature sequences by using
NFA, i.e., multi-context behavior analysis can be rea-
ized.

Feature extraction: Image features are extracted in
specified image regions which varies with active states



of NFA. This can be regarded as a top-down feature ex-
traction.

We call the above behavior recognition mechanism se-
lective attention mechanism(Figure.1 (b) ).

2 Object discrimination mechanism: In selective atten-

tion mechanism, however, multiple states are simultane-
oudly activated for asingle object behavior and the num-
ber of objects cannot be recognized. To eliminate this
drawback, the following mechanism is also employed:
e The activated states are marked by colored tokens,
where a color corresponds to an object. By propagat-
ing colored tokens on activated states, different object
behaviors are discriminated.

Based on these ideas, we can realize a robust multi-
behavior recognition system.

However, the appearance based behavior recognition
methods share a limitation that 3D object behaviors along
viewing direction are degenerated on 2D image plane and
hardly recognized. To remove this limitation, we further
extend the above method for multi-viewpoint images.

In the following sections, behavior recognition method,
multi-viewpoint extension, practical design and experimen-
tal results are described.

2 Behavior Recognition

Here we describe the behavior recognition method con-
sists of selective attention and object discrimination mech-
anism.

2.1 Selective Attention M echanism

In image sequences of object behaviors belonging to a
class, we can find an image variation sequence specifying
the behavior class. For example, when we open and go out
through a door, we can find image variations at 1) the door
knob, 2) the edge of the door, and so on.

If the camera is fixed, such image variations can be
detected in specific image regions®. We call this region
focusing region. If afocusing region sequence specifying
a behavior class is given, we can identify behaviors be-
longing to the class by detecting image variations(events)
in focusing regions.

Inthis case, focusing regionsshould be changed accord-
ing to the behavior stages. This can be realized by corre-
sponding states in sequence analyser (NFA) to thefocusing
regions. That is, the detected events activate statesin NFA,
and the event detector changesits focusing regions accord-
ing to the activated states. We call this bottom-up and top-
down behavior i dentifi cation mechani sm selective attention
mechanism(Figure.2). The behavior identifier based on se-
lective attention mechanism is described below:

A behavior identifier isasimple classifier which accepts
image sequences of a behavior class and rejects those in
the others. The behavior identifier consists of 1) afocusing
region sequence, 2) a sequence analyzer, and 3) an event
detector:

LIn this paper, we will use aword “region” as a set of pixels.
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Figure 2: Behavior identifier

Definition 1 (Focusing region sequence)
A focusing-region sequence f(q) is a sequence of image
regions where the event detection is performed at state q.

A practical method to acquire a focusing region sequence
from training samplesis described in section 4.

Definition 2 (Sequence analyzer) The sequence analyzer
(NFA) isrepresented by (Q, ¢°, =, 9, F'), where

e Q: finiteset of states?, Q@ = {¢% ¢%, -, ¢™,q"7},

e ¢ initial state,¢° € Q ,

o X: finite set of event codes,

e ). statetransitionfunction, §(¢,0): Q X Z — Q,

e F finite set of final states, F' = {¢™, ¢ ¢ }.

When an input sequenceo; € Z (i = 0,1,---) is given,
the active state p; at i-th input is defined by § as:

po =
{ pir1 = 0(pi,0i), @)

Note that:

x The state transition is not applied to statesin F',

x 0 may have multiple values for a single input. Thisis
called non-deterministic state transition.

x Adtate g™ representsthat theinput sequenceisaccepted
as the behavior class. Hence, ¢™ is also represented by

acc

* Astate ¢"¢/ represents that the input is rejected.

Definition 3 (Event Detector) Aneventisapredicaterep-
resenting the presence of an image feature in a focusing
region. The event of animage I with afocusing region f is
represented by e(f, I) (€ {0, 1}).

2A state sequence (g1, - - -, ¢™) represents an abstracted time axis,
i.e., each state in this sequence corresponds to atime interval. See section
4.



Table 1: State transition table at p; = ¢* for event code
length=2.

e(f(¢"), Ii) - e(f(¢"h), Ii) Pit1
0, O re)
0-1 qk:l
1-0
1-1 qk or qk—i-l

Event detector detects events at successive states and
combines them into an event code. For example, event
code of length 2 at state p is represented by:

o= e(f(p)al) : 6(f(8UCC(p>), I)v (2)

where succ(-) represents the successor function, i.e., if p =
¢ , then succ(p) = ¢"+1.

An example of event detection method is described in sec-
tion 4.

Definition 4 (Behavior identifier) These components de-
scribed above are assembled into an identifier in the fol-
lowing manner:
e Theevent codeisused asan input to the sequence anal-
yser,
e Theactive statesof sequenceanalyser areusedto search
keys of focusing regions,
e Thefocusing region is used in the event detector.
In the case that the event code length is 2, the active
state p; at i-th input is defined as:

po =
{ piv1 = 0(pi,0i), )
o = e(f(pi), 1i) - e(f(succ(pi)), I;).

If afinal state ¢*¢ is activated, then the input sequenceis
identified as the behavior.

In the case that the event code lengthis 2 and p; = ¢*,
pi+1 canbedeterminedby e(f(¢"), I;) ande(f (¢" 1), L)),
because an event e(f(¢*), I;) = 1 represents the evidence
of pir1 = ¢, and e(f(¢"™), I;) = 1 represents p;1 =
¢**1. Such homogeneous state transition can be described
by astatetransitiontable. Anexampleof thestatetransition
tableis shown in Table.1.

InTablel, aneventcodes; = 1-1will causeanondeter-
ministic state transition from ¢* to both ¢* and ¢**+*. This
property enables tracking of all possible event sequences.

2.2 Object Discrimination Mechanism

By using sel ective attention mechanism, multiple object
behaviors can be identified from a single image sequence.
In this mechanism, however, multiple states are simulta-
neously activated for a single object. This means that the
number of objects cannot be recognized. To solvethisprob-
lem, we have to correspond the activated states to objects.

e,
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Figure 3: Token propagation patterns

In practice, since the focusing regions at neighboring
states are similar with each other for continuous object be-
haviors, neighboring states are activated for asingle object.
Hence, the neighboring active states are considered to be
activated by an object.

A neighboring active state set C' is a subset of active
states connected by state transition function ¢, that is:

Vo€ (p e C = 8(p,0) € C)V (8(p,0) €C = peC)). (4)

An active state set P can be decomposed into disjoint
sets of neighboring active states C*, i.e. , P = UC, and
CtNCI = gforany CF #£ C7.

By marking all states in C'* by atoken having a color
2" € Z, activestates can be correspondedto objects, where
7 representsinteger set, and CF # 07 = 25 # 27,

In this method, however, the number of token colors z *
may vary with time even if the number of objects is con-
stant. To count the correct number of objects, token colors
must be consistently assigned to C'*. This can be real-
ized by propagating tokens along the time axis. Since state
transitions represent progress of object behaviors, tokens
should also be propagated by state transition function §.

That is, tokens are propagated from Cf to C{;l satisfying:

(U U 6<pva>> NCH1# ¢, ()

o€ pECf

where Cf represents a neighboring active state set at i-th
input. Inthis case, C; hasalinkto C¥ ;.

But, when C? has multiple links, we should not propa-
gate the copies of tokens through those links, because any
active statesin different C'*sshoul d not have the sametoken
simultaneously.

Based on the discussion above, tokens should be propa-
gated as follows (Figure.3):

e When ¢ has no links, tokens are discarded.

e When Cf hasasinglelink, tokensare propagated through
thelink.

e When C? has multiple links, tokens are divided into dis-
joint sets, which are distributed through the links. If the
number of linksis greater than that of tokens, new tokens
should be generated after the propagation. Any division
minimizing the token generation is feasible.

By incorporating this token propagation, behavior iden-
tification procedure can be described as:
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Figure 4: Behavior classifier

1 ForeachC} € P, if notokenisassigned, then new token
is generated and assigned to it.

2 Compute state transitions for 7; and form {CF, ;} from
activated states p 1 1.

3 Propagate tokens from {C} to {CF,,} through links
among them.

4 Count the token colorsat ¢*“¢. Increment ¢ and goto 1.

By using this procedure, we can identify object behav-
iors.

2.3 Behavior Classification

To recognize object behaviors, we have to classify be-
havior patterns. The classifier consists of independent be-
havior identifiers. By introducing an initial state ¢° and e-
statetransitions® from ¢° toinitial states of theseidentifiers,
the classifier can easily be realized as shown in Figure.4.

3 Multi-Viewpoint Behavior Recognition

Appearance based behavior recognition methods share
alimitation that 3D object behaviors along viewing direc-
tion are degenerated on 2D image plane and hardly rec-
ognized. To remove this limitation, we further extend the
above method for multi-viewpoint images.

This extension is to integrate multi-viewpoint informa-
tion, which can be categorized into the following three
levels(Figure.5):

Image-level integration : Multi-viewpoint images are
pasted into an image and the recognition system takes
it asinput.

Event-level integration : Independently detected event
codes from multi-viewpoint images are integrated into
an event code, which drives a sequence analyzer.

State-level integration : Independent behavior identifica
tion systems mutually interact to inhibit redundant state
transitions.

Image-level integration cannot verify the cooccurenceof
image features in multi-viewpoint images, i.e., this method
neglects the difference of viewpoints.

In event-level integration, event codes detected at differ-
ent viewpoints are integrated by bitwise ‘AND’ operation,

3The e-state transition means a state transition caused by null input.

Camera

Event O0OQQ0
Detector D P Tt
equence Analyser

(1) Image-level integration

Camera

afew| |pa1sed

sz 7 7 7

m_
e o o
=& () ()
=5 OO0
ox equence Analyser
Cameraj—s| EVEN a3
Detector o

(2) Event-level Integration

7

N\

Cameraf—»| EVeNt > : : z o
Detector 3

\_Sequénce Analyser/

( )

A
A

A4

uoniqiyuj

E Cameraj—»| Event o Q () «
Detector O—O—0)
\_Sequence Analyser/

(3) State-level Integration
Figure5: Three Levels of Integration

:Feasible State Combination QO : active state

product 1

NFA
space @1@1@1@1 4 O GEOX

c-C

NFA 2

Figure 6: State Product Space
which checks the cooccurence of events corresponding to
an eventin 3D space®.

State-level integration inhibits redundant active states
according to feasible state combinations, which represent
thevalid combinationsof activestatesinidentifiersat differ-
ent viewpoints. Feasible state combinations can be learned
fromtraining samplesas shownin section 4. Whenthetime
intervals corresponding to states are synchronized among
the identifiers at different viewpoints, this integration is
equivalent to the event-level integration. That is, this in-
tegration includes the event-level integration as a specia
case.

The feasible state combinations can be represented by a
set of pointsin state product space of identifiersat different
viewpoints (Figure.6). Thisintegration can be regarded as

4*An event in 3D space’ does not mean 3D object location but the
occurrence of an event when the cameras are not calibrated.
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Figure 7: Learning common anomal ous region sequence

an augmentation of domain of state transition and token
propagation from states to feasible state combinations.

4 A Practical Design
By using background subtraction, anomalous region at
timet can be obtained as:

a(t) = {(z,y) | H(z,y:t) = Ly(z,y)| > v}, (6)

where I(-, ;) represents input image at time ¢, Ip4(-, )
background image, and v threshold. Here we describe a
practical event detection and learning method using anoma:
lous features.

Event Detection
An event can be detected when anomalous pixelsfill the
focusing region, which is defined as:

1, f = gor L2015 g
0, otherwise ,

emamz{ @

whered (0 < 6 < 1) representsathreshold, f thefocusing
region, and ¢ the null focusing region.

Focusing Region at Initial state

We assign null focusing region ¢ to state ¢°. This guar-
antees that the current state set always includes the initial
state ¢° asagatekeeper. Hence, we can recognize behaviors
successively by using this configuration.

L earning a Focusing Region Sequences

A focusing-region sequence can easily be acquired from
the anomalousregion a(t). When r samples of anomalous
region sequences a'(t) (i = 1,2,---,n) in a class are
given, time axes of these samples can be normalized so
as to maximize the following matching measure by the
dynamic programming:

la(t) N a'(7:(1))]
|a(t) Uat(r(1))|
where a(t) is the standard sample of the class, 7¢ is a

monotoneincreasing function,and |- | representsthe number
of pixels.

dt, (8)
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Figure 8: Learning afocusing region sequence

From the normalized anomal ous region sequences, the
common anomalous region sequence among the training
samples f(t) can be extracted as:

fy = (t). ©)
=1

The common anomal ous region segquenceis represented in
the normalized time axis t. Intervals along this time axis
correspondsto the states of an NFA. If astate ¢ corresponds
toagiventimeinterval t; < t < ¢, focusing region f(q)
at the state ¢ is computed as:

te—1

fla)= ) r® (10)

L earning Feasible State Combinations

For the multi-viewpoint behavior recognition, feasible
state combinations must be learned from training samples.
By using standard samples of ac@™1(t),---, ac@™N(¢)
for the same behavior where the time axes are synchro-
nized, we obtain common anomalous region sequences
feami(t), .-, feemN(t). Note that these sequences share
acommon time axes. When we generate focusing region
sequences f°“™(q), we can refer the corresponding time
intervals, and hence, the feasi ble state combinations can be
obtained.

5 Experiments

Figure 9: Examples of training data (gray-level image,
anomal ous region)

Here we show experimental results of recognizing hu-
man behaviors incoming and outgoing through a door
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(Figure.9 (@),(b)) by using 2 cameras. These behaviors
are named “enter” and “exit”. For each behavior class,
20 training data, i.e., 40 image sequences of single object
behaviors, are used for acquiring focusing regions. The
acquired focusing regions are shown in Figure.10.

Possible methods are non-integrated classifications us-
ing (a) cameral, (b) camera2, and integrated classifications
at (c) image level, (d) event level, (€) state level. These
methods are applied to 60 test data, i.e., 120 image se-
guences of multiple object behaviors. Examples of test
data and state transitions in independent identifiers (state-
level integration) are shown in Figure.11 and 12. In this
case, 2 ‘enter’'sand 2 ‘exit’s are correctly recognized.

Figure 11: An example of test data
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Figure 12: State Transitions for Fig. 11 (gray: inhibited
states. black: activated states).

Theclassificationresultsareshownin Figure.13. Ineach
graph, vertical axisrepresentsthe number of datawhich are
correctly recognized in both senses of *classification’ and
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Figure 13: Recognition results (Horizontal: threshold 6,
Vertical:Number of correct recognition).
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“number of objects’. Horizontal axis representsthe thresh-
old 6 for event detection. From this figure, we can notice
that event and state level integrations are effective than the
others. State-level integration includes event-level integra-
tionasaspecial case. However, thelatter isslightly superior
to the former in thisresult. This can be supposed that each
class has been excessively specialized at the learning stage
in state-level integration because of its superiority. In other
word, 20 training dataareinsufficient for generalizing these
behavior classes.

6 Conclusion

In this paper, we proposed a behavior recognition
method for multiple objects. It is designed based on selec-
tive attention and object discrimination mechanisms. Also,
integrated recognition methods for multi-viewpoint images
are proposed and examined by extensive experiments of
human behaviors. In this experiment, we have confirmed
that event and state level integration methods correctly rec-
ognize even for complex behaviors. Currently this method
can be applied only to the position dependent behaviors.
This limitation will be removed in the future work.
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