
Real-Time Active 3D Shape Reconstruction for 3D Video

X. Wu and T. Matsuyama
Department of Intelligent Science and Technology,
Graduate School of Informatics, Kyoto University

Abstract

In this paper, we focus on the real-time 3D shape recon-
struction of an object moving in a wide area(e.g. a dancing
human). To efficiently record dynamically changing 3D ob-
ject shape, the real-time 3D shape reconstruction and ac-
tive tracking are required. For the real-time 3D shape re-
construction, we propose a parallel plane-based volume in-
tersection method. By implementing the algorithm on a PC
cluster system, we have succeeded in real-time 3D shape re-
construction. Then to get the 3D shape of a moving object in
a wide space, we introduce active object tracking by multi-
ple cameras. To realize the active 3D shape reconstruction,
we augmented the volume intersection method so that it can
be applied to those images captured by active cameras.

1. Introduction

3D video is the ultimate image medium recording dy-
namic visual events in the real world as is: time varying
3D object shape with high fidelity surface properties (i.e.
color and texture)[1]. Its applications cover wide varieties
of personal and social human activities: entertainment (e.g.
3D game and 3D TV), education (e.g. 3D animal picture
books), sports (e.g. sport performance analysis), medicine
(e.g. 3D surgery monitoring), culture (e.g. 3D archive of
traditional dance) and so on.

In recent years, several research groups developed real-
time 3D shape reconstruction systems for 3D video and
have opened up the new world of image media [1] [2] [3]
[4] [5] [6]. All these systems focus on capturing human
body actions and share a group of distributed video cam-
eras for real-time synchronized multi-viewpoint action ob-
servation. While the real-timeness of the earlier systems[5]
[6] was confined to the synchronized multi-viewpoint video
observation alone, the parallel volume intersection on a PC
cluster has enabled the real-time 3D shape reconstruction
[1] [2] [3] [4].

This paper focuses on the real-time 3D shape acquisition
of an object moving in a wide area. We classify the 3D
shape reconstruction into the following two levels:

• Level 1: Real-time 3D shape reconstruction without
camera action.

Silhouette
on Image PlaneCamera A

Camera B

Intersection

Reconstructing space

Object

Figure 1. Silhouette Volume Intersection.

• Level 2: Real-time 3D shape reconstruction with cam-
era action for tracking a moving object.

For the level one, we propose a volume intersection
method based on the parallel plane-to-plane projection . Ex-
perimental results are shown to prove the efficiency of our
proposed method.

For the level two, since the camera action causes the dy-
namic changes of the camera locations(i.e. the positions and
the directions of the cameras), we have to extend the volume
intersection method so that it can be applied to varieties of
camera arrangements.

2. Real-Time 3D Shape Reconstruction

Silhouette Volume Intersection [9] [10] [14] [15] [17]
[18] is the most popular idea for computing 3D shape of
the object (Figure 1). This idea is based on silhouette con-
straints that each 2D silhouette of an object constrains the
object inside the frustum produced by back-projecting the
silhouette from the corresponding viewpoint. Therefore, by
intersecting the frusta for all silhouettes, an approximation
of the object volume is obtained. This is called visual hull
[13] which constrains the object in its inside. Recently, this
idea is further extended using photometric information to
reconstruct more accurate shapes [12].

In the volume intersection method[13], the perspective
projection process requires very expensive computation; it
involves a considerable amount of arithmetic operations.

To accelerate the computation, we first developed the
plane-based volume intersection method, where the 3D
voxel space is partitioned into a group of parallel planes and
the cross-section of the 3D object volume on each plane
is reconstructed. Secondly, we devised the Plane-to-Plane
Perspective Projection(PPPP) algorithm to realize efficient



11

22

Base Slice

Base Silhouette

Figure 2. Plane-based Volume Intersection
Method

B

A

C

o

o

P

P

C

A B
B C

CA

A C B C

Figure 3. Linear PPPP algorithm

plane-to-plane projection computation. And thirdly, to real-
ize real-time processing, we implemented parallel pipeline
processing on a PC cluster system. In what follows, we de-
scribe these methods in details.

2.1. Plane-based Volume Intersection Method

Figure 2 illustrates the plane-based volume intersection
method. By partitioning the 3D space into a group of paral-
lel planes, the 3D shape of the object can be reconstructed
by calculating a group of 2D cross-sections of the object on
the planes. The cross-section on each plane can be obtained
by back-projecting the multi-view silhouettes to the plane
and calculating 2D intersection among the projected silhou-
ettes (Figure 2). It should be noted that this plane-to-plane
back-projection (homography) [16] is computationally less
expensive than general 3D perspective projection;

To accelerate the plane-to-plane projection computation
further, we developed the following algorithm.

2.2. Accelerated Plane-to-Plane Perspective Projec-
tion Algorithm

Based on the geometric relations between a pair of
planes involved in the projection, the acceleration of the
plane-to-plane perspective projection can be done in the fol-
lowing two ways:

1. For planes which are not parallel, we devised the linear
PPPP algorithm (Figure 3).

2. For parallel planes, we apply the plane-wise PPPP al-
gorithm.

Both algorithms consist of simple linear computations,
which can be executed by popular graphic hardwares.
Linear Plane-to-Plane Perspective Projection

In Figure 3, we want to map a silhouette on plane A onto
B, where A and B are not parallel. A

⋂
B denotes the in-

tersection line between the planes and O the center of per-
spective projection. Let P denote the line that is parallel to

A
⋂

B and passing O. Then, take any plane including P (C
in Figure 3), the image data on the intersection line A

⋂
C

is projected onto B
⋂

C. As shown in the right part of Fig-
ure 3), this linear (i.e. line-based) perspective projection
can be computed just by scaling operation, since A

⋂
C and

B
⋂

C are parallel to each other. This means 4 additions are
enough to compute the projection of a point. But, there are
initialization overheads to compute (1) starting point pair
and (2) scaling coefficients. These overheads are equivalent
to computing two projections, two vector subtractions, two
scalar divisions per each line pair.
Plane-wise Plane-to-Plane Perspective Projection

The projection between two parallel planes is simplified
to 2D isotropic scaling and translation, which requires 2 ad-
ditions and 2 multiplications per point.

With these two kinds of accelerated PPPP algorithms,
the back-projection process in the plane-based volume in-
tersection method can be divided into the following two
stages:(Figure 2) (1) First, with the linear PPPP, back-
project an object silhouette on the image plane onto the base
plane, which is one of the parallel planes decomposing the
space. (2) Then, with the plane-wise PPPP, project the base
silhouette onto each of the parallel planes.

To realize real-time 3D shape reconstruction, we next
implement a parallel pipeline processing method for the
above mentioned plane-based volume intersection.

2.3. Parallelized Volume Intersection Method

According to what has been described, the process of the
plane-based volume intersection method can be divided into
following stages:

1. Back-projection

2. Silhouette intersection on each plane

To make this processing parallel on our PC cluster, we ob-
serve

• Since the back-projection is closely connected with
image capturing and silhouette extraction processes, it
should be executed on the same PC that captures an
image.

• Since the silhouette intersection on each plane can be
done independently of that on the others, we partition a
set of parallel planes into a group of subsets and assign
a subset to each PC, which computes the silhouette in-
tersection on those planes included in its assigned sub-
set.

• To realize the above parallel silhouette intersection, we
have to make each PC have a full set of multi-view sil-
houettes. That is, after computing its own base plane
silhouette, each PC broadcasts that data to all the other
PCs. As will be proved later, this broadcasting does
not introduce large overhead, because the data size
transmitted is small (i.e. 2D bit image data represent-
ing the base plane silhouette) and the network speed



CommunicationCommunication

Silhouette
Image

Base Plane
Silhouette
Image

Final Result

node1 node2 node3

Captured
Image

Silhouette
on a slice

Loop Loop Loop

Object Area
on a slice

SIP

PPP

BPP

INT

SIP SIP

BPPBPP

PPP PPP

INT INT

Figure 4. Processing flow of the parallel
pipelined 3D shape reconstruction.

is very high. Note that this silhouette duplication en-
ables completely parallel silhouette intersection on the
planes without any overhead.

Figure 4 illustrates the processing flow of the parallel
pipelined 3D shape reconstruction. It consists of the fol-
lowing five stages:

1. Image Capture : Triggered by a capturing command,
each PC with a camera captures a video frame (Figure
4 top row).

2. Silhouette Extraction : Each PC with a camera extracts
an object silhouette from the video frame (Figure 4
second top row).

3. Projection to the Base-Plane : Each PC with a camera
projects the silhouette onto the common base-plane in
the 3D space (Figure 4 third top row).

4. Base-Plane Silhouette Duplication : All base-plane
silhouettes are duplicated across all PCs over the net-
work so that each PC has the full set of all base-plane
silhouettes (Figure 4 forth top row). Note that the data
are distributed over all PCs (i.e. with and without cam-
eras) in the system.

5. Object Cross Section Computation : Each PC com-
putes object cross sections on specified parallel planes
in parallel (Figure 4 three bottom rows).

In addition to the above parallel processing, we intro-
duced a pipeline processing on each PC: 5 stages (corre-
sponding to the 5 steps above) for PC with a camera and 2
stages (the step 4 and 5) for PC without a camera. In this
pipeline processing, each stage is implemented as a concur-
rent process and processes data independently of the other
stages. Note that since a process on the pipeline should be
synchronized with its preceding and succeeding processes
and moreover the stage 5 for the silhouette intersection can-
not be executed before all silhouette data are prepared, the
output rate, the rate of the 3D shape reconstruction, is lim-
ited to the rate of the slowest stage.

Myrinet

Figure 5. PC cluster for real-time active dy-
namic 3D object shape reconstruction sys-
tem.

Figure 6. Multi-View Image Samples Captured
by the PC cluster system.

2.4. Performance Evaluation

In the experiments of the real-time 3D volume recon-
struction, we used 6 digital IEEE1394 cameras placed at the
ceiling for capturing multi-view video data of a dancing hu-
man(like Figure 5, and Figure 6 shows the input samples).
Each PC has dual PentiumIII 1Ghz installed and connected
by a myrinet network. We will discuss their synchroniza-
tion method later. The size of input image is 640 × 480
pixels and we measured the time taken to reconstruct one
3D shape in the voxel size of 2cm× 2cm× 2cm contained
in a space of 2m × 2m × 2m.

In the first experiment, we analyzed processing time
spent at each pipeline stage by using 6 - 10 PCs for com-
putation. Figure 7 shows the average computation time 1

spent at each pipeline stage. Note that the image captur-
ing stage is not taken into account in this experiment, which
will be discussed later.

From this figure, we can observe the followings:
• The computation time for the Projection to the Base-

Plane stage is about 18ms, which proves the acceler-
ated PPPP algorithm is very efficient.

• With 6 PCs (i.e. with no PCs without cameras), the
bottleneck for real-time 3D shape reconstruction rests
at the Object Cross Section Computation stage, since
this stage consumes the longest computation time (i.e.
about 40ms). By increasing the number of PCs, the
time decreases considerably. This proves the proposed
parallelization method is effective.

In the second experiment, we measured the total
throughput of the system including the image capturing pro-
cess by changing the numbers of cameras and PCs. Figure
8 shows the throughput2to reconstruct one 3D shape.

1For each stage, we calculated the average computation time of 100
video frames on each PC. The time shown in the graph is the average time
for all PCs.

2The time shown in the graph is the average throughput for 100 frames.



Figure 7. Average computation time for each
pipeline stage.

(a) Soft Trigger

(b) Hard Trigger

Figure 8. Computation time for reconstruct-
ing one 3D shape.

In our PC cluster system, we developed two methods for
synchronizing multi-view video capturing: use an external
trigger generator (aka Hard Trigger) and control the cam-
eras through network-communication (aka Soft Trigger).
The performance was evaluated for both methods in Figure
8 (a) and (b).

From Figure 8 we can get the following observations:
1) In both synchronization methods, the rate saturates at a
constant value in all cases. For Soft Trigger, the value is
about 75 ∼ 80 ms, and for Hard Trigger about 80 ∼ 90ms.
2) Comparing the hard and soft triggers, the latter shows a
slightly better performance.

Since as was proved in the first experiment, the through-
put of the pipelined computation is about 30ms, the elon-
gated overall throughput is due to the speed of Image Cap-
ture stage. That is, although a camera itself can capture
images at a rate of 30 fps individually, the synchronization
reduces its frame rate down into half. This is partly because
the external trigger for synchronization is not synchronized
with the internal hardware cycle of the camera and partly
because it takes some time to transfer image data to PC
memory.

3. Real-Time 3D Shape Reconstruction with
Camera Actions

While not noted explicitly so far, the plane-based volume
intersection method we proposed has a serious problem:
when the optical axis of a camera is nearly parallel to the
base plane, the size of the projected silhouette becomes very
huge, which damages the computational efficiency. In the
worst case, i.e. the optical axis becomes parallel to the base
plane, the projection cannot be computed and the method
breaks down.

In the case of static camera arrangements, it is possible
to select one unique base plane to avoid the worst case. But
the question of which base plane is optimal for computation,
remains open. In the case of dynamic camera arrangements,
we have to extend the method to avoid the worst case while
doing the reconstruction efficiently.

3.1. The Computational Cost for Base Silhouette
Generation

Since the computational cost for the base silhouette gen-
eration is ruled by the area size of the projected silhouette,
we firstly calculate the area size as follows.

S

B

Figure 9. Projection from the Input Image
Screen to a Plane
In Figure 9, an observed silhouette on the input image

screen S is represented as a circle of radius r. This silhou-
ette is projected onto a plane B as an ellipse. Let θ, f , l de-
note the dihedral angle between B and S, focal length, and
the distance from the projection center to B respectively.
The area size s of the projected silhouette is:

s = πr2 · R(θ, f, l) (1)

R(θ, f, l) =
l2

f2 cos θ

Thus, the projected silhouette is extended in the ratio of
R(θ, f, l). Figure 10 shows the graph of R for θ ∈ [0, π/2).
It is clear that R is monotonous increasing on θ and diverges
to infinity at θ = π/2, which corresponds to the worst case.

In the case of a static arrangement of n cameras, let
{f1, f2, . . . , fn}, {v1,v2, . . . ,vn} and {p1,p2, . . . ,pn}
denote the focal lengths, directions and the positions of the
cameras respectively. A base plane can be represented by its
normal vector D = {Dx,Dy,Dz}t from the origin of the
world coordinate system. Given a plane, for each camera,



0 0.2 0.4 sin−1(
√

3/3) 0.8 1 1.2 1.4 π/2

R

l2

f2

θ

Figure 10. The Size Ratio between the Pro-
jected Silhouette and the Observed Silhou-
ette

the angle θi and li can be calculated from vi, pi and D. Let
{a1, a2, . . . , an} denote the area sizes of object silhouettes
observed by the cameras. From equation 2, the area size of
each projected silhouette becomes:

si = ai · Ri = ai · l2i
f2

i cos θi
(2)

So the optimal selection of the base plane can be achieved
by solving following optimization problem:

D = argmin
n∑

i=1

si (3)

It is hard to solve the problem analytically.
In the case of dynamic camera arrangements,

since the locations of cameras change dynamically,
we can simply extend the notations as follows: let
{v1(t),v2(t), . . . ,vn(t)} and {p1(t),p2(t), . . . ,pn(t)}
denote directions and positions of the cameras at t respec-
tively. Also the sizes of the observed silhouettes change
and are denoted as {a1(t), a2(t), . . . , an(t)}. Similarly,
the base plane can be determined by solving the following
optimization problem for each frame.

D(t) = argmin
n∑

i=1

si(t)

= argmin
n∑

i=1

(
ai(t) · li(t)2

f2
i cos θi(t)

)
, (4)

where ∀θi(t) 
= π/2

Such simple extension is not efficient for a real-time 3D
shape reconstruction because:

• For every frame, overheads are computational intro-
duced to solve the optimization problem.

• As mentioned before, the volume is represented as
cross-sections on parallel slices. So the coordinates
of the cross-sections are represented in the same coor-
dinate system as the base plane. From equation 4, the
solution D changes temporally, i.e. volumes at differ-
ent t are represented in different coordinate systems.
This causes the overheads for coordinates conversion
for every frame.

3.2. Limiting the Computational Cost by Dynamic
Selection of the Base Plane

To realize the real-time 3D shape reconstruction with
camera actions, we extend the plane-based volume intersec-
tion to a 3-base-plane method. The outline of the method is
shown as follows:

1. Let D1(t), D2(t), D3(t) denote the pre-defined 3
planes which are not parallel with each other.

2. For each camera, calculate the angles be-
tween the camera direction and the normal
vector of each of D1(t),D2(t),D3(t). Let
{{θ1D1(t) , θ1D2(t) , θ1D3(t)}, {θ2D1(t) , θ2D2(t) , θ2D3(t)},
. . ., {θnD1(t) , θnD2(t) , θnD3(t)}} denote these angles.

3. Determine the base plane Bi(t) for each camera as:

Bi(t) =


D1(t), if θiD1(t) = min(θiD1(t) , θiD2(t) , θiD3(t))
D2(t), if θiD2(t) = min(θiD1(t) , θiD2(t) , θiD3(t))
D3(t), if θiD3(t) = min(θiD1(t) , θiD2(t) , θiD3(t))

(5)

So we have cameras separated into 3 groups. Cameras
in each group share the same base plane.

4. For each camera group, execute the plane-based vol-
ume intersection method and then 3 volumes are ob-
tained.

5. Calculate the intersection of the 3 volumes which rep-
resents the object volume.

Since the 3 planes are not parallel with each other, it is clear
that by this extension, the worst case can be avoided. The
extension causes the following computational overheads:

• The computational cost for determining the base plane
for each camera. However, the cost can be ignored for
the operation is very simple and not pixel(voxel)-wise.

• The calculation for the intersection of the 3 volumes.
As mentioned before, the result of the plane-based vol-
ume intersection is represented in the same coordinate
system as the base plane. To get the intersection of the
results on different base planes, coordinate conversion
is required.

To decrease the computational cost of the coordinate con-
version between the volumes on the 3 base planes, we can
select 3 planes which are perpendicular to each other, i.e.
D1(t)⊥D2(t)⊥D3(t). So that, the coordinate conversion
becomes simply switching among three coordinates.

Furthermore, when D1(t)⊥D2(t)⊥D3(t), for each
camera,

min(θiD1(t) , θiD2(t) , θiD3(t))) ≤ sin−1(
√

3/3) (6)



From the equation 2, the projected area size for each camera

is limited to

√
6

2
· li(t)2

f2
i

ai(t). The ratio in which the size

of the observed silhouette is extended in this case is also
plotted in Figure 10. In practice, since li(t), fi, ai(t) can
be regarded as bounded, the size of the projected silhouette
for each camera is guaranteed to be limited. That is, by
this extension, not only the worst case can be avoided, but
also we can estimate the upper bound of the computational
cost, which is very important for the design of the real-time
active 3D shape reconstruction.

4. Conclusion

In this paper, we first described the parallelized volume
intersection method, by which the real-time 3D object be-
havior reconstruction system is implemented on a PC clus-
ter. The quantitative performance evaluations demonstrated
that the acceleration and parallelizing algorithms we pro-
posed are very efficient and real-time dynamic 3D shape
reconstruction is realized.

Secondarily, we had discussion on how the computa-
tional cost changes when the camera direction changes,
which is caused by the active object tracking. Based on
the discussion, we extended the plane-based volume inter-
section method to a 3-base-plane method. The overheads
of the extension is considerable low and the upper bound
of the computational cost is clarified in the case of dynamic
camera arrangements.

Currently we are developing active camera control meth-
ods to reconstruct dynamic object 3D shapes in high reso-
lution.

This work was supported by the grant-in-aid for scien-
tific research (A) 13308017. We are grateful to Real World
Computing Partnership, Japan for allowing us to use their
multi-viewpoint video data.

References

[1] T.Matsuyama, X.Wu, T.Takai, and S.Nobuhara: Real-
Time Generation and High Fidelity Visualization of
3D Video: Proceedings of Mirage 2003, pp.1–10.

[2] T.Wada, X.Wu, S.Tokai, T.Matsuyama: Homogra-
phy Based Parallel Volume Intersection: Toward
Real-Time Reconstruction Using Active Camera:
CAMP2000 Computer Architectures for Machine Per-
ception, pp.331–339.

[3] E. Borovikov and L. Davis: A Distributed System
for Real-Time Volume Reconstruction, Proc. of Com-
puter Architectures for Machine Perception, pp.183-
189, 2000.

[4] G.Cheung and T.Kanade: A Real Time System for
Robust 3D Voxel Reconstruction of Human Motions,
Proc. of CVPR, pp.714-720, 2000.

[5] T.Kanade, P.Rander, S.Vedula, and H.Saito: Virtual-
ized Reality: Digitizing a 3D Time-Varying Event as
is and in Real Time, in Mixed Reality (Y.Ohta and
H.Tamura eds.), pp.41-57, Ohmsha, 1999.

[6] S.Moezzi, L.Tai, and P.Gerard: Virtual View Gener-
ation for 3D Digital Video, IEEE Multimedia, pp.18-
26, 1997.

[7] T.Matsuyama and R.Yamashita: Requirements
for Standardization of 3D Video, ISO/IEC
JTC1/SC29/WG11, MPEG2002/M8107, 2002.

[8] Matsuyama, T.: “Cooperative Distributed Vision –
Dynamic Integration of Visual Perception, Action,
and Communication –,” Proc. of Image Understand-
ing Workshop, pp. 365-384, 1998

[9] H. Baker. Three-dimensional modelling. In Fifth In-
ternational Joint Conference on Artificial Intelligence,
pages 649–655, 1977.

[10] B. G. Baumgart. Geometric modeling for computer
vision. Technical Report AIM-249, Artificial Intelli-
gence Laboratory, Stanford University, October 1974.

[11] R. T. Collins. A space-sweep approach to true multi-
image matching. In IEEE Computer Vision and Pat-
tern Recognition, pages 358–363, 1996.

[12] K. N. Kutulakos and S. M. Seitz. A theory of shape
by space carving. In IEEE International Conference
on Computer Vision, pages 307–314, 1999.

[13] A. Laurentini. How far 3d shapes can be understood
from 2d silhouettes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 17(2):188–195,
1995.

[14] W. N. Martin and J. K. Aggarwal. Volumetric descrip-
tion of objects from multiple views. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
5(2):150–158, 1987.

[15] M. Potmesil. Generating octree models of 3d objects
from their silhouettes in a sequence of images. Com-
puter Vision,Graphics, and Image Processing, 40:1–
29, 1987.

[16] J. Semple and G. Kneebone. Algebraic Projective Ge-
ometry. Oxford Science Publication, 1952.

[17] P. Srivasan, P. Liang, and S. Hackwood. Compu-
tational geometric methods in volumetric intersec-
tions for 3d reconstruction. Pattern Recognition,
23(8):843–857, 1990.

[18] R. Szeliski. Rapid octree construction from image se-
quences. CVGIP: Image Understanding, 58(1):23–32,
1993.


