
Modeling Video Viewing Behaviors for
Viewer State Estimation (Authors Version)

Ryo Yonetani
Graduate School of Informatics, Kyoto University

Yoshida-Honmachi, Sakyo-ku, Kyoto-shi
Kyoto 606-8501, Japan

yonetani@vision.kuee.kyoto-u.ac.jp

ABSTRACT
ACM, (2012). This is the authors version of the work. It
is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published
in the proceeding of ACM Multimedia 2012 Doctoral Sym-
posium (ACMMM 2012 DS).

Human gaze behaviors when watching videos reflect their
cognitive states as well as characteristics of the video scenes
being watched. Our goal is to establish a method to esti-
mate the viewer states from his/her eye movements toward
general videos, such as TV news and commercials. The pro-
posed method is based on a novel model of video viewing
behaviors, which takes into account structural and statis-
tical relationships between video dynamics, gaze dynamics
and viewer states. This model realizes statistical learning of
gaze information while considering dynamic characteristics
of video scenes to achieve viewer-state estimation. In this
paper, we present an overview of the viewer-state estima-
tion method based on the model of video-viewing behaviors,
including several past work done by the author’s team.

Categories and Subject Descriptors
H.1.2 [Information Systems]: User/Machine Systems—
Human information processing;

General Terms
Algorithm, Experimentation
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1. INTRODUCTION
Eyes are a window into the mind — eye movements re-

flect various cognitive states. A study on the eye movements
having a long history in the field of visual psychology re-
vealed many important findings including the similarity of
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Figure 1: Modeling video-viewing behaviors.

eye movements toward the same images or the dissimilarity
depending on human states (e.g., given tasks) [11]. These
findings indicate the possibility to realize an estimation of
the human states based on statistical learning of gaze infor-
mation. Recently, several studies have proposed a method
to estimate cognitive states and given tasks [1, 4, 10, 12, 13].

One of the difficulties in eye-movement studies derives
from the fact that eye movements are affected by the scenes
being watched. It is clear that spatial layouts of objects in
the scenes and categories of objects affect where and what
tend to be looked at. In order to control such influences
from characteristics of the scenes, previous studies [1, 4, 10]
mainly deal with designed contents or relatively simplified
scenes. On the other hand, it still remains unclear how to
realize the estimation while considering complex contents,
especially general videos (e.g., TV news, commercials) that
contain various types of objects and varying characteristics
over time. In such case, it is crucial to understand the dy-
namic characteristics of the videos.

In this study, we aim to establish a method of viewer-state
estimation from eye movements of viewers watching general
videos. The main contribution of this work is that we pro-
pose a novel model of video-viewing behaviors, which takes
into account structural and statistical relationships between
videos-scene dynamics, gaze dynamics and states of video
viewers (see Figure 1). Statistical learning of the relation-



ships enables us to estimate the viewer states from newly
observed pairs of the video scenes and eye movements.

The proposed method has many helpful applications. For
multimodal interaction between systems and users, viewer-
state estimation allows the systems to provide information to
the users in a timely manner. Moreover, since viewer states
toward displayed contents can be regarded as an evaluation
of themselves, the proposed method has a potential to give
a novel indication to human-centric content designs.

2. PROBLEM SETTING
Suppose that videos are displayed on a screen, and a hu-

man is watching the videos. Eye movements of the viewer
can be observed as a sequence of gaze points on the screen
by using an eye tracker. Viewer states are here assumed to
be represented by one of several discrete states, such as “fo-
cusing on a certain object in a video”, “paying attention to
a video”, and further, “favoring a video”. Viewer-state es-
timation is a problem of classifying the viewer states based
on the given video and gaze information.

Since eye movements are affected by both viewer states
and dynamic characteristics of the video scenes, we assume
that the eye movements or their structural relationships to
the scene characteristics (e.g., a spatial relationship between
gaze points and objects) are statistically conditioned by both
of them. Let S and E be features of video-scene character-
istics and of gaze dynamics (or the structural relationships)
respectively, and let A be one of the viewer states. When E
is statistically learned under the condition of both S and A,
the unknown state Â is estimated from a newly-observed Ŝ
and Ê via a maximum likelihood estimation:

Â = arg max
A

p(E = Ê | S = Ŝ, A).

Based on the above assumptions, This study tackles the fol-
lowing 2 topics:

(A) Understanding dynamic characteristics of videos
what kinds of video characteristics should be employed,
and how to model their dynamics? (Description of S)

(B) Understanding eye movements How to model gaze
dynamics or their relationships to the video character-
istics? (Description of E)

Our previous studies [13] and [12] have addressed those top-
ics. The following sections overview the achievements pre-
sented in those literatures.

3. SALIENCY DYNAMICS MODEL FOR
VIDEO-SCENE DESCRIPTION

Understanding dynamic changes of video characteristics
is an important topic in the field of pattern recognition and
computer vision. As known as a problem in generic ob-
ject recognition, general videos contain objects with a di-
versity of categories as well as poses and positions. This
diversity causes a critical problem for the viewer-state esti-
mation when considering both video characteristics and eye
movements because it is infeasible to statistically learn gaze
features for each type of diverse video scenes.

To overcome this problem, we utilize saliency of videos,
a characteristic of videos without its semantics, as a mean
to describe video scenes. Videos have several salient regions
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Figure 2: Spatio-temporal saliency patterns.

attracting viewer gazes, which contain dynamics in their po-
sition, shape, and strength of saliency. We extract such
saliency dynamics from videos, and classify them as several
typical patterns to describe the video scenes. The proposed
method can decrease the number of video-scene types (i.e.,
types of saliency dynamics) to be considered, and realize
statistical learning of gaze features with regard to each type
of scenes even if they originally contain diversity.

The rest of this section briefly introduces the model of
saliency dynamics proposed in our study [13].

Extraction of saliency patterns.
Video frames often contain several salient regions, the

number of which can vary over time. Each salient region
individually contains dynamics in its position, shape and
strength of saliency. The saliency dynamics which we aim
to model is the one described by such spatio-temporal pat-
terns of multiple salient regions.

In order to model the dynamics of region and its texture
(i.e., saliency distribution) simultaneously, we introduce a
GMM to describe the multiple salient regions contained in
a video frame. This modeling sacrifices the representation
of detailed contours and textures of regions. However, the
GMM allows us to describe locations, approximate shapes,
and strength of saliency of the regions by means, covariance
and weights of the components, respectively. Figure 2 de-
picts an example of salient regions and their spatio-temporal
patterns. We employ a model of visual attention [6] to obtain
salient regions. The concrete procedure for extraction and
parameterization of saliency patterns is presented in [13].

Modeling saliency dynamics.
Granted that we obtain saliency patterns from videos, it

still remains unclear how to model them to describe the
saliency dynamics of the video scene, S. Considering the
utilization of scenes for a learning-based approach to the es-
timation, it is desirable that saliency dynamics are classified
into a finite number of typical patterns to decrease the num-
ber of scene types enough to introduce statistical learning.
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Figure 3: Applying the proposed saliency-dynamics
model to the patterns described in Figure 2.

In [13], we propose a novel saliency dynamics model (SDM),
which describes the dynamical changes of salient regions in-
cluding the change of the number of regions by the switching
of multiple linear dynamical systems (LDS). It is based on
a switching linear dynamical system (SLDS), which is an
efficient tool to represent complex human motion [3, 8, 9].
The SLDS models complex dynamics as switching between
simpler dynamics, where each of the time evolutions of dy-
namics is formulated by an LDS. The SDM applies the SLDS
to each dynamics pattern of salient regions. That is, multi-
ple SLDSs are used for multiple salient regions, where each
of the saliency patterns is modeled by a different SLDS.

By applying the SDM, the number of salient regions that
simultaneously exist in a certain interval (i.e., the interval
of a scene) is described by the number of LDSs identified
in the interval. The saliency dynamics in the scene, S, are
described by a set of LDSs. Figure 3 demonstrates an appli-
cation of the SDM to saliency patterns presented in Figure 2.

4. MODELING GAZE DYNAMICS AND ITS
RELATIONSHIP TO VIDEO DYNAMICS

The basic concept behind our method of viewer-state es-
timation is that different gaze dynamics can be observed de-
pending on viewer states. When video-scene dynamics are
given, the difference in gaze dynamics can be represented us-
ing the structural relationship between gaze dynamics and
video dynamics. This section introduces several approaches
to extract features from gaze dynamics and from the struc-
tural relationship for the viewer-state estimation.

Modeling gaze dynamics.
Gaze dynamics can be modeled by several primitive eye

movements such as a fixation, a pursuit, and a saccade.
Moreover, there are some observable types of eye move-
ments depending on the characteristics of video-scene dy-
namics. For instance, fixations and pursuits can be observed
when humans scan static and dynamic salient regions, re-
spectively. In addition, saccadic eye movements tend to be

Table 1: Video-scene types and corresponding types
of observable eye movements.

Video scenes Observable eye movements

Single static region Fixation

Single dynamic region Pursuit

Multiple static regions Fixation, saccade

Multiple static & dynamic
regions

Fixation, pursuit, saccade

Multiple dynamic regions Pursuit, saccade
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Figure 4: Spatial structures between gaze points and
salient regions characterized by LDSs.

observed when multiple regions exist in a frame. These eye
movements are requested to be evaluated in a different way
as presented in [1, 7] because they have different character-
istics for their type.

Thus in [12], we first define the observable types of eye
movements for several video-scene types identified empiri-
cally as presented in Table 1, and then extract primitive gaze
features (e.g., fixation duration lengths, eye-motion speeds
in pursuit, saccade frequencies. See [12] for the detail) for
each of the eye-movement types. Gaze features for each type
of the video-scenes are obtained by aggregating the primi-
tive features based on the observed types of eye movements.

Modeling spatial structure.
The structural relationship between gaze dynamics and

video dynamics can also be utilized as features to classify
viewer states. Our previous study [13] presents a gaze fea-
ture consisting of the spatial structure between gaze points
and salient regions (Figure 4). Since each region is charac-
terized by LDSs after introducing the SDM, this gaze feature
represents “what types of dynamics tend to be focused on”.

5. EXPERIMENTS AND FUTURE WORK

5.1 Attentive-state estimation
To verify the proposed method, we conducted some ex-

periments to estimate attentive states of viewers, which in-
dicate how strong viewers pay attention to videos. In the
experiments, we aimed to classify two levels of attentiveness:
highly attentive to or distracted from videos, as a relatively-
simplified evaluation. 10 subjects took part in the experi-
ments, and 12 TV commercial videos were employed.

Experimental setup.
A subject is sitting in front of a screen, and an eye tracker

is installed below the screen. We adopt the following two
conditions in order to control the attentiveness:
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Figure 5: Example results. The color of circles in the
2nd column corresponds to the ID of LDSs in Fig-
ure 3. Gaze-feature distributions in the 3rd column
are projected into a discriminant space for visualiza-
tion. The white and black bars correspond to highly
attentive and distracted states, respectively.

Table 2: Estimation accuracies.

Method Duration [13] [12] [13]

Accuracy (%) 59.3 78.2 80.6

Condition 1 A subject watches a video and receives a sim-
ple interview after that.

Condition 2 A subject watches a video while doing a men-
tal calculation.

The condition 1 and 2 correspond to the highly attentive and
distracted states, respectively. Details about the experiment
are presented in [12, 13].

Results and discussions.
Table 2 presents estimation accuracies from the litera-

ture [12, 13], with the baseline method that employs a gaze
duration feature describing how long subjects look at salient
regions. In addition, Figure 5 depicts some illustrative re-
sults consisting of saliency maps of input frames, salient re-
gions characterized by the LDSs, and distributions of gaze
features describing the spatial structures as proposed in Sec-
tion 4. These results demonstrate that the proposed meth-
ods can work well even when the baseline has no clear dis-
crimination of the two attentiveness levels.

As discussed in Section 2, the problem in this study con-
sists of two topics: modeling of video and gaze dynamics (or
the structural relationship between the gazes and videos).
The SDM proposed in [13] focuses on the former problem
and provides a detailed classification of saliency dynamics
for video-scene description. By using the model in conjunc-
tion with spatial-structure features, it enables us to handle
what types of dynamics tend to be focused on, while they
are invisible in the other method [12].

On the other hand, the gaze features employed for the
method in [12] reflect the dynamic characteristics of eye

movements whereas the feature in [13] is obtained frame-
wisely. Experimental results in [12] have revealed the fol-
lowing findings on eye movements and attentiveness:

• The levels of attentiveness affect saccades within tar-
get regions. Specifically, subjects seem to scan targets
actively rather than change them when they are in the
higher level of attentiveness.

• Synchronization in the speed between eyes and targets
is not affected much by attentiveness. Subjects tend to
pursue dynamic regions at any level of attentiveness.

Such dynamic aspects in eye movements are reported to play
a crucial role to analyze human states [5].

Obviously, the two approaches are complementary, and
they can be unified by introducing gaze features in [12] for
video scenes obtained by the SDM in [13].

5.2 Future work
Our video-viewing behavior model focuses on structural

and statistical relationships between saliency dynamics in
videos, gaze dynamics and viewer states. Currently, any se-
mantic information in the videos is invisible to our saliency
dynamics model, which is closely related to human minds.
As recent saliency models have tried to introduce some se-
mantic concepts [2], future work will improve our model by
handling such semantic concepts for better understanding of
human video-viewing behaviors.
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