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Fig. 16: Inlier estimation and outlier recovery on the example 3D

scene: (a) the estimated inlier optical flow; (b) color visualization

of (a); (c) the recovered outlier optical flow; (d) segmentation result.

(Copyrighted by Springer LNCS [57])

In our method, a polynomial of d = 5 is employed so as to pro-

duce a smooth and accurate surface E′. Similarly, we get a new

smooth potential surface ~W ′ which approximate the base of ~W ′.

The inlier of curl-free component is calculated by G1 = ∇E′. The

inlier of divergence-free component is computed by G2 = ∇× ~W
′.

The final inlier optical flow is estimated by linear combination of

G1 and G2 using Eg.(18). Figure 16 (a), (b) shows the estimated

inlier of the example 3D scene. We can see that our method esti-

mates the inlier accurately.

G = k1G1 + k2G2,
(18)

5.2.5 Object motion recovery

After inlier estimation, outliers can be recovered by subtract-

ing the inlier from the original motion field subsequently. Figure

16 shows the recovered outlier motion field in (c) and the final

segmentation map in (d).

5.3 Experimental evaluation

5.3.1 Datasets and experiments design

The system’s performance is evaluated on four benchmark

datasets: Hopkins [59], Berkeley Motion Segmentation [60],

Complex Background [55], and SegTrack [61]. The Hopkins

dataset contains three category video sequences: checkerboard,

car, and people. It provides ground truth segmentation on se-

lected features tracked throughout the sequence. The Berkeley

dataset is derived from the Hopkins dataset, which consists of

26 moving camera videos: car, people, and Marple sequences.

This dataset has full pixel-level annotations on multiple objects

for a few frames sampled throughout the video. We use the other

two datasets: Complex Background and SegTrack, which con-

tain extremely challenging scenes to highlight the strength of our

method. They provide full pixel-level annotations on multiple

objects at each frame within each video.

5.3.2 Experimental results

In this part, we compare our method with six recent developed

dense motion segmentation methods including: (1) joint inlier es-

timation and segmentation (GME-SEG) [53], (2-3) iterative esti-

mation based on least-square (LS) [50], and gradient decent (GD)

[49], (4) outlier rejection filter (Filter) [51], (5) RANSAC [52],

and (6) the latest developed FOF [55], which is considered as

the state-of-art algorithm in motion segmentation. In [55], they

present two versions: (1) FOF, which uses optical flow only, and

(2) FOF+color+prior, which combines optical flow, color appear-

ance and a prior model together. The first five methods were im-

plemented using the source code in [53]. We reported the perfor-

mances of FOF and FOF+color+prior [55] directly.

We used the F-measure [55] to evaluate the performance of

each algorithm, which is an important performance analysis pa-

rameter. Table 7 reports the F-measure of dense based methods on

three benchmark datasets: Berkeley, Complex Background, and

SegTrack. From Table 7, we observe that our method achieves

at the highest performance for almost all videos: it raises the F-

measure by 10% – 30% on Cars 2, 3, 4, 7, and People 1 sequence

in the Berkely dataset; around 10% on the drive, parking, and

store sequences in the Complex Background dataset; and more

than 20% on the parachutte and monkeydog sequences in the

SegTrack dataset. This result is quite appealing even when videos

contain extremely challenging scenes, such as the ones with com-

plex camera motions, complex backgrounds, occlusions, etc..

The good quantitative results are confirmed by the good visual

quality of the segmentation results. Some examples are shown in

Fig. 17, where the last column shows the ground truth segmenta-

tion. In most cases, our segmentation agrees with the true object

regions more than existing methods.

6. Discussion: relationship between four algo-

rithms

We need to explicitly mention that the first three algorithms are

highly related with each other while the fourth algorithm is dif-

ferent from them in some sense. The first three algorithms share

the same research background (face recognition). Their problem

definition and algorithm description are also similar. However,

the research background of the last algorithm is on motion seg-

mentation. It investigates feature extraction from video sequences

rather than image dataset. Thus, the problem definition and algo-

rithm description are also different from the first three algorithms.

However, these four algorithms share the same Quad-Tree based

image encoding, which is the core-aspect of this dissertation.

7. Conclusion

This dissertation develops four Quad-Tree based image en-

coding methods towards four visual feature situations: (1) Fea-

ture learning from data-adaptive blocks decomposed by Quad-

Tree;(2) Hierarchical feature learning using Quad-Tree structure

of images;(3) Feature learning from enlarged training data en-

coded by Quad-Tree for Small Sample Size problem ;(4) Fea-

ture learning in dynamic environments using Helmholtz-Hodge

decomposition and Quad-Tree. They are highly related with each

other and occupy a wide range of feature learning issues. Features

can be extracted from the planar image surface or using hierar-

chical models, with large training data or small data, from static

images or video sequences. The first three algorithms are devel-

oped for feature learning from static images (image dataset) while

the last algorithm is for object motion segmentation in video se-

quences. We use face recognition as research background for

the first three algorithms and motion segmentation for the last

c© 2013 Information Processing Society of Japan
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Fig. 17: Segmentation results of six existing dense based methods and ours on challenging scenarios: (a) input sequences, from top to bottom: cars2,

people2, forest, store, parachute, traffic, segmentation by (b) RANSAC [52], (c) LS [50], (d) GD [49], (e) Filter [51], (f) GME-SEG [53], (g) FOF

[55], (h) FOF+color+prior [55], (i) our segmentation, (j) ground-truth segmentation.

Table 7: F-measure of existing dense based methods and ours.

Sequences GME-SEG LS GD Filter RANSAC FOF FOR+color Our

Cars1 78.33 86.18 18.01 82.87 60.42 47.81 50.84 76.38

Cars2 55.90 65.97 15.70 78.28 34.21 46.37 56.60 83.13

Cars3 65.21 79.43 22.29 74.56 35.80 67.18 73.57 87.37

Cars4 45.69 49.78 22.96 77.22 22.81 38.51 47.96 84.42

Cars5 54.67 61.93 33.08 81.17 25.24 64.85 70.94 84.82

Cars6 33.01 51.23 28.77 57.53 13.40 78.09 84.34 85.71

Cars7 37.89 36.36 36.92 60.47 13.79 37.63 42.92 86.10

Cars8 62.20 81.24 8.57 78.44 37.02 87.13 87.61 90.68

Cars9 72.99 80.99 17.97 68.19 54.69 68.99 66.38 77.42

Cars10 60.01 66.04 14.34 90.95 81.78 53.98 50.84 54.83

People1 34.11 38.32 40.76 71.84 12.06 56.76 69.53 80.03

People2 78.16 84.45 69.30 81.70 37.53 85.35 88.40 89.81

drive 8.14 6.30 41.18 32.40 5.76 30.13 61.80 83.03

forest 15.42 11.01 15.41 19.87 10.67 19.48 31.44 35.71

parking 33.20 21.57 43.84 62.29 17.47 43.47 73.19 83.47

store 14.39 10.94 32.10 29.32 9.68 28.46 70.74 80.10

traffic 14.77 15.80 34.55 15.04 15.49 66.08 71.24 71.67

birdfall2 9.39 3.84 0.99 64.00 3.25 68.68 75.69 76.23

girl 22.51 20.26 15.36 18.21 12.33 75.73 81.95 78.06

parachute 23.01 18.97 12.88 16.30 44.03 51.49 54.36 86.72

cheetah 21.33 14.93 43.59 12.05 9.85 12.68 22.31 55.67

penguin 10.34 18.84 15.34 5.53 18.66 14.74 20.71 21.61

monkeydog 22.29 20.74 16.46 18.93 12.31 10.79 18.62 45.44

algorithm. Experimental results on a large number of benchmark

datasets demonstrate the good performance of our methods.

Apart from face recognition and motion segmentation, our

methods can be widely applied to many other computer vision

applications thanking to the data-adaptive property. For the fu-

ture direction, we are planning to extend our methods to other

image classification and recognition problems, to explore more

effective features and classifiers, to employ our Quad-Tree based

methods in other hierarchical models such as Convolutional Neu-

ral Networks (CNNs), Dynamic Belief Networks (DBNs).
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