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Abstract

Certain applications such as person re-identification in camera
network, surveillance photo verification, forensic identification
etc. suffer from a small sample size (SSS) problem severely.
Conventional face recognition methods face a great challenge
on SSS as the trained feature space is overfitted to the small
training set. Interest in combination of multiple base classifiers
to solve the SSS problem has sparked renewed research efforts
in ensemble methods. In this paper, we propose a novel Ran-
dom Quad-Tree based ensemble algorithm (R-QT) to address
the SSS problem. In contrast to other methods confining the
ideas on limited data, R-QT enlarges the training data to obtain
more diverse base classifiers. Moreover, R-QT encodes not
only discriminant features but also the geometric information
across the face region, which further improves the recognition
accuracy. Results on five standard face databases demonstrate
the effectiveness of the proposed method.

Keywords: Small sample size, Random Quad-Tree, base
classifier ensemble

1 Introduction

1.1 Small Sample Size face recognition

Appearance based methods have been extensively studied and
acknowledged as one of the most popular approaches for
face recognition. Representative and well-known algorithms
include Eigenfaces, Fisherfaces, Bayes Matching and their
weighted, kernelized and tensorized variants [7]. Conventional
methods usually assume there are multiple samples per per-
son (MSPP) available during the training phase for discrimi-
nant feature extraction. Figure 1 shows a manifold surface of a
face space projected by amount of samples of a person (in red).
However, in many practical applications such as person re-
identification in camera network, surveillance photo verifica-
tion, forensic identification etc., this assumption may not hold
as it is usually difficult to collect adequate samples. Within in-
sufficient samples, the learned feature space is very likely to
overfit to the small training data. This is the ‘small-sample-
size’ (SSS) problem [10], interpreted by the fact that the num-
ber of samples per person in the probe set is much larger than
that in the galley set. In Fig.1, the blue manifold surface repre-
sents the learned face space from limited number of samples of

a subject, which suffers from overfitting severely. An extreme
case of SSS is the single sample per person (SSPP), when only
one sample per subject is enrolled or recorded in such systems
as law enhancement, e-passport and ID card identification etc.
Under such circumstances, the performance of conventional
methods significantly degrade, because no enough samples can
be used to shape an adequate face space.

Figure 1: The demonstration of two manifold surfaces: the red
one represents a full face space projected from all the samples
of one person; and the blue one is a face space learned when

only three samples are available.

1.2 Ensemble learning for SSS face recognition

To address the SSS problem, there have been many attempts
in the literature, a machine-learning technique known as en-
semble learning has received considerable attentions in pat-
tern recognition community. A key benefit of ensemble is the
base classifier collaboration based on voting where the overall
classification ability is greater than a single classifier. Ensem-
ble rules such as boosting, bagging, random forest, etc [14].
are based on this idea that a pool of different classifiers can
offer complementary information for classification. Given a
set of base classifiers B = {b1, b2, ..., bi, ..., bL}, the goal of
these methods is to compose an ensemble E from B to achieve
higher recognition accuracy. According to the definition of
base classifiers, existing ensemble methods are mainly clas-
sified into three categories: (1) decision tree based ensemble
[6, 17]; (2) random subspace, semi-random subspace [16, 19];
(3) image partitioning based sub-pattern ensemble [7, 8, 15].



In the fist category, large number of decision trees (DT)
are constructed by randomly selecting features from the feature
space to define base classifiers. Ensemble rules are exploited
on decision trees to make the final decision. A representative
method [6] employs a random forest to learn discriminant fea-
tures to deal with face recognition with image occlusions. In
[17], five decision tree pruning methods outperform the Bag-
ging, Boosting and Error-Correcting Output Code (ECOC). DT
based methods perform well under MSPP face recognition but
degrade in the SSS face recognition dramatically. The major
reason is that base classifiers constructed from the feature space
are highly depending on the original training sample set. In the
SSS problem, insufficient samples supply limited discriminant
information to generate diverse base classifiers.

In the second category, the idea of subspace is introduced
to ensemble. Since [14] shows that the strong and stable base
classifiers defined by subspace algorithms (e.g. LDA) are not
suitable to ensemble rules such as boosting, bagging, etc. To
overcome this problem, random subspace (RS) [16] was pro-
posed to generate weak but diverse base classifiers. In [16], by
random sampling on feature vectors in the PCA subspace, mul-
tiple Fisherface and N-LDA classifiers were constructed and
the two groups of complementary classifiers were integrated
using a bagging based fusion rule. Since RS just focuses on the
global rather than local extraction of features, local discrimi-
nant information are not guaranteed. Motivated from this find-
ing, a revised version named semi-random subspace (Semi-RS)
was proposed in [19]. Different from RS, the Semi-RS ran-
domly samples features on each local region partitioned from
the original face image. Although Semi-RS has achieved suc-
cess in dealing with local deformations e.g. facial expressions,
it does not work well on the data with large scale variations in
illumination, head poses etc. The reason is that local regions
are too small to cover large variations. Furthermore, since the
PCA subspace is also generated from the original training data,
the feature selection of RS and Semi-RS also suffers from the
SSS problem.

For the third category, each face image is first partitioned
into several sub-patterns. Discriminant learning techniques
are then applied on each of them. Finally ensemble rules are
used for fusion. An early attempt [8] divided each face image
into six elliptical sub-regions and learned a local probabilistic
model for recognition. Topcu et al. [15] proposed an alter-
native way of partitioning face regions into equal-sized small
patches. Features extracted from each patch are classified sep-
arately and the recognition results are combined by a weighted
sum rule. The problem is that these methods ignore the geo-
metric information during feature extraction, that is the coore-
lationship between local patches. Literature [7] shows it is un-
likely to model the whole face region accurately by a simple
distribution on separate local patches such as nose, mouth etc.

All the methods mentioned above share the same problem
in the content of SSS that the species of base classifiers learned
from insufficient training data are not diverse enough to repre-
sent an adequate face space. This suggests that sufficient vari-
ous training samples play a significant role in recognition tasks.
Diversity is an important parameter of ensemble which mea-

sures the disagreement of the outputs of base classifiers. High
diversity assures that different base classifiers make different
decisions to report different errors. Base classifiers generated
from insufficient training data are more likely to be tightly cor-
related and make similar errors. They have limited discrimi-
nant power to deal with massive variations in the test data. The
requirement for appropriately defined base classifiers signifi-
cantly restricts the applicability of current ensemble algorithms
for SSS face recognition.

1.3 The contributions of this work

This work proposes a novel Random Quad-Tree based ensem-
ble algorithm (R-QT). Advantages over conventional ensemble
methods for SSS face recognition are at two aspects: (1) the
governing architecture yields more new samples per person to
generate high diverse base classifiers which expands the face
space; (2) the base classifiers generated from face images with
overlapping regions preserve the geometric coorelationship be-
tween local patches.

The rest of this paper is organized as follows. In Section
II, we briefly review the proposed R-QT algorithm. Then, in
Section III, the theory and algorithm of R-QT based base clas-
sifier definition are stated in details. Section IV reports on a
set of experiments using five widely-used databases to demon-
strate the effectiveness of our method. Finally, conclusions and
future directions are summarized in Section V.

2 Overview of the Random Quad-Tree based
ensemble algorithm (R-QT)

The diagram in Fig.2 shows the skeleton of the proposed al-
gorithm R-QT. From the original SSS training data, we first
generate a template image to encode the distribution of dis-
criminate features across the dataset. However, since the sam-
ples in the gallery set is insufficient, the template is of weak
representativeness. Thus, we need to introduce new changes
to make the template more diverse. We add a set of random
matrices to the template to generate multiple templates of high
diversity. Then we perform Quad-Tree decomposition on the
new templates. The Quad-Tree decomposition is introduced
based on literature observations [7, 18] that there is high over-
lap between different parts of face regions and the coorelation-
ship between local regions plays an important role in classifica-
tion. Instead of splitting templates into small non-overlapping
regions, Quad-Trees decompose templates into overlapping
patches. According to the decomposition results, face images
in the original training data are reorganized to generate new
samples. Lastly, we use a majority voting scheme to aggregate
the base classifiers. Since the Quad-Tree decomposition is per-
formed on a set of randomly generated templates. We call our
method as Random Quad-Tree based algorithm.

3 Random Quad-Tree based base classifier
definition

Random Quad-Tree based base classifier definition, demon-
strated by Fig.3, mainly consists of three operations: (1) gen-



Figure 2: Illustration of the Random Quad-Tree based
ensemble algorithm.

Figure 3: An example of Random Quad-Tree decomposition
on a face database: Extended Yale database.

eration of a template image T ; (2) Random Quad-Tree decom-
position, and (3) the evaluation of each base classifier.

3.1 Template image

Motivated by the idea of LDA which encodes discriminant
information by maximizing the between-class scatter matrix
Sb and minimizing the within-class scatter matrix Sw ( See
Eq.(1)). We define a template face T by Eq.(2) to represent the
distribution of discriminant information across the database.
Thus, the total variance of the entire database is the variance
of the template.

Sb =
c∑

i=1
Ni(µi − µ)(µi − µ)T ,

Sw =
c∑

i=1

∑
xk∈Xi

(xk − µi)(xk − µi)T ,

(1)

T = diag( Sb

Sw
), (2)

where c is the number of classes in the dataset, µ is the mean
image of all classes, µi is the mean image of class Xi, Ni is
the number of samples in class Xi, and xk is the k-th sample
of class Xi. Please note that the generation of T fails under
the SSPP situation since no samples available to construct Sw.
Thus, the template image is defined by Sb only under SSPP.

3.2 Random Quad-Tree decomposition

This part is at the very core of the definition of a set of base
classifiers B = {b1, b2, ..., bL}. It is done through perform-
ing Random Quad-Tree decomposition L times. Following de-
scribes the procedure in details.

Since the template image T generated from the original
SSS training data is of weak ability to represent the whole face
space, we create multiple new templates T ′ = {T ′

1, T ′
2, ..., T ′

L}
by adding a set of random matrices R = {R1, R2, ..., RL} to
T to expand the represented face space. Each random matrix
Ri has the same size as T and the elements of Ri are randomly
chosen from a even distribution. Ri is first normalized to the
range of [0, 255] using Eq.(3).

Ri = normalize(Ri) = Ri − max(Ri)
max(Ri) − min(Ri)

∗ 255, (3)

T ′
i = T + αRi

T + Ri
. (4)

After normalization, Ri is added to T based on a weighted sum
rule using Eq.(4) to generate a new template image T ′

i , where
α is the balance parameter in a range of [0, 2]. T ′

i is also nor-
malized to [0, 255]. Quad-Tree decomposition is implemented
on each template image T ′

i as below.
We perform Quad-Tree decomposition on each T ′

i to parti-
tion the template into smaller blocks recursively according to a
function doSplit(r) defined in Eq.(5) [18]. If the variance of a
region r (begins with the template T ′

i ) is higher than a threshold
variance (Tv ∗ totalV ar), then r is split into four sub-blocks
with the same size. The threshold Tv is set to be a default
value of 0.5 and the totalV ar is defined by the variance of T ′

i .
The partition carries on until no blocks satisfy the certification
function in Eq.(5) or no blocks can be splitted. Usually, the
template is split into less and bigger blocks when Tv is large,
but into more and smaller blocks when Tv is small.

doSplit(r) =

{
true, while(var(r) > Tv ∗ totalV ar),
f lase, otherwise,

(5)

totalV ar = variance(T ′
i ),

After decomposition, we get a template face encoding pattern

(a)

(b)

Figure 4: An example of 20 Random Quad-Trees (a)
Quad-Trees (b) Quad-Tree partitions on sample face images

as shown in Fig.(4) (a). Each Quad-Tree decomposition refers
to such a pattern. Since larger blocks implies that the density
of discriminate features in them are low, these blocks are of
no need to keep their original sizes. We then resize them to
((d/2)×(d/2)) where d is the dimension of the block (in pixel).
Quad-Tree decomposition and block resizing generate a new



face sample whose size is smaller than the original face image.
In this way, all face images in the original training set are newly
represented according to each encoding pattern to generate a
new training sample set. A base classifier bi is learned from
this new sample set.

3.3 Evaluation of each base classifier

Individual base classifiers are trained on a set of virtually
generated gallery data based on PCA+LDA. Each gallery set
(XG = {xG

i ; i = 1, 2, ..., N ∗ MG}) has the same number of
face images as the original training data, where N is the num-
ber of subjects and MG is the number of samples per subject
in XG. Evaluation on the original probe set (XP = {xP

j ; j =
1, 2, ..., N ∗ MP }) reports the performance of each base clas-
sifier. In the evaluation, we use the nearest neighbor classi-
fication with L2-norm as the distance metric. The distance
between two feature vectors, X = (x1, x2, ..., xn) and Y =
(y1, y2, ..., yn) is defined in Eq.(6). Given an unknown sample
j, a nearest neighbor classifier defined in Eq.(7) searches the
feature subspace for the training sample i that is closest to the
unknown sample, where i = 1, ..., N ∗MG, j = 1, ..., N ∗MP .

d2(X, Y ) = ∥X − Y ∥2=

√√√√ n∑
k=1

(xk − yk)2. (6)

i = argmin(d2(Xi, Yj)). (7)

The accuracy of each classifier is defined by the number of
correctly classified probe samples against the total number of
probe samples, namely as the rank-one recognition rate.

Finally, we briefly analyze the computational complexity
of R-QT, which involves L base classifiers. R-QT mainly in-
cludes a template image calculation using LDA, Quad-Tree de-
compositions on template images, and the evaluation of each
base classifier using PCA+LDA. Suppose a training set con-
tains m samples, and the size of each face image is d. Both
the calculation of T and Quad-Tree decomposition can be per-
formed in linear time O(d). The classical PCA requires around
O(d3+d2m) computations [12]. And LDA needs O(mnt+t3)
[2], where n is the number of features and t = min(m, n).
Since the feature dimension is usually smaller than that of the
original face image, we have d > n. Thus, the total computa-
tional complexity of our method is O(L(d3 + d2m)).

4 Experiments

We evaluated our method (R-QT) on five widely-used
databases, namely: ORL [11], Yale [1], Extended Yale (Yale2)
[5], PIE [13], and color FERET [9]. We compared the pro-
posed R-QT with existing several representative methods. The
following are the details of the experiments and results.

4.1 Five databases used in the experiments

• ORL database: contains the images from 40 subjects,
with 10 different images per subject. Images were taken

at different conditions. They are various on facial expres-
sions, open or closed eyes, smiling or non-smiling, with
glasses or no glasses and scale changes (up to 10 per-
cent). Moreover, the images were taken with a tolerance
for tilting and rotation of the face of up to 20 degree.

• Yale database: consists of 165 faces images of 15 sub-
jects, each providing 11 different images. The images
are in upright, frontal position under various facial ex-
pressions and lighting conditions.

• Extended Yale database: contains more than 20,000 sin-
gle light source images of 38 subjects with 576 viewing
conditions (9 poses in 64 illumination conditions).

• PIE database: contains 41,368 images of 68 people, each
person with 13 different poses, 4 different expressions,
and under 43 different illumination conditions. That is,
each person has 170 samples.

• FERET database: consists of 13539 images correspond-
ing to 1565 subjects, which are various on facial expres-
sions, ethnicity, gender and age.

(a)

(b)

(c)

(d)

(e)

Figure 5: Five databases used in the experiments: (a) ORL, (b)
Yale, (c) Extended Yale (Yale2), (d) PIE, (e) FERET.

Face images in the first four databases are aligned and normal-
ized to 32 × 32 using the method in [3]. The FERET database
is normalized and preprocessed to the same size using the CSU
Face Identification Evaluation System 5.1 [4]. Sample images
of all databases after histogram equalization are shown in Fig.5.

4.2 Experimental setting

The SSS face recognition is conducted on all databases com-
pared with four typical methods including: decision-tree based



ensemble (DT) [14], random subspace method (RS) [16], semi-
random subspace method (Semi-RS)[19], and the decision fu-
sion for patch based method (DF) [15]. We implemented DT
and RS ourselves and tuned the best performance for a fair
comparison. Recognition results of Semi-RS and DF on part
of databases are referred to [19], [15] directly.

For SSS problem, a random subset with p images per sub-
ject is taken with labels to form the training set. For ORL and
Yale databases, p = 1, 2, 3, 4, 5; For Extended Yale database,
p = 5, 10, 20; and for PIE database p = 5, 10. Face the FERET
database two cases are taken into account where p = 1 and
p = FaFb (each person has two types of images, Fa and Fb,
Fa as training data, Fb as test data), respectively. For each
given p, there are 10 randomly splits over each database: for
each split, the number of p samples of each person are ran-
domly selected as training data, and the rest as test data. The
average recognition accuracy over 10 splits is reported on each
database. In the experiments, three parameters of our method
L, α, Tv are set to 20, 0.5, 0.5, respectively. And the feature
dimension of PCA subspace is set to a smaller value between
the number of classes in each database and 100.

4.3 Comparison with existing methods

Table 1 ∼ 5 tabulates the rank-one recognition rate of all meth-
ods on five databases. In these tables, the fist column lists the
methods to be compared. The values in rest columns represent
the recognition accuracy of these methods using p samples per
person as training data. Due to the space limitation, we just
adds a figure consisting of two sub-figures to the first table for
a better illustration: (a) the accuracy histogram of each method,
(b) the ROC curve of our method.

Table 1: Evaluation on the ORL database

PPPPPPPPMethod
p

1 2 3 4 5

DT 23.47 47.41 53.75 66.25 78.90
RS 60.39 77.13 83.39 87.75 93.05

Semi-RS / / / / 94.30
Our 62.00 85.66 91.79 94.75 96.85
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Figure 6: Evaluation on the ORL database: (a) the accuracy
histogram of different methods, (b) ROC of our method.

Before the performance comparison, we first illustrate the
effect of the number of samples in the galley set by measuring

Table 2: Evaluation on the Yale database

PPPPPPPPMethod
p

1 2 3 4 5

DT 22.07 32.44 40.25 45.14 44.67
RS 34.80 40.30 47.25 56.00 44.67

Semi-RS / / / / 69.1
Our 33.80 50.22 60.67 68.48 70.22

Table 3: Evaluation on the Yale2 database

PPPPPPPPMethod
p

5 10 20

DT 69.97 90.79 97.77
RS 84.28 95.76 99.11
Our 85.25 95.26 98.92

Table 4: Evaluation on the PIE database

PPPPPPPPMethod
p

5 10

DT 48.60 69.55
RS 62.87 79.42
Our 70.40 84.68

Table 5: Evaluation on the color FERET database

PPPPPPPPMethod
p

1 FaFb

DT 13.01 25.60
RS 34.99 78.62
DF 42.56 /
Our 58.02 84.17

the performance on all databases. As shown in Table 1 ∼ 5,
the almost all gallery sets with relatively larger p give much
better performance, especially the p > 3 in Table 1 and p > 10
in Table 3 give more than 90% recognition accuracy. How-
ever, the performance of almost all methods degrade obviously
as the number of samples in the gallery set decreases, the re-
sults met our expectation that the SSS problem challenges face
recognition algorithms.

Above observation also proves a fact that the decision
tree (DT) based methods obtain the worst performance on all
databases. The reason is that base classifiers generated by DT
come from the original gallery set directly. The SSS problem
makes them highly overfit to the training data. Inadequate base
classifiers are unlikely to estimate the face space accurately,
thus their performances drop rapidly (even lower than 20% )
when probe sets have large variations. This observation implies
that the key point using ensemble to solve the SSS problem is
to enlarge the gallery set by introducing more variations so that
the learned base classifiers are diverse enough to estimate the



face space.
In Table 1, 2, we find our method slightly outperforms RS

under p = 1 while the probe set is small such as ORL and
Yale databases. But in large databases such as Yale 2, PIE, and
FERET with rather more variations, as shown in Table 3 ∼ 5
our method outperforms RS dramatically. For instance, the ac-
curacy of our method on database PIE has 5%∼ 10% increases
than RS. The reason is: RS projects face images to a low di-
mensional feature subspace and then randomly selects certain
features as discrimination for recognition. The main advan-
tage of RS is that the discrimination yielded based on random
feature selection are more diverse than involving all features
as DT does. However, the generation of the feature subspace
is highly dependent on the variations in the gallery set. Thus,
RS has good performance on small datsets where gallery data
posses reasonable variations against probe set, but degrades on
large datasets with much more variations in probe set.

In addition, since RS selects features from global rather
than local face images, local discriminant information are not
guaranteed. For instance in Table 2, 4, the performance of
RS is low on Yale and PIE database which contain amount
of local deformations such as facial expressions, glasses or no
glasses, etc. To overcome this, local sub-region based meth-
ods were proposed such as the semi-random subspace (Semi-
RS) [19] and the decision fusion for patch based method (DF)
[15]. From Table 2 and Table 5, we can see that Semi-RS and
DF outperform RS, respectively. However, since these meth-
ods partition face image into small patches, and learn a base
classifier from each single patch. The discrimination extracted
from single patch is limited and the coorelationship between
different patches are lost. In contrast, usage of the Quad-Tree
structure in our method preserves these geometric information
and explore them to contribute to recognition. Comparing the
performance of Semi-RS, DF and our method in Table 1, 2, 5,
R-QT always performs better.

5 Conclusion

To address the SSS problem, we propose a novel Random
Quad-Tree based ensemble algorithm (R-QT) to estimate a set
of base classifiers which encodes both meaningful discrimi-
nant features and geometric information across the face re-
gion and explore the possible face space by generating multi-
ple new samples. Compared with conventional methods, more
diverse and representative base classifiers are generated from
the enlarged training data. As evaluated on five well-known
databases, R-QT can estimate a more accurate and robust en-
semble for SSS face recognition. Besides the SSS face recog-
nition, our method can also be extended to other SSS scenario
with limited training data, which appears to be another inter-
esting direction of future work.
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