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Abstract

This paper proposes a new extrinsic calibration of kalei-
doscopic imaging system by estimating normals and dis-
tances of the mirrors. The problem to be solved in this paper
is a simultaneous estimation of all mirror parameters con-
sistent throughout multiple reflections. Unlike conventional
methods utilizing a pair of direct and mirrored images of
a reference 3D object to estimate the parameters on a per-
mirror basis, our method renders the simultaneous estima-
tion problem into solving a linear set of equations. The key
contribution of this paper is to introduce a linear estimation
of multiple mirror parameters from kaleidoscopic 2D pro-
jections of a single 3D point of unknown geometry. Eval-
uations with synthesized and real images demonstrate the
performance of the proposed algorithm in comparison with
conventional methods.

1. Introduction

Virtual multiple-view system with planar mirrors is
a practical approach to realize a multi-view capture of a
target by synchronized cameras with an identical intrin-
sic parameter, and it has been widely used for 3D shape
reconstruction by stereo [5, 6, 17], shape-from-silhouette
[2, 9, 22], structure-from-motion [19], structured-lighting
[13, 27], ToF [18], and also for reflectance analysis [10, 11,
26], for light-field imaging [3, 15, 24], etc.

This paper is aimed at proposing a new extrinsic calibra-
tion of kaleidoscopic system with planar mirrors to provide
an accurate and robust estimate of the mirror geometry for
such applications (Figure 1).

The problem addressed in this paper is to estimate all
mirror parameters, i.e. their normals and the distances from
the camera, consistent throughout multiple reflections si-
multaneously in a linear manner. While conventional meth-
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Figure 1: Kaleidoscopic imaging system. Left: kaleido-
scopic projection of a 3D cat object. Right: a 3D recon-
struction result.

ods utilize a reference object of known geometry to estimate
the mirror parameters on a per-mirror basis, the proposed
method provides a linear solution of the mirror parameters
from kaleidoscopic projections of a single 3D point without
knowing its 3D geometry beforehand.

The key idea is to utilize the 2D projections of multiple
reflections to form a linear system on the mirror parameters.
While the 3D positions of multiple reflections of a 3D point
is defined as a nonlinear function of the mirror parameters
as described later in Eq (6), their 2D projections can be used
as a linear constraint on the mirror parameters.

The rest of this paper is organized as follows. Section
2 reviews related studies on kaleidoscopic mirror calibra-
tions. Section 3 defines the measurement model and Sec-
tion 4 introduces a single mirror calibration algorithm from
two pairs of projections based on the mirror-based binoc-
ular epipolar geometry [29]. Section 5 introduces our key
contribution, a linear estimation of multiple mirror parame-
ters from kaleidoscopic 2D projections of a single 3D point
of unknown geometry. Section 6 evaluates the proposed
method quantitatively and qualitatively in comparison with
conventional methods, and Section 7 concludes the paper
and outlines future work.

2. Related work
In the context of kaleidoscopic imaging, Ihrke et al. [10]

and Reshetouski and Ihrke [20, 21] have proposed a theory
on modeling the chamber detection, segmentation, bounce
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Figure 2: Measurement model. A 3D pointp is re�ected to
p0 by a mirror� of normaln and distanced, and they are
projected toq andq0 respectively.

tracing, shape-from-silhouette,etc. In these studies, how-
ever, the geometric calibration of the mirrors is simply
achieved by detecting chessboards �rst [30], and then by
estimating the mirror normals and the distances from chess-
board 3D positions in the camera frame.

By considering kaleidoscopic imaging as a system of
observing re�ections of a single object via different mir-
rors, another possible approach is to utilize calibration tech-
niques from such mirrored observations [8,12,16,23,25,28].
While their original motivation is to estimate the 3D struc-
ture from its indirect views via mirrors, they can be used for
calibrating the kaleidoscopic system by supposing the di-
rect view were not available. For example, the orthogonal-
ity constraint on mirrored 3D points proposed by [28] can
be considered as another approach for kaleidoscopic system
calibration in [10,21].

These conventional calibration approaches utilize 3D po-
sitions of a reference object and its re�ections. That is, they
�rst recover the 3D pose of the reference object from each
of the virtual views, and then compute the mirror parame-
ters from their 3D positions. While the �rst step and the sec-
ond step can be done linearly, 3D pose estimation without
nonlinear optimizations (i.e. reprojection error minimiza-
tion) is not robust to observation noise.

On the other hand, the proposed method directly esti-
mates the mirror parameters linearly from kaleidoscopic
projections of a single 3D point of unknown geometry,i.e.
without knowing its 3D position. Since our algorithm is
based on a reprojection constraint, the result is as accurate
as those with nonlinear optimizations.

3. Kaleidoscopic imaging system

Figure 2 illustrates the measurement model with a mir-
ror. Let p denote a 3D point in the camera coordinate sys-
tem. The mirror� of normaln at distanced from the cam-
era generates its mirror asp0, andp andp0 are captured as

Figure 3: Kaleidoscopic imaging system. A 3D pointp is
re�ected to p1, p2 and p3 by the mirrors� 1, � 2 and � 3

respectively.

Figure 4: Chamber arrangement

q andq0 in the camera image

� q = Ap; � 0q0 = Ap0; (1)

whereA is the intrinsic matrix of the camera calibrated be-
forehand, and� and� 0 are the depths from the camera.

The 3D pointsp andp0 satisfy

p = p0+ 2 tn ; (2)

wheret denotes the distance fromp to the mirror plane.
Also the projection ofp0 to n gives

t + d = � n > p0: (3)

These two equations yield

p = � 2(n > p0+ d)n + p0; (4)

and can be rewritten as

~p = S ~p0 =
�

H � 2dn
01� 3 1

�
~p0; (5)

whereH = I 3� 3 � 2nn > is a 3� 3 Householder matrix,
~x denotes the homogeneous coordinate ofx, and0m � n de-
notes them� n zero matrix.

Kaleidoscopic imaging system utilize multiple mirrors to
generate multiple viewpoints virtually (Figure 3), and the



images captured by the camera consist ofchamberscor-
responding to images captured by the real and the virtual
cameras as shown in Figure 4. Here we assume three mir-
rors system while our calibration can be adopted to other
con�gurations.

Let M 0 denote thebasechamber corresponding to the
direct view of the target. The three mirrors� 1, � 2 and� 3

generate �rst re�ection chambersM 1, M 2 andM 3 respec-
tively. These three mirrors also generate virtual mirrors� ij

by mirroring� j by � i (i; j = 1 ; 2; 3; i 6= j ). The matrices
Sij andH ij of � ij are given by

Sij = Si Sj ;

H ij = H i H j ;
(6)

and the camera observes the second re�ection chamberM ij

as the mirror ofM j by � i . The third and further re�ections
are de�ned by

� m
k=1 Si k (i k = 1 ; 2; 3; i k 6= i k+1 ); (7)

wherem is the number of re�ections.
The goal of our extrinsic calibration is to estimate the

parametersn i anddi of the real mirror� i from projections
of a single 3D point in the base chamberM 0 and its mirrors
in M i , M ij , and so on.

4. Single mirror calibration from projections
of two 3D points

Suppose the camera observes a 3D point of unknown ge-
ometryp. The mirror� of matrix S de�ned by the normal
n and the distanced re�ects p to p0 = Sp (Eq (5)).

Based on the epipolar geometry [7, 29],n , p andp0 are
coplanar and satisfy

(n � p)> p0 = 0 : (8)

By substitutingp andp0 by �A � 1q and� 0A � 1q0 respec-
tively (Eq (1)), we obtain

q> A �> [n ]>� A � 1q0 = 0 ; (9)

where[n ]� denotes the3 � 3 skew-symmetric matrix rep-
resenting the cross product byn and this is the essential
matrix of this mirror-based binocular geometry [29].

By representing the normalized image coordinates ofq
and q0 by (x; y; 1)> = A � 1q and (x0; y0; 1)> = A � 1q0

respectively, Eq (9) can be rewritten as
�
y � y0 x0 � x xy 0 � x0y

�
n = 0 : (10)

This equation allows estimatingn up to scale by using pro-
jections of more than or equal to two 3D points and their
mirrors. Sincen is a unit vector, we can obtain a unique so-
lution by assuming the mirror is front-facing to the camera.

It should be noted the distanced from the camera to the
mirror cannot be estimated since it is identical to the scale
factor.

Figure 5: Corresponding points. Three pairshq0; q1i ,
hq2; q12 i and hq3; q13 i (red) are available or mirror� 1

(blue)

5. Multiple mirrors calibration from kaleido-
scopic projections of single 3D point

This section introduces our linear algorithm which esti-
mates the mirror normals and the distances from the kalei-
doscopic projections of a single 3D point. Notice that the
algorithm is �rst introduced by utilizing up to the second
re�ections, but they can be extended to third or further re-
�ections intuitively as described later.

5.1. Mirror normals n 1, n 2, and n 3

The algorithm in Section 4 realizes a mirror calibration
on a per-mirror basis. That is, it can estimate the parameters
of � 1, � 2 and � 3 independently. Furthermore, it can also
estimate those of virtual mirrors such as� 13, � 23, and so
forth.

However, such real mirror and virtual mirror parameters
are not guaranteed to be consistent with each other and Eq
(6) does not hold strictly. This results in inconsistent trian-
gulations in 3D geometry estimation for example.

Instead of such mirror-wise estimations, this section pro-
poses a new linear algorithm which calibrates the kalei-
doscopic mirror parameters simultaneously by observing a
single 3D point in the scene.

Suppose a 3D pointp0 is projected toq0 in the base
chamber, and its mirrorpi by � i is projected toqi in the
chamberM i . Likewise, the second mirrorpij by � ij is pro-
jected toqij in the chamberM ij , and so forth.

Herep1 = S1p0 indicates thatq0 andq1 satisfy Eq (10)
and provide a constraint for estimating the mirror normaln 1

of � 1 as described in Section 4. In addition, ifp2 = S2p0

holds as well, we obtainS1p2 = S1S2p0 , p12 = S1p2.
That is, the projectionq2 corresponding to the �rst re�ec-
tion p2 and the projectionq12 corresponding to the sec-
ond re�ection p12 also satisfy Eq (10) onn 1. Similarly,
if p3 = S3p0 holds,q3 andp12 provides a linear constraint
onn 1 as well. From these three constraints,n 1 can be esti-


