
Heterogeneous Deformation Model for 3D Shape and Motion Recovery from
Multi-Viewpoint Images

Shohei Nobuhara Takashi Matsuyama

Graduate School of Informatics, Kyoto University
Sakyo, Kyoto, 606-8501, Japan

E-mail: {nob,tm}@vision.kuee.kyoto-u.ac.jp

Abstract

This paper presents a framework for dynamic 3D shape
and motion reconstruction from multi-viewpoint images us-
ing a deformable mesh model. By deforming a mesh at a
frame to that at the next frame, we can obtain both 3D shape
and motion of the object simultaneously. The deformation
process of our mesh model is heterogeneous. Each vertex
changes its deformation process according to its 1) photo-
metric property (i.e., if it has prominent texture or not), and
2) physical property (i.e., if it is an element of rigid part of
the object or not). This heterogeneous deformation model
enables us to reconstruct the object which consists of differ-
ent kinds of materials or parts with different motion models,
e.g., rigidly acting body parts and deforming soft clothes or
its skins, by a single and unified computational framework.

1. Introduction

In recent years, many studies have been done on 3D
shape and motion reconstruction. For static 3D shape re-
construction, several frameworks combining multiple cues
such as photometric stereo or silhouette were proposed to
accomplish better stability and accuracy. Fua [7] repre-
sented object shape by 2.5D triangular mesh model and de-
formed it based on photometric stereo and silhouette con-
straint. Cross [6] carved visual hull, a set of voxels given
by silhouettes, using photometric property. For 3D mo-
tion recovery, Heap [8] proposed human hand tracking from
camera images using a given deformable hand model. Bot-
tino [2] tracked 3D human action from multi-viewpoint sil-
houettes with a known object model. Vedula [18] intro-
duced a framework to compute dense 3D motion flow from
optical flows with / without object shape.

The problem we consider in this paper is how we can re-
constructdynamic3D shape from multi-viewpoint images.
That is, we focus on how to recover the shape and mo-
tion of the objectsimultaneously. A naive method for this
problem would be: Step 1. reconstruct 3D shape for each
frame, Step 2. estimate 3D motion by establishing corre-
spondences between a pair of 3D shapes at framest and

t +1. However, this approach consists of two-stage compu-
tational model and it it not so easy to manage each stage to
cooperate with the other. We believe that a unified compu-
tational model, i.e., simultaneous recovery of 3D shape and
motion, is better than the two-stage approach. Toward the
simultaneous recovery, for example, Vedula [19] showed
an algorithm to recover shapes represented by voxels in 2
frames and per-voxel-correspondence between them simul-
taneously. Fua [15] proposed a method which uses a soft
object model and refine it based on photometric and silhou-
ette constraints.

In [13, 14], a unified computation algorithm using a de-
formable mesh model [9] was presented. This algorithm
represents the shape by a surface mesh model and the mo-
tion by translations of its vertices, i.e., deformation from
a frame to the next. This deformation based approach can
preserve global and local topological structure of the mesh
from frame to frame, which provides dense, per-vertex cor-
respondences between two consecutive frames. This is use-
ful for inter-frame 3D data compression [3], motion analy-
sis, and so on. However, this simple per-vertex-deformation
can not cope with long term reconstruction or global change
of the topological structure of the 3D object shape. This is
because 1) per-vertex-deformation approach is purely local,
bottom-up and data-driven, and 2) we can not track all the
vertices from frame to frame, that is, not all the vertices are
identifiableor localizableon the object surface.

In this paper, we present a framework usingheteroge-
neousmesh model to solve these problem. Our heteroge-
neous deformable mesh model deforms its shape by per-
vertex transition governed by a force working at each ver-
tex. In an ordinary mesh deformation model, the forces at
each vertex are generated by the same process, and once the
forces are given, the vertices deform in a uniform manner,
e.g., applying Newton’s second law uniformly for each ver-
tex. However, our heterogeneous mesh model changes the
force-generation and vertex-deformation rule at each ver-
tex based on its physical and photometric properties. That
is, the vertex of our heterogeneous mesh model represents
not only the position of the object surface, but also the mo-
tion model and the surface characteristic of the object. Ac-
cording to these additional properties of vertices, we control
their force and computation process at each iteration step.



Figure 1. Input images and visual hull

This is an introduction of top-down, or model-driven factors
into the deformation process to make it more stable. With
our heterogeneous deformable mesh model, we will be able
to reconstruct the object which consists of different kind of
materials, e.g., rigidly acting body parts and deforming soft
clothes or its skins, by a single and unified computational
scheme.

To reconstruct the shape and motion at framet + 1, we
assume that we have the shape of the object at framet and
multi-viewpoint images and silhouettes, i.e. visual hull, of
the object at framet and t + 1. Figure 1 illustrates input
images captured by cameras circumnavigating the object
(dancing woman) and visual hull reconstructed by our vol-
umetric intersection method proposed in [13] followed by
the discrete marching cubes method [11].

Section 2 describes our basic deformable model which
enables to integrate several reconstruction cues such as
photo-consistency, silhouette, and so on. Section 3 presents
how we categorize a vertex and how we implement model-
driven deformation into basic deformation process. Section
4 shows experimental results of shape and motion recovery
from a multi-viewpoint image sequence.

2. Basic Deformable 3D Mesh Model

As described above, we use a deformable mesh model
which deforms its shape from framet to framet +1. Our de-
formable mesh model deforms so as to satisfy several con-
straints corresponding to reconstruction cues [7,13,14]. We
represent each constraint as a force working at each ver-
tex and compute how each vertex moves under these forces.
Our deformation algorithm consists of the following steps:

Step 1 Set the given object shape at framet as the initial
shape of the mesh model.
Note that the initial mesh att = 0 should be given by
another method. We used the visual hull of the object
as the initial shape att = 0 (see Section 4).

Step 2 Deform the model iteratively:

Step 2.1 Compute the force working at each vertex re-
spectively.

Step 2.2 Move each vertex according to the force.

Step 2.3 Terminate if the vertex motions are small
enough. Otherwise go back to 2.1 .

Step 3 Take the final shape of the mesh model as the object
shape at framet +1.

To realize the shape deformation like SNAKES [10],
we can use either energy function based or force based
methods. As described above, we employed a force based
method. This is firstly, from a computational point of view,
because we have too many vertices (for example, the mesh
model shown in Figure 1 has about 12,000 vertices) to solve
energy function and secondly, from an analytical point of
view, because one of the constraints used to control the de-
formation cannot be represented as any analytical energy
function (see below).

We employed the following five constraints to control the
frame-to-frame deformation:

1. Photometric constraint: a patch in the mesh model
should be placed so that its texture, which is computed
by projecting the patch onto a captured image at both
frame t and t + 1, should be consistent irrespectively
of onto which image it is projected.

2. Silhouette constraint: when the mesh model is pro-
jected onto an image plane, its 2D silhouette should be
coincide with the observed object silhouette at frame
t +1 on that image plane.

3. Smoothness constraint: the 3D mesh should be lo-
cally smooth and should not intersect with itself.

4. Motion flow constraint : a mesh vertex should drift in
the direction of the motion flow of its vicinity.

5. Inertia constraint : the motion of a vertex should be
temporally smooth and continuous.

In what follows, we describe the forces at each vertex
generated to satisfy the constraints.

2.1. Forces at each Vertex

We introduce the following five forces atv to move its
position so that the above mentioned five constraints should
be satisfied. We denote a vertex att +1, its 3D position, and
the set of cameras which can observe that vertex byv, qv,
andCv respectively. For example,Cv = {CAM2,CAM3} in
Figure 2.
External Force: Fe(v)
First, we define external forceFe(v) to deform the mesh to
satisfy the photometric constraint.

Fe(v)≡ ∇Ee(qv), (1)



Figure 2. Photometric consistency and visi-
bility

whereEe(qv) denotes a “photo-consistency” function [12].
We use the correlation of textures to be mapped aroundv
(Figure 2) :

Ee(qv)≡
∑c∈Cv0

∥∥pv0,c− pv0,v
∥∥2 +∑c∈Cv

∥∥pv,c− pv0,v
∥∥2

N(Cv0)+N(Cv)
,

(2)
wherec denotes a camera inCv, N(Cv) the number of cam-
eras inCv, v0 the initial state of the vertex (the vertex at
framet), pv,c the texture corresponding tov on the image at
t +1 captured byc, pv0,c the texture corresponding tov0 on
the image att captured byc, andpv0,v denotes the average of
pv0,c andpv,c. Fe(v) movesv so that its corresponding im-
age textures observed by the cameras inCv andCv0 become
mutually consistent.

Note that for a vertex whereCv = /0 andCv0 = /0, or in
other words, for an invisible vertex, let the external force
Fe(v) = 0. The positions of invisible vertices are deter-
mined by the other forces.
Internal Force: F i(v)
SinceFe(v) may destroy smoothness of the mesh or incur
self-intersection, we introduce the internal forceF i(v) at v
as a combination of spring and dumper:

F i(v)≡
n

∑
j

k j
(‖qv j −qv‖− lv,v j

)−dvq̇v (3)

wherev j denotes neighboring vertices ofv, n the number of
such vertices,k j the stiffness of the spring betweenv and
v j , lv,v j the natural length the spring, anddv the damping
constant proportion to the velocity ofv.

Note that this internal force works so as to make the po-
sition of an invisible vertex be interpolated by its neighbors.
Silhouette Preserving Force:Fs(v)
To satisfy the silhouette constraint described before, we

introduce the silhouette preserving forceFs(v). This is
the most distinguishing characteristics of our deformable
model and involves nonlinear selective operation based on
the global shape of the mesh, which cannot be analytically
represented by any energy function.

Figure 3. Silhouette preserving force

Figure 3 explains how this force atv is computed, where
So,c denotes the object silhouette att +1 observed by cam-
erac, Sm,c the 2D projection of the 3D mesh on the image
plane ofc, andv′ the 2D projection ofv on the image plane
of c.

1. For eachc in Cv, compute the partial silhouette pre-
serving forcefs(v,c) by the following method.

2. If

(a) v′ is located out ofSo,c or

(b) v′ is located inSo,c and on the contour ofSm,c,

then compute the 2D shortest vector fromv′ to So,c

(Figure 3 2©) and set its corresponding 3D vector =
fs(v,c) (Figure 3 4©).

3. Otherwise,fs(v,c) = 0.

The overall silhouette preserving force atv is computed
by summing upfs(v,c):

Fs(v)≡ ∑
c∈Cv

fs(v,c). (4)

Note thatFs(v) works only at those vertices that are lo-
cated around the object contour generator [6], which is de-
fined based on the global 3D shape of the object as well as
locations of image planes of the cameras.
Drift Force: Fd(v)
As described in Section 1, we assume that we have sil-

houette images and a visual hull at each frame. With these
visual hulls, i.e., sets of voxels, we can compute rough cor-
respondences between them by the point-set-deformation
algorithm [4]. This algorithm gives us the voxel-wise cor-
respondence flow from the voxel set att to the voxel set at
t +1. We can represent this flow by a set of correspondence
lines:

L = {l i | i = 1, . . . ,N(V)} , (5)

whereV denotes the voxel set of the mesh,N(V) the num-
ber of voxels inV, and l i the correspondence line starting



Figure 4. Roughly estimated motion flow lines

from i-th voxel inV. Whereas visual hulls do not represent
accurate object shapes, we can use this correspondence as
roughly estimated motion flow. Figure 4 shows roughly es-
timated motion flow lines from framet to t + 1. The start
and end points of each line are colored blue and red. The
slate blue and slate red regions denote the visual hull att and
t +1, which are the same as the center column of Figure 7.

Once the motion flow is obtained, we define the potential
field Ed(v) with this flow. First, letlv be the closest corre-
spondence line inL from a vertexv, plv,v the closest point
on lv from v, andslv the stating point of the correspondence
line lv. Then, we define the potential field as the function of
the distance fromv to lv and the distance fromslv to plv,v:

Ed(qv)≡ ‖slv−plv,v‖2−‖qv−plv,v‖2. (6)

Finally, we define the drift forceFd(v) at vertexv was the
gradient vector ofEd(qv):

Fd(v)≡ ∇Ed(qv). (7)

Inertia Force: Fn(v)
If we can assume that the interval between successive
frames is short enough, we can expect the continuity and
the smoothness of the object motion. This assumption tells
us that we can predict a vertex location att +1 from its mo-
tion history.

We can represent such predictions as a set of prediction
lines connectingqv andq̂v, whereq̂v denotes the predicted
location ofv. Then we can define the inertia forceFn(v)
just in the same way as the drift forceFd(v):

Fn(v)≡ ∇En(qv), (8)

whereEn(qv) denotes potential field defined based on the
set of prediction lines.
Overall Vertex Force: F(v)
Finally we define vertex forceF(v) with coefficients
α,β ,γ,δ ,ε as follows:

F(v)≡ αF i(v)+βFe(v)+ γFs(v)
+δFd(v)+ εFn(v). (9)

Figure 5. Clustered motion flow lines

2.2. Deformation Computation

Given a force working at each vertex, we can compute
how the mesh deforms its shape by solving Newtonian
equation of motion:

F(v) = ma

= mq̈v
(10)

with forward Euler integration method or other iterative
method [1, 17]. We use a givenm for all the vertices and
backward Euler integration method for the experiments de-
scribed below.

3. Heterogeneous Deformation

As described in Section 1, we introduce a heterogeneous
deformation process into the basic deformable model in
Section 2 based on vertex identifiability and motion model.

3.1. Vertex Categorization

Vertex Identifiability As is well known, we can not ex-
pect that all the points on the object surface have prominent
texture and can be recovered by stereo method. Hence not
all the vertices of the mesh model areidentifiable, and the
external forceFe(v), which put a vertex on the real object
surface based on texture correlation, will not work at such
vertices. That is, we assume that we can categorize the ver-
tices into two types:

Ca-1 a vertex with prominent texture which shouldleadits
neighbors, or

Ca-2 others which should beledby its neighbors.



We regard a vertex as identifiable if it has consistent and
prominent textures in visible cameras. Here, we introduce
an identifiability-scoring functionI(v) as follows:

I(v)≡ Ee(qv)×argmin

{
min
c∈Cv0

∇pv0,c, min
c∈Cv

∇pv,c

}
, (11)

whereEe(qv) denotes the correlation of textures ofv (see
Equation (2)),∇pv0,c and∇pv,c the derivatives of the texture
of v0 andvon camerac respectively. With this functionI(v),
we compute the identifiability for each vertex, and label as
Ca-1 (identifiable) if the score exceeds a certain threshold,
and asCa-2 if not.

Motion Model On the other hand, as described in the def-
inition of the drift forceFd(v) and the inertia forceFn(v),
we have roughly estimated motion flow from framet to
t + 1. By clustering this flow, we can estimate which ver-
tices are moving together, i.e., rigidly (Figure 5). With this
clustering result, we assume that we can categorize the ver-
tices into another two types:

Cb-1 an element of a rigid part of the object and should
move together with others in the same part, or

Cb-2 a vertex corresponding to a part of object surface un-
der free deformation.

We cluster the motion flow represented as the set of lines
(Figure 4) as follows:

Step 1 Eliminate lines which are too short to be regarded
as a part of structured motion. We used the average
length between neighboring vertices as the threshold
of this elimination.

Step 2 Group the resulting lines into subsets based on
geodesic distances between the starting points of each
line. With geodesic distance on visual hull surface, we
can prevent the merge of two sets which are close in
Euclidean distance but not topologically.

Step 3 Group each subset into clusters based on the direc-
tion of each line.

Step 4 Label each line as

Rigid motion flow if it is an element of a cluster,

Deformation flow otherwise.

In Figure 5, each colored lines denote a rigid motion flow,
and gray lines denote deformation flow. We label a vertex
on a rigid motion flow asCb-1 and others asCb-2.

3.2. Heterogeneous Deformation Algorithm

With these two categorizations, we add following steps
in the basic deformation process.
For each vertex,

• if it categorized asCa-1, let the force of the vertex dif-
fuse to those of neighbors so that it lead its neighbors,

• and / or if categorized asCb-1, make the springs of the
vertex stiff [5,16] to move together with others.

We define the diffusion process as follows.

1. Letv be a vertex of typeCa-1, v j a neighboring vertex
of v.

2. For eachv j , modify the forceF(v j):

F(v j) = ωF(v)+(1−ω)Fprev(v j),

ω = e−Dg(v,v j ),
(12)

whereFprev(v j) denotes the original force atv j , and
Dg(v,v j) the geodesic distance betweenv andv j .

Note that for a vertex of typeCa-2∧Cb-2, a vertex without
prominent texture or not a part of a rigid part, its position is
interpolated by the internal forceF i(v), and a vertex of type
Ca-1∧ Cb-1, a vertex with prominent texture and a part of
a rigid part, deforms so as to lead the rigid part which the
vertex belongs to.

Applying these steps, our heterogeneous deformation
process is modified as follows:

Step 1 Set the given object shape at framet as the initial
shape of the mesh model.

Step 2 Compute roughly estimated motion flow for the
drift forceFd(v) and the inertia forceFn(v).

Step 3 Categorize the vertices based on the motion flow:

Step 3.1 By clustering the estimated motion flow, la-
bel the vertex whetherCb-1: it is an element of a
rigid part, orCb-2: it is not.

Step 3.2 Make the springs of vertices labeled asCb-1
stiff.

Step 4 Deform the model iteratively:

Step 4.1 Compute forces working at each vertex re-
spectively.

Step 4.2 For a vertex whose identifiabilityI(v) ex-
ceeds a certain threshold, that is, for a vertex la-
beled asCa-1, let the force of it diffuse to those
of neighbors.

Step 4.3 Move each vertex according to the force.

Step 4.4 Terminate if the vertex motions are small
enough. Otherwise go back to 2.1 .

Step 5 Take the final shape of the mesh model as the object
shape at framet +1.



Figure 6. Camera arrangement

4. Experimental Results

Figure 7, 9, and 8 illustrate the inter-frame deformation
through eight successive frames. The columns of Figure
7 show, from left to right, the captured images, the visual
hulls generated by the frame-wise discrete marching cubes
method, and the mesh models deformed frame by frame, re-
spectively. In these two figures, colored areas of the mesh
denote rigid parts of the object estimated by the cluster-
ing at Step 3. Note that the visual hull in framet was
used as the initial shape for our deformation. In this ex-
periment, we used 9 cameras circumnavigating the object
(Figure 6). Captured multi-viewpoint videos are not com-
pletely synchronized and include motion blur. The mesh
models consist of about 12,000 vertices and 24,000 trian-
gles, and the processing time per frame is about 20 min-
utes by PC (Xeon 3.0GHz). We used fixed coefficients
α = 0.2,β = 0.2,γ = 0.2,δ = 0.3,ε = 0.1 given a priori.

From these results, we can observe:

• Our deformable mesh model can follow the partially-
rigid object motion smoothly. In Figure 7 and 9, we
can observe that the arms of the object are labeled as
rigid regions.

• During its dynamic deformation, our mesh model pre-
serves both global and local topological structure and
hence we can find corresponding vertices between any
pair of frames for all vertices. Figure 9 illustrates this
topology preserving characteristic. That is, the top-
left mesh denotes a part of the initial mesh obtained
by applying the marching cubes to the visual hull at
t. The lower light arrow stands for our deformation
process, where any parts of the mesh can be traced
over time. Aligned along the upper dark arrow, on the
other hand, are parts of the meshes obtained by apply-
ing the marching cubes to each visual hull indepen-
dently, where no vertex correspondence can be estab-
lished because the topological structures of the meshes
are different.

• In Figure 8, we can observe that the vertices corre-
sponding to the right lower arm and hand of the object
were labeled into different groups (green and blue) at

t

t+1

t+2

t+3

t+4

t+5

t+6

t+7

Figure 7. Successive deformation results

frame t + 7 because the arm and the hand moved to
different directions. This tells that vertices labeled as
a single rigid part may be separated into two or more
parts through successive frame recovery, and such ver-
tices labeled into different parts may be grouped to-
gether in future frame. That is, we can find new joint
of the object through the recovery, and we should in-
troduce a deformation model which can learn where is
a rigid part or a joint, and can utilize it to accomplish
more robust reconstruction.

We applied the inter-frame deformation for a long series
of frames and observed the following problem:

• In the dancing lady video sequence, the overall topo-
logical structure changes depending on her dancing
poses; sometimes hands are attached to her body. The
current mesh model cannot cope with such topological
changes. For example, the “hand” of the mesh stick its
“waist.”

To cope with this kind of topological structure changes,
we should employ more model-driven approach which can
1) prevent global self-intersection, and 2) learn the motion
model of each part of the object through the recovery.



t+6

t+7

Figure 8. Successive deformation results (de-
tailed, side view)

5. Conclusion

In this paper, we proposed a computational framework
using a heterogeneous deformable mesh model to recon-
struct dynamic 3D shape, i.e., full 3D shape and motion si-
multaneously. We believe that a unified recovery approach
is better than the two-stage approach which recovers shapes
first and then recovers motions from the shapes.

With our heterogeneous deformation, we can reconstruct
the object which consists of different kinds of materials,
e.g., rigidly acting body parts and deforming soft clothes
or its skins, by single model and unified computational
scheme.

Our computational framework will enable us to develop
more effective 3D motion analysis, 3D data compression,
and so on.

Acknowledgements

This work is supported by the Grant-in-Aid for Scien-
tific Research 133224051. We are grateful to Real World
Computing Partnership, Japan for allowing us to use their
multi-viewpoint video data.

References

[1] D. Baraff and A. Witkin. Large steps in cloth simulation.
Proc. of SIGGRAPH 1998, 32:43–54, 1998.

[2] A. Bottino and A. Laurentini. A silhouette-based tech-
nique for the reconstruction of human movement.Computer
Graphics and Image Processing, 83:79–95, 2001.

[3] H. Briceño, P. Sander, L. McMillan, S. Gortler, and
H. Hoppe. Geometry videos: A new representation for 3d
animations. InProc. of ACM Symposium on Computer Ani-
mation, pages 136–146, 2003.

[4] D. Burr. A dynamic model for image registration.Computer
Graphics and Image Processing, 15:102–112, 1981.

[5] J. Christensen, J. Marks, and J. T. Ngo. Automatic motion
synthesis for 3d mass-spring models.The Visual Computer,
13(1):20–28, 1997.

[6] G. Cross and A. Zisserman. Surface reconstruction from
multiple views using apparent contours and surface texture,
2000.

[7] P. Fua and Y. G. Leclerc. Using 3-dimensional meshes to
combine image-based and geometry-based constraints. In
Proc. of European Conference on Computer Vision, vol-
ume 2, pages 281–291, 1994.

[8] T. Heap and D. Hogg. Towards 3d hand tracking using a de-
formable model. InProc. of 2nd International Conference
on Automatic Face and Gesture Recognition, pages 140–
145, 1996.

[9] J. Isidoro and S. Sclaroff. Stochastic mesh-based multiview
reconstruction. InProceedings of 3D Data Processing, Visu-
alization, and Transmission, pages 568–577, Padova, Italy,
July 2002.

[10] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active
contour models.International Journal of Computer Vision,
1(4):321–331, 1988.

[11] Y. Kenmochi, K. Kotani, and A. Imiya. Marching cubes
method with connectivity. InProc. of 1999 International
Conference on Image Processing, pages 361–365, Kobe,
Japan, Oct. 1999.

[12] K. N. Kutulakos and S. M. Seitz. A theory of shape by space
carving. InProc. of International Conference on Computer
Vision, pages 307–314, Kerkyra, Greece, Sept. 1999.

[13] T. Matsuyama, X. Wu, T. Takai, and S. Nobuhara. Real-time
3d shape reconstruction, dynamic 3d mesh deformation and
high fidelity visualization for 3d video.Computer Vision
and Image Understanding, page in print, 2004.

[14] S. Nobuhara and T. Matsuyama. Dynamic 3d shape from
multi-viewpoint images using deformable mesh models. In
Proc. of 3rd International Symposium on Image and Signal
Processing and Analysis, pages 192–197, Rome, Italy, Sept.
2003.

[15] R. Plänkers and P. Fua. Articulated soft objects for multi-
view shape and motion capture.IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 25(9):1182–1187,
2003.

[16] X. Provot. Deformation constraints in a mass-spring model
to describe rigid cloth behavior. In W. A. Davis and
P. Prusinkiewicz, editors,Graphics Interface ’95, pages
147–154. Canadian Human-Computer Communications So-
ciety, 1995.

[17] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elasti-
cally deformable models. InProc. of SIGGRAPH 87, pages
205–214, July 1987.

[18] S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade.
Three-dimensional scene flow. InProceedings of the 7th
International Conference on Computer Vision, volume 2,
pages 722 – 729, Sept. 1999.

[19] S. Vedula, S. Baker, S. Seitz, and T. Kanade. Shape and mo-
tion carving in 6d. InComputer Vision and Pattern Recog-
nition (CVPR), June 2000.



t

Visual hull

t+1 t+2 t+3

t+4 t+5 t+6 t+7

Deformation

Figure 9. Successive deformation results (detailed)


