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The spatio-temporal correlation analysis between visual saliency and eye
movements is presented for the estimation of the mental focus toward videos.
We extract spatio-temporal dynamics patterns of saliency areas from the videos,
which we refer to as saliency-dynamics patterns, and evaluate eye movements
based on their correlation with the saliency-dynamics patterns in view. Ex-
perimental results using TV commercials demonstrate the effectiveness of the
proposed method for the mental-focus estimation.

1. Introduction

Understanding mental states of users, who face interactive display systems to
browse various kinds of information, allows building a smooth interaction between
users and systems. Our goal is to estimate the mental focus of users from their
eye movements, which indicates whether they pay attention to a specific task.
Especially in this paper, we focus on the estimation of the mental focus while
users watch general videos such as TV commercials; that is, we consider the
mental focus as the strength of users’ attention toward videos, and besides, we
assume the strength can be quantified into several levels (e.g., high and low).

Eyes are a window into the mind; eye movements are often regarded as one
of the crucial clues to estimate user states such as the attention1)2)3). Analysis
of the eye movements includes eye blinks1), PERCLOS (PERcentage of eyelid
CLOSure)4), or their combination using Bayesian networks5). The basic concept
behind these studies is that eye movements can be affected by the user states as
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well as contents being looked at. And there the analysis of relationships between
contents and eye movements plays a key role. Existing work can be character-
ized by what kind of relationships the method uses. For example, many studies
on interactive systems basically begin the analysis by specifying objects being
looked at, and then extract the features such as the gaze duration6), 3-gram
sequence of gaze targets7), or the reaction time to dynamic content updates8).
In order to obtain the detailed psycho-cognitive processes, the consideration of
content semantics is furthermore required9). Some works on driving assistance
systems investigate the correlation between eye gazes and surrounding environ-
ments. They look for salient objects from surrounding environments using optical
flow2) or obstacle, sign and pedestrian detection3), and analyze the relationship
between gaze directions and the object positions to estimate the drivers attention.

Those related works basically specify gaze-related objects or their semantic
relationships based on some heuristics about contents or surrounding environ-
ments in advance. However, because general videos contain enormous kinds of
objects, it is difficult to specify all the objects and their relationships using the
heuristics applied in the related works. Besides, eye movements have a large
variety of dynamics caused by contents and users’ states. Therefore, the analysis
of eye movements detailed enough to realize the mental-state estimation essen-
tially requires (1) the spatial structure that describes gaze targets and the other
surrounding objects in view, and (2) the temporal structure of dynamics between
both eye movements and the targets.

In this paper, we propose a novel method for the mental-focus analysis that
utilizes the spatio-temporal relationship of dynamics in both objects and eye
movements. The main contribution is to introduce an analysis of eye-movement
dynamics by categorizing them from the aspect of objects’ dynamics in view.
This enables us to switch an appropriate feature set of eye movements according
to objects’ dynamics, and is expected to enhance the accuracy of the estimation
of mental focus. In order to analyze dynamics in displayed contents without
using specific semantic heuristics, we employ the saliency map10), which is known
as a model of a visual attention system. With consideration of the influence
on eye movements, we classify the dynamics of extracted saliency areas into
several patterns called saliency-dynamics patterns, which specify corresponding
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Fig. 1 Overview.

eye movements and their features. Thus, once a saliency-dynamics pattern is
identified from contents data in a certain time window, we can evaluate the eye
movements to estimate the level of the mental focus.

The overview of our proposed analysis is as follows. As shown in Fig. 1(a),
we first extract the spatio-temporal saliency volumes S referred to as saliency
flows. S are regarded as the candidates of objects to be looked at. We also
represent the flow positions by their centroid sequences C. Then, analyzing the
change of modes, such as static and dynamic, occurred in each sequence in C,
we segment the flows into mode sequences M. And from M, we finally achieve
a sequence of saliency-dynamics patterns P (see Chapter 2 for details). For
eye-movement analysis (see Fig. 1(b)), eye-gaze data is first segmented into a
gaze-target sequence G using S, and classified into several types of eye movements
using their correlation with M (see Chapter 3 for details). Features that imply
mental focus are then extracted from eye movements X(1), X(1,2), . . . differently
according to their types. We bundle the features from eye movements within
pn ∈ P into epn , and employ different discriminative models of mental focus

for each saliency-dynamics pattern. In this research we discriminate two levels
of mental focus, high and low, by switching the models based on the observed
patterns (see Chapter 4 for details).

2. Video saliency extraction and analysis

2.1 Visual saliency in a video
Videos have visual saliency areas which attract human eye gazes. We employ

the saliency map10) to obtain the saliency areas in a video, and utilize the areas as
objects to be looked at. The saliency map is a bottom-up computational model
of visual attention, which typically includes the extraction of multiple low-level
visual features such as the intensity, the color, the orientation from an image at
multiple scales, normalization and integration of features into a 2D map with
a saliency value at each pixel. Studies on visual-attention systems such as the
saliency map basically aim to evaluate their model by predicting human gaze
behaviors11)12), with no consideration of mental states. On the other hand, the
proposed method aims to analyze the relationship between gaze behaviors and
the obtained saliency map, in order to estimate the mental focus.

We extract saliency areas from a video⋆1; a saliency map ît is computed from
an input frame it at the time t and each pixel c ∈ N2 is given a saliency value
ît(c). ît is thresholded at πs and the remaining pixels are segmented into a set of
saliency areas St = {s(t,1), . . . , s(t,Nt)} by 8-connectivity labeling (see Fig. 2(a)).

2.2 Saliency flow construction
As mentioned in Section 1, the spatio-temporal saliency dynamics is utilized for

eye-movement analysis. So we extend the visual saliency into spatio-temporal vol-
umes referred to as saliency flows (see Fig. 2(b)). The saliency flows are defined
as simply-connected 3D volumes composed by temporally-continuous saliency
areas, and they contain the time-varying pattern of their shape, position, and
saliency value. Videos are often expected to contain several flows, so we assign
an ID to each constructed flow. The following procedure gives an ID l(t,n) to a
saliency area s(t,n) so that we bundle a set of saliency areas into a single flow.

⋆1 The implementation of saliency extraction is in MATLAB using the Saliency Toolbox13).
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Fig. 2 Saliency extraction. A saliency flow S(l) is composed by temporally-continuous
saliency areas with the same id l: {s(t,n) | l(t,n) = l}.

For the area s(t,n), we look for a set of area Ŝt−1 from St−1, the elements of
which are spatio-temporally continuous to s(t,n). Since saliency flows are defined
as simply-connected, branches in the flows should be avoided. Such branches are
formed where multiple areas are connected to s(t,n), so we assigned l(t,n) based
on the number of elements in Ŝt−1 (denoted as Card(Ŝt−1); the cardinality of
Ŝt−1):
(a) If Card(Ŝt−1) = 0; no area can be found in Ŝt−1, s(t,n) consists of the saliency

flow which emerges at t. Then a new ID number is given to l(t,n).
(b) If Card(Ŝt−1) = 1; a single area can be found in Ŝt−1, s(t,n) is the following

area to s(t−1,m) ∈ Ŝt−1. This case l(t,n) receives the ID l(t−1,m).
(c) If Card(Ŝt−1) ≥ 2; more than one area can be found in Ŝt−1, s(t,n) is the

area with the collision of multiple flows. For this case l(t,n) receives the ID
l(t−1,m̂) of area s(t−1,m̂) ∈ Ŝt−1 which locates the nearest position to s(t,n).

Once l(t,n) is assigned, we look for areas which have the same ID number in
St = {s(t,1), . . . , s(t,Nt)}. If any area exists, s(t,n) is one of the branches which
emerges at t. In this case l(t,n) is relabeled to a new ID number.

Let us assume that the maximum ID L is given by the above procedure, and

the ID l(t,n) ∈ {1, . . . , L} is defined for the area s(t,n). Besides, let us define here
the function that returns the ID from a single pixel c at the time t as

SID t(c) = l (l ∈ {1, . . . , L, ζ}) , (1)
where ζ denotes the state in which no flow exists at c. A saliency flow labeled
as l is composed by a set of saliency areas S(l) ! {s(t,n) | l(t,n) = l}. This flow
exists in the temporal interval [bl, el], and the area covered with S(l) at the time
t is represented as S(l)

t .
2.3 Saliency dynamics analysis
A set of saliency flows S = {S(1) . . . , S(L)} represents the saliency dynamics.

Each element of S, a saliency flow S(l), contains the time varying pattern of its
shape, position and saliency value. Above all, a motion is well known as one
of the important features to enhance the saliency14). The motion is therefore
expected to affect an attractiveness of saliency flows, and it is also expected to
affect eye-movement dynamics; the saliency flows with or without motion cause
different types of the eye movements (see Section 3 for details).

So we extract motion features of saliency flows, and classify motion patterns
of saliency dynamics using their motion features for eye-movement analysis. The
flow position c(l)

t using the centroid of S(l)
t is defined as follows:

c(l)
t =

1

Card(S(l)
t )

∑

c∈S(l)
t

c. (2)

A position sequene C(l) ! (c(l)
t | t ∈ [bl, el]) is obtained from S(l). The following

procedures transform C(l) into a sequence of modes (motion states) M (l), and
classify saliency dynamics as several patterns based on the modes (see Fig. 3).

Flow segmentation
Two modes: md and ms, where md represents that a flow has a motion, and

ms shows it is static, are introduced for saliency-flow segmentation. We use the
notation < m(l)

n , τ (l)
n > to represent the interval that has a mode m(l)

n ∈ {md,ms}
and duration τ (l)

n (
∑

n τ (l)
n = el − bl + 1). We first set threshold to the speed (the

first order differential value) of ||C(l)|| at πc, and segment it into an initial mode
sequence (< m(l)

1 , τ (l)
1 >, . . . , < m(l)

Nl
, τ (l)

Nl
>). Static modes with smaller intervals

than ws are then suppressed by merging them with subsequent dynamic modes.
Dynamic modes with a smaller motion than an amplitude ωd are also merged with
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Fig. 3 Saliency-flow segmentation and classification. In the top of the figure, red lines show
the Euclidean norm of flow positions. In the middle, red lines show dynamic modes
and orange lines show static. In the bottom, SS shows Single Static, SD shows Single
Dynamic, MS shows Multi Static, MSD shows Multi Static/Dynamic, and MD shows
Multi Dynamic. πc was defined as 2◦/s and ωd as 2◦ using the size of human central
visual field. ws is empirically defined as 0.1 sec and ωp as 0.5 sec.

subsequent static modes because such small modes cause no eye motions. Finally
we renew the subindices to obtain the mode sequence M (l) = (m(l)

1 , . . . ,m(l)
Nl

).
Pattern classification in saliency dynamics
Saliency-dynamics patterns describe characteristics of the spatio-temporal

structure of saliency dynamics in videos. We consider video scenes with and
without dynamic saliency flows separately because the dynamic flows originally
tend to attract a more attention than the static ones. Besides, we take the number
of flows into account because it affects gaze distributions. Thus, from the exis-
tence and modes of the saliency flows, the patterns consisting of Single Static,
Single Dynamic, Multi Static, Multi-Static/Dynamic, and Multi Dynamic, are
formed by a set of mode sequences M = {M (1), . . . ,M (L)} (see Table 1 for their
specifications).
M is first segmented based on changes in the number of flows and of their

Table 1 Saliency-dynamics patterns and their specifications.

Saliency-dynamics pattern Specifications

Single Static (SS) Sole flow exists with static mode.

Single Dynamic (SD) Sole flow exists with dynamic mode.

Multi Static (MS) Multiple flows exist, and they are all static.

Multi Static/Dynamic (MSD) Multiple flows exist. Some of them are static
and the others are dynamic.

Multi Dynamic (MD) Multiple flows exist, and they are all dy-
namic.

modes. As well as the preceding flow segmentation, we examine the dura-
tion of each segment and merge small segments with subsequent ones with
the threshold ωp. A sequence of saliency-dynamics patterns is finally acquired:
P = (p1, . . . , pN ) (pn ∈ {SS, SD, MS,MSD, MD}), from an input video.

3. Eye movements analysis using saliency dynamics

3.1 Mental focus and eye movements
Mental focus is here defined as a state that specifies whether humans pay at-

tention to video viewing tasks, and we assume the state can be quantified into
several levels. Kahneman proposed the attention theory that likens attention to
a limited resource which is allocated to tasks15). Following this theory, the level
of the mental focus can be regarded as the amount of attention resource that
allocates to the tasks. Besides, human information processing can be classified
into two types16): controlled processing is driven by human intentions, and au-
tomatic processing is on the other hand a passive outcome of visual stimuli. We
define the eye movements in a controlled mode as endogenous eye movements,
and in an automatic mode as exogenous eye movements.

Based on these two theories, we assume the following mental focus and eye
movements relationship model. From mental factors such as intentions or phys-
iological factors such as fatigues, the level of mental focus is determined and
attention resource is allocated. This attention resource causes endogenous eye
movements, and some visual stimuli in saliency dynamics cause exogenous eye
movements as well. Eye gaze data is observed by mixing these eye movements.
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Eye movements have different features according to their type, and therefore
have to be evaluated in a different way. The first step toward the estimation is to
classify the eye-movement type using saliency dynamics. After that we extract
features from the eye movements differently according to their type.

3.2 Eye movements in video viewing
We summarize the kinds of eye movements being observable on a screen, which

take place during video viewing, so that we classify them (see Fig. 4). When
we humans watch videos, iterative scanning and selection of objects are expected
to be observed. Here, we employ the following primitive eye movements from
a biomedical research17): saccade, fixation and smooth pursuit, and try to de-
scribe characteristics of the scanning and the selection using combinations of the
primitive movements.

The scanning movements present steady behaviors, and therefore are charac-
terized by flow modes. Based on the modes, they are classified into two types:
Fixation scan (FS) is a scanning eye movement of static saliency flows. FSs

can be described as the combination of fixations: maintenance of gaze on a
single location, and saccades: rapid and jerky gaze shifts.

Pursuit scan (PS) is a scanning of moving (dynamic) saliency flows. PSs
contain smooth pursuits of the flow motions, and saccades.

On the other hand, the selection movements present transitional behaviors, and
are caused voluntarily as well as by visual stimuli in saliency flows. Therefore,
they can be classified based on the type of human information processing. We
introduce the term events that represent visual stimuli in the flows. Events are
defined here as emergences or mode transitions from static to dynamic. They
cause exogenous gaze shifts, and according to the their association with target
selections, the following eye movements are introduced:
Endogenous target change (NC) is a gaze shift between saliency flows that

occurs asynchronously with events. Using NCs, humans voluntarily deter-
mine which flows to scan next, and manage to shift their gaze.

Exogenous target change (XC) is also a gaze shift between saliency flows
but it occurs in synchronization with events in a destination flow. The feature
of XCs is that humans do not consciously shift their gaze.

Fixation scan Pursuit scan Endogenous/Exogenous
target changeObjects

Fig. 4 Eye movements in video viewing.

3.3 Eye movements classification
Let us assume that eye-gaze data xt ∈ R2, a 2D point on a screen is obtained

using an eye tracker. The four eye movements mentioned above are specified
from the observed sequence of eye-gaze points X = (x1, x2, . . . ) (see Fig. 5).

Segmentation
For the classification, we first produce intervals < gk, τk > from X, each of

which has a single target flow with ID gk and duration τk. By following Eq.(1),
the reference from a point xt to a flow ID is described as follows:

g(t) = SID t(xt) ∈ {1, . . . , L, ζ, η}. (3)
Notice that the numbers 1, . . . , L denote the flow IDs, ζ shows that no flow
locates at the point, and η shows that the human blinks or looks outside of a
screen. Using target-flow changes, we obtain a target-flow sequence with duration
G = (< g1, τ1 >, . . . , < gK , τK >), which consists of gk /∈ {ζ, η} (see Fig. 5(a)).
We then divide < gk, τk > based on mode transitions in the flow S(gk); < gk, τk >

is divided into (< mk1 , τ
′
k1

>, . . . , < mkM , τ ′
kM

>) by a set of mode-transition time
in S(gk). After the division, we renew subindices to get a sequence of target-flow
mode with duration: G′ = (< m1, τ ′

1 >, . . . , < mK′ , τ ′
K′ >) (see Fig. 5(b)).

Classification
We classify the eye movements using the obtained mode sequence G′. Let us

assume that < mk, τ ′
k > exists in the interval [bk, ek]. We describe a sequence of

eye-gaze points in < mk, τ ′
k > as X(k) ! {xt|t ∈ [bk, ek])} and of eye-gaze points
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between < mk−1, τ ′
k−1 > and < mk, τ ′

k > as X(k−1,k) ! {xt|t ∈ [ek−1, bk]}, which
will individually correspond to specific eye movements.

FSs and PSs take place within the interval < mk, τ ′
k > and X(k) can be classified

to either of them. These eye movements can be classified using modes of their
gaze targets; based on the target-flow mode mk, we assign the label FS to X(k)

if mk = ms and PS if mk = md.
On the other hand, NCs and XCs take place between two intervals <

mk−1, τ ′
k−1 > and < mk, τ ′

k >. As mentioned in Subsection 3.2, these two move-
ments are discriminated by observing whether the eye movement is synchronized
with events or not. Specifically, we evaluate the temporal distance between the
starting time of the eye movements and that of the corresponding events to dis-
criminate the two movements. Let us assume that the most recent event from bk

occurs at Tk(< bk) in NC/XC destination flows. NCs are then discriminated from
XCs using temporal distance between Tk and bk; if bk −Tk is within the reaction
time σ of exogenous saccades (generally around 0.2 sec18)), X(k−1,k) can be la-
beled as XC, and otherwise it is labeled as NC. Finally we obtain the sequence of
eye movements, X(1), X(1,2), X(2), . . . , X(K−1), X(K−1,K), X(K), labeled by FS,
PS, NC, or XC (see Fig. 5(c)).

4. Mental focus estimation

4.1 Estimation overview
Following the procedure in Section 3, a sequence of eye movements, consisting

of fixation scan FS, pursuit scan PS, endogenous target change NC and exogenous
target change XC, is obtained. This section presents the feature extraction of
the eye movements and the estimation of the mental focus. We assume that the
level of mental focus corresponds to the amount of attention resource to tasks,
and that humans scan or select saliency flows more actively using the resource
when they are in a higher level of mental focus.

Eye movements have different characteristics according to their type, and thus
we first extract features which indicate activeness in video viewing, from the
observed eye movements in a different way for their type. Since we focus on
dynamic aspects in eye movements, the features are extracted as summarizations

0 50 100 150 200
Frame

Eye−gaze sequence

Eye-movement sequence

Target-flow sequence

Target-mode sequence

(b) Interval division by modes

Static Dynamic

(a) Target-flow identification

Static Dynamic

(c) Eye-movement classification

gaze

saliency flows

Flow mode

Target flow

Target mode

Target mode

Eye movement

Target event

Eye movement

Async.

FS vs. PS

NC vs. XC

(a)

(b)

(c)

Sync.

Fig. 5 Eye-movement classification. (a) Target-flow identification and initial segmentation.
(b) Interval division based on target modes. (c) Eye-movement classification.

of their dynamics. Here, the eye movements are affected not only by a target flow
but by the other surrounding flows in a scene. For instance, scenes composed
of multiple flows cause NC and XC whereas scenes with a single flow cause only
FS or PS. In addition, when the scene includes both static and dynamic flows,
PS seems to be observed more often than FS because the dynamic flows are
more salient than the static ones. That is, the features can perform differently
according to the type of saliency-dynamics patterns, which indicate the number
and modes of existing flows.

Therefore, we then integrate the features, which are extracted from the eye
movements in a certain time window defined by the saliency-dynamics patterns,
into a feature set. The observable eye movements for each of the patterns can be
derived as Table 2, since the eye movements are categorized by their association
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Table 2 Saliency-dynamics patterns and observable eye movements. The detailed
specifications of the patterns in the left column can be found in Table 1.

Saliency-dynamics pattern Observable eye movements

Single Static (SS) FS

Single Dynamic (SD) PS

Multi Static (MS) FS, NC, XC

Multi Static/Dynamic (MSD) FS, PS, NC, XC

Multi Dynamic (MD) PS, NC, XC

with modes or events of saliency flows. By learning a discriminative model from
the feature sets for each pattern, we can estimate the level of mental focus by
switching an appropriate model to the observed eye movements based on the
corresponding saliency-dynamics patterns in view.

4.2 Feature extraction
As shown in Subsection 3.2, FSs and PSs are steady eye movements and they

have internal dynamics. With regard to FSs, they usually contain saccades as
gaze shifts. As seen in a study on the scene perception19), the saccades are re-
garded as crucial features in eye movements. We suppose that such saccades
occur more actively when humans are in higher level of mental focus, and in-
troduce a stroke length efs1 and a frequency efs2 of saccades as features of FSs.
Let us use the notation Ẋ(k) for the velocity of an eye-motion pattern X(k).
||Ẋ(k)|| is thresholded at πv, so that Nv instances of partial temporal intervals
{O1, . . . , ONv} which contain saccades are detected. For each partial eye-motion
pattern X(k)

v ! (xt | t ∈ Ov), we calculate the stroke length of saccades and then
get the average value as efs1:

efs1 =
1

Nv

Nv∑

v=1

1
√

av

(
max

(i,j)∈Ov

(
||X(k)

i − X(k)
j ||

))
, (4)

where av denotes the area size of a target flow at the time Ov starts. e(v)
fs1 is

normalized by
√

av because the length of saccades seems to depend on the target
size. efs2 is defined as efs2 = Nv/τ ′

k, where τ ′
k denotes the duration of Xk.

Meanwhile for PSs, we consider the synchronization between eye movements
and target flows. When humans track a moving object, they tend to syn-

chronize the pursuit acceleration to expected changes of the target movement,
and maintain the velocity at a constant level while no change of target veloc-
ity is expected20). The feature of PSs therefore contains synchronous compo-
nents in the speed of eye movements. Such components lie in ||Ẋ(k)

t || cos θt

(cos θt = Ẋ(k)
t ·Ċ(k)

t

||Ẋ(k)
t ||||Ċ(k)

t ||
, t ∈ [bk, ek]), an orthographically-projected component

of Ẋ(k) to the corresponding part of a target motion velocity denoted as Ċ(k).
We introduce the feature eps1 that indicates the synchronization by using the
average ratio of speed between eyes and targets:

eps1 =
1
τ ′
k

∑

t∈[bk,ek]

||Ẋ(k)
t || cos θt

||Ċ(k)
t ||

. (5)

PSs contain saccadic components as well, and we suppose that such components
mainly lie in the rest of information ||Ẋ(k)

t || sin θt. The feature eps2 which includes
the saccadic components is given by the following equation:

eps2 =
1
τ ′
k

∑

t∈[bk,ek]

∣∣∣||Ẋ(k)
t || sin θt

∣∣∣ . (6)

NCs and XCs are transitional eye movements and therefore contain no internal
dynamics in themselves. Following the saccade evaluation above, we focus on
the occurrence frequency of the NCs. Given that K instances of NCs occur
during the interval L defined by a single saliency-dynamics pattern consisting
of F flows, the feature enc is defined as enc = K/(L · F ). With regard to XCs,
we calculate the reaction time between the starting time of XCs and that of
events which associate with the XCs, since exogenous saccades are featured by
the synchronization with the events. Given that K instances of XCs occur with
the reaction time rk (rk = bk − Tk in Subsection 3.3) in a pattern, the feature
exc is defined as

∑K
k=1 rk/K.

4.3 Integration and estimation
The next step is the integration of features within saliency-dynamics patterns;

multiple features obtained from the observable eye movements are combined into
one feature set for each pattern. In what follows, ep = [e1, . . . , eN ] represents
the feature set for a saliency-dynamics pattern p, the elements of which denote
features derived from eye movements observed in the pattern. For instance, if p is
MS, the observable eye movements are FS, NC, and XC (see Table 2). So ep can
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be represented as ep = [efs1, efs2, enc, exc]. Each element of ep is here normalized
into a range of [0, 1]. Notice that every type of eye movements can be observed
more than once during a saliency-dynamics pattern. Therefore, we first calculate
a feature from each eye movement, and then give the average value per each type
of feature to the component of ep.

Here we assume that the different levels of mental focus R are described as
{R1, . . . , RN}. The estimation of mental focus is then formulated as a problem
to estimate the state R̂ ∈ {R1, . . . , RN} which brings to a maximum a posterior
probability from a new observation e∗

p, such as
R̂ = arg max

R
P (R|ep = e∗

p) ∝ arg max
R

P (ep = e∗
p|R)P (R). (7)

Furthermore, in this paper we assume P (R) as a constant, and transform the
equation above into arg maxR P (ep = e∗

p|R). We build a discriminative model
of mental focus levels from feature sets derived from training data, differently
for saliency-dynamics patterns. And for the estimation, we switch the model
according to the observed saliency-dynamics patterns.

5. Experiments

5.1 Experimental setup
We conducted some experiments and estimated the level of mental focus. In

these experiments, we aim to discriminate two levels of mental focus: high and
low, as a relatively-simplified evaluation. 10 subjects took part in the experi-
ments, and 12 TV commercial videos (15 sec) were employed. The commercial
videos are originally designed to attract the attention, and therefore are expected
to include some obvious saliency flows.

Environments and conditions
A subject sat in front of a screen⋆1, and an eye tracker ⋆2 was installed below

the screen. The eye-tracking accuracy was, on average, around 0.7◦. The spatial
distance between the subject and the screen was around 1000 mm, and in these
settings eye movements could be observed during experiments.

Since the mental focus specifies an attentional state to video-viewing tasks, we

⋆1 MITSUBISHI Diamondcrysta RDT262WH, 25.5 inch, W550 mm/H344 mm.
⋆2 Tobii X60 Eye Tracker. An approximate allowed range of head motion is 400×220×300mm.

adopt the following two conditions in order to control the level of the mental
focus in the experiments:
Condition 1 (high level of mental focus) A subject watches a video and

answers a simple interview after that.
Condition 2 (low level of mental focus) A subject watches a video, and

besides he/she does a mental calculation while watching.
For each condition, subjects were asked to orient their gaze to a screen as far as
possible. They carried out the tasks in the following sequence: video group A
(six out of all the videos)—Condition 1, video group B (the other six videos)—
Condition 2, video group B—Condition 1, and video group A—Condition 2.

Preprocessing and parameter setting
Eye-gaze data were acquired by the eye tracker at 30 Hz. As preprocessing,

we applied a median filter with 0.5 sec window to the data in order to suppress
spontaneous noises and to interpolate defects by eye blinks⋆3. The remaining
defects of eye-gaze data caused by eyelid closures constituted 23.6% of the total
sequences. For the saliency extraction, the parameter πs in Subsection 2.1 was
empirically defined as 0.1. Saliency areas then covered 31.5% regions of the
total video frames, and the ratio of the state in which subjects looked at any
saliency areas was 88.7%. For the saliency-dynamics analysis, the parameters
πc, wd, ws, wp (see Subsection 2.3) were defined as πc = 2◦/s, wd = 2◦ based
on the size of the human central visual field, ws = 0.1 sec and wp = 0.5 sec
to avoid creating short fragments of static flows and saliency-dynamics patterns.
The reaction time of exogenous saccades δ (see Subsection 3.3) was defined as
0.2 sec by following 18), and the threshold for saccade speed πv (see Subsection
4.2) was defined as 8◦/sec to avoid detecting fixations incorrectly.

5.2 Results and discussions
Eye movement analysis
We aggregate feature sets for each saliency-dynamics pattern observed in the

experiments. Since we used two conditions in the experiments to control the levels
of the mental focus, the obtained data consists of two classes (high/low mental

⋆3 Since we employ sequences of eye-gaze points on a screen as eye movements, we do not regard
the eye blinks especially in this paper, though some studies report on the effectiveness of
eye blinks to estimate attention resource21).
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focus). Namely, the obtained feature sets constitute two conditional distributions,
conditioned by the level of the mental focus. In order to verify the separability
of these two classes in terms of linear discrimination, we first apply the linear
discriminant analysis (LDA) to the obtained data set, and calculate partial F-
Values to figure out which elements of the feature sets contribute.

Fig. 6, 7, 8, 9 and 10 describe the relative frequency distributions of the data
after LDA projection, in order to visualize the separability. Table 3 shows partial
F-Values for each saliency-dynamics pattern. We can find that the importance
of features varies according to the saliency-dynamics patterns, and these results
also suggest the following aspects of gaze behaviors:
• The level of mental focus mainly affects saccades which internally occur in

FS/PS. We can find the above aspect from the partial F-Value of efs1, efs2 and
eps2. Subjects seem to scan target flows actively rather than change them
when they are in the high level of the mental focus, since all the NC/XC
contributions are much smaller than the others.

• Synchronization in the speed between eye movements and target flows is not
affected much by the level of mental focus. That is, subjects basically tend to
pursue dynamic saliency flows at any level of mental focus. That is because
the partial F-Value of eps1 is relatively smaller than that of efs1 and efs2 in
MSD, as well as than that of enc and exc in MD.

We can find that the two relative frequency distributions are somewhat sepa-
rated. Still, some of them are clearly impossible to separate linearly. Therefore,
for the estimation, we employ the non-linear discrimination that directly esti-
mates the conditional probability distributions.

Mental focus estimation
Following Eq. (7), we estimate the level of mental focus. 24 data for each

subject (totally 240 data), which consist of two levels of mental focus per each
video, are obtained. We apply leave-one-out cross validation method to obtain
the estimation accuracy for each saliency-dynamics pattern. Namely, we remove
one of the 240 data to learn a conditional probability distribution using the rest
of the data, and test the removed data to be classified correctly. To interpo-
late the obtained distributions, here we apply the additive smoothing with the
empirically-defined smoothing parameter α = 0.0001 to them. We iteratively

0

0.2

0.4

R
el

at
iv

e 
fr

eq
u

en
cy

 

 
High level of mental focus

0 0.5 1
0

0.2

0.4

Feature sets after LDA projection

R
el

at
iv

e 
fr

eq
u

en
cy

 

 
Low level of mental focus

Fig. 6 Relative frequency distributions (SS).
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Fig. 7 Relative frequency distributions (SD).

change the feature set to remove so that we test all the data, and obtain the
average accuracy per saliency-dynamics pattern.

Table 4 shows estimation accuracies. The accuracies are obtained for all the
saliency-dynamics patterns and their average. Here we employ two estimation
baselines. One utilizes gaze durations toward saliency areas as a feature of eye
movements (see “Duration” in Table 4). We calculate temporal durations while
subjects look at each saliency area, and get the average ratios between the du-
rations and temporal intervals defined by saliency-dynamics patterns. From se-
quences of saliency-dynamics patterns, we obtain conditional probability distri-
butions of the duration ratios for each level of mental focus, and utilize them for
the estimation. The other utilizes PERCLOS4) as a feature of eye movements
(see “PERCLOS” in Table 4). In fact we simply calculate the average ratios be-
tween temporal intervals of eye-gaze data defects and those of saliency-dynamics
patterns, instead of the duration ratios shown above.

We can confirm that estimations of all the patterns perform more accurately
than the baselines. The proposed method switches different discriminative mod-
els for observed types of saliency-dynamics patterns. The results suggest that we
can utilize better features in adapting to the changes of the saliency-dynamics
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Fig. 8 Relative frequency distributions
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Fig. 9 Relative frequency distributions
(MSD).

patterns than uniform features employed in the baseline methods. Another differ-
ence of the proposed method from the baselines is that it focuses on the internal
eye-movement dynamics in saliency areas. That is, the proposed method inves-
tigates not only “what subjects look at”, but also “how subjects look at”, and
thus seems to enhance the accuracies.

From a viewpoint of improving the robustness of the method, one of the ap-
proaches is to vote estimation results within longer intervals. The estimation
accuracy by integrating the results conducted in a single video interval (15sec) is
93.3% on average. Besides, this paper conducts classification of two levels of men-
tal focus as a relatively-simplified evaluation, but in principle, we can estimate
multi-levels of the mental focus in the same fashion.

Comparing the two baselines, PERCLOS employs gazes of both saliency and
non-saliency areas whereas Duration employs those of only saliency areas. The
difference in their accuracy suggests that gazes of the non-saliency areas also
contribute the discrimination of the levels of mental focus. For the discrimination
of saliency and non-saliency areas, we simply set a fixed threshold for all the
saliency maps. Therefore, the saliency extraction employed here has a potential
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Fig. 10 Relative frequency distributions
(MD).

Table 3 Partial F-Values for saliency-
dynamics patterns.

Pattern Parital F-Values

SS efs1 : 1.23, efs2 : 3.84

SD eps1 : 0.69, eps2 : 3.68

MS efs1 : 34.36, efs2 : 41.10
enc : 2.11, exc : 4.11

MSD
efs1 : 20.71, efs2 : 24.47
eps1 : 10.07, eps2 : 21.99

enc : 2.43, exc : 1.51

MD
eps1 : 0.26, eps2 : 5.32
enc : 2.43, exc : 2.04

risk of regarding actual gaze targets as non-saliency areas. To overcome the
problem, one possible way is to improve the thresholding method such as to select
thresholds adaptively for each saliency map with consideration of its saliency-
value histogram.

Also, the videos we employed in the experiments contain some clear saliency
areas, and therefore eye gaze seems to have a tendency to focus on those areas.
However, to apply the proposed method to other kinds of videos, it is difficult
to assume that clear saliency areas always exist. With regard to scenes with no
saliencies such as plain natural sceneries or scenes filled with saliencies such as
crowds, the proposed method with a simple saliency extraction originally has a
problem with the specification of objects to be looked at. For improvement of
the saliency extraction, we can introduce some heuristics in conjunction with the
saliency map; for instance, employing the saliency map with object detection
such as face detection22)23) can enhance the saliencies of actual objects to be
looked at, and therefore it can be helpful to specify them.

6. Conclusions

We proposed to analyze the spatio-temporal correlation of dynamics between
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Table 4 Estimation accuracies. SS, SD, MS, MSD and MD show the results for each saliency-
dynamics pattern. Average shows the average accuracy of all the patterns. Duration
and PERCLOS show results of the baseline methods.

Baselines Proposed method
Duration PERCLOS SS SD MS MSD MD Average
53.8 % 65.0% 66.9 % 75.0 % 78.8 % 81.5 % 76.3 % 78.2 %

the visual saliency and eye movements for mental-focus estimation. Experimental
results reveal that this correlation can be a meaningful clue for the mental focus,
and the proposed method performs accurately to discriminate two levels of them.
This study introduces an analysis of eye-movement dynamics by categorizing
them from the aspect of visual-saliency dynamics in view, in order to estimate
the mental focus. On the other hand, we can also utilize this correlation in the
form of the detailed analysis of the visual-saliency dynamics from the aspect of the
eye-movement dynamics. That is, extraction and modeling of the visual-saliency
dynamics allow taking actual eye movements and mental focus into account, as
well as introducing heuristics shown in Subsection 5.2. Besides, we can confirm
the effectiveness and the necessity of the proposed analysis, but its sufficiency
has yet to be revealed. Future work will seek to generalize the analysis of the
spatio-temporal correlation between visual saliency and eye movements, and to
apply the proposed method to more general video-viewing scenes.
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