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Abstract

This paper presents a performance evaluation of shape
similarity metrics for 3D video sequences of people with un-
known temporal correspondence. Previous evaluation fo-
cuses on non-skeletal similarity metrics. Since the human
motion is essentially an articulated motion, it is also inter-
esting to investigate skeletal-based similarity metrics. In
this paper, we extend previous evaluation of non-skeletal
similarity metrics to skeletal-based similarity metrics. A
quantitative evaluation based on the Receiver-Operator
Characteristic (ROC) curve for the descriptors using a
ground-truth dataset for synthetic motion sequences is pre-
sented. Reeb Graph, Multi-Dimensional Scaling and Shape
Histograms are compared with and without a temporal fil-
ter. Reeb Graph and Shape Histograms achieve compara-
ble ROC performance, both outperform MDS in the task of
finding similar poses of the same person in 3D video. Fi-
nally, temporal Reeb Graph and Shape Histograms are ap-
plied to a public database of 3D video of people to identify
optimal transitions and synthesise 3D character animation.
Results demonstrate the accurate matching of surface shape
and motion.

1. Introduction
Multiple-view reconstruction of human performance as

a 3D video [15] has advanced to the stage of capturing both
surface motion and surface dynamics of the body, clothing
and hair during motion. Several potential applications have
arisen from this, such as concatenating 3D video sequences
to produce novel character animation [8], 3D video sum-
marization and compression [7, 17]. These potential appli-
cations subsequently require solving the problem to iden-
tify frames with similar surface shape and motion including
pose, clothing and hair in 3D video sequences. However,
3D video reconstruction results in an unstructured volumet-

ric or mesh approximation of the surface shape at each time
instance without temporal correspondence, which makes
deriving a similarity metrics suitable for 3D video a chal-
lenging task.

Three dimensional (3D) shape similarity metrics have
been widely investigated [4, 10, 16] as a means of effective
and efficient object retrieval. Typically, shape descriptors
are first extracted for each object, and the shape similar-
ity between objects is then computed as a distance between
their descriptors. Conventional shape descriptors focus on
classifying static objects into different classes, for example,
differentiating a chair from a tank. However, many shape
descriptors are not sufficiently discriminative to distinguish
different poses of a person, for example, distinguish a walk
pose from a run. Previous work has investigated and evalu-
ated several non-skeletal shape descriptors on 3D video, and
extended them over time by applying a temporal filter [9],
which has demonstrated improved ROC performance since
both shape and motion similarity are considered.

Previous studies of similarity metrics for 3D video only
evaluated spatial shape descriptors based on object surface
or volume. In this paper we present a comparative evalu-
ation of skeleton-based shape descriptors against previous
spatial descriptors. The main contribution is a quantita-
tive evaluation of 3D shape similarity in time-varying 3D
mesh sequences using an articulated ground-truth dataset
in which surface correspondence is predefined. A com-
parison is made between a non-skeletal shape descriptor
Shape Histograms previously shown to give good recog-
nition performance [9], a skeleton-based shape descrip-
tor Reeb Graph [18] and a bending-free descriptor Multi-
Dimensional Scaling [3]. Ground-truth evaluation is per-
formed for synthetic sequences of 14 people performing
28 motions (Figure 5 and Table 1). Real sequences of 4
people/costumes each performing 6 − 8 different motions
from a public database [15] include a variety of loose and
tight fitting clothing together with long sequences of com-
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Figure 1. Real 3D video sequences. Top to bottom: JP “Free” dance motion (7 key-frames), Roxanne-Character1 “Hit” motion (8 key-
frames) and Roxanne-Fashion2 “Twirl” motion (9 key-frames).

plex motions from a street dancer (Figure 1 and Table 1).
Evaluation demonstrates comparable ROC performance on
ground-truth synthetic sequences for Shape Histograms and
Reeb Graphs. Real sequences also give comparable recog-
nition performance enabling us the identification of frames
with similar shape and motion for subjects with loose cloth-
ing and hair. However, more robustness is obtained for real
sequences with changes in topology (due to reconstruction
errors) using Shape Histograms.

2. Shape Descriptors
In this section, we present the shape descriptors evalu-

ated together with their implementation details. The exten-
sion to temporal shape matching is then defined and com-
puted as a temporal similarity metrics using a simple time-
filter.

2.1. Shape Histogram

Ankerst et al. [1] introduce the 3D Shape Histogram
(SH) as a shape signature to classify a molecular database.
A 3D Shape Histogram is based on a partitioning of the
space where an object resides, that is, a complete and dis-
joint decomposition into cells which correspond to the bins
of the histogram. This approach is robust to topology
changes, surface noise and subtle surface changes. How-
ever, the descriptor is not invariant to rotation, so a rotation-
invariant comparison scheme is required. Here, we use a ro-
tated volumetric spherical Shape Histogram (SHvr) which
is reported as the best performer among several state-of-art
shape descriptors both with and without time-filtering for
the task of finding similar poses of the same actor in 3D
video sequences [9]. Figure 2 illustrates a partition of the
3D space by SHvr.

Figure 2. Illustration of SHvr partitioning the 3D space.

Shape Histogram construction. Given a 3D triangle mesh
M =< V,F >, a volume sampling spherical histogram is
constructed as follows:

1. A volumetric representation is constructed by first di-
viding the space into a Ng × Ng × Ng voxel grid
and then identifying the voxels which lie inside the
3D model. We denote o = (x, y, z) for 3D posi-
tion of an occupied voxel centroid. This gives a set
O = {on}, n = 0, ..., No − 1, where No is the total
number of occupied voxels, No < N3

g .

2. Space in a Cartesian coordinate system is transformed
into a Spherical coordinate system defined by the cen-
tre of mass of the model and a vertical axis. For each
occupied voxel centroid o ∈ O, the spherical coordi-
nates s = (r, θ, φ) are calculated as follows,

(r, θ, φ) = (
√
x2 + y2 + z2, arccos

z

r
, arctan

y

x
) (1)

This gives a set of spherical coordinates of occupied
voxel centroids S = {sk}, k = 0, ..., No.
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3. A 3D spherical histogram H(S) = [Hl(S)]Nl
is con-

structed, where l = [lr, lθ, lφ], Nl = Nr × Nθ × Nφ,
accumulating the voxels in the volume representation,

Hl(S) =

No�1∑
k=0

g(l, k), g(lk) =

{
1 if sk in lth bin
0 otherwise (2)

where the lth bin is defined as a subspace [lr ·∆r, lr ·
∆r + ∆r) × [lθ · ∆θ, lθ · ∆θ + ∆θ) × [lφ · ∆φ, lφ ·
∆φ+ ∆φ). ∆r,∆θ,∆φ denote the bin size for radius,
inclination angle and azimuth angle respectively,

∆{r, θ, φ} =
{r, θ, φ}up � {r, θ, φ}low

N{r,θ,φ}
(3)

where we assume (rup, θup, φup) = (1.5m,π, 2π) and
(rlow, θlow, φlow) = (0, 0, 0) for a bounding sphere
which certainly covers a human body. (Nr, Nθ, Nφ)
are user-defined number of bins for each dimension in
the spherical coordinate space.

4. The final descriptor SH(M) is a 3D histogram of the
probability normalised by the total number of occupied
voxels No,

SH(M) =
H(S)

No
(4)

Similarity function. Since Shape Histograms are not rota-
tion invariant, we have to define the similarity function to
take rotation into account. The shape dissimilarity s(p, q)
between two 3D video frames p and q is defined as follows,

s(p, q) = min
φ
|SH(Mp)� SH(R(Mq, φ))| (5)

where R(Mq, φ) denotes the 3D mesh Mq rotated by φ
around the vertical axis. Here, we assume that human mod-
els have an upright direction, since we consider a human
pose laying on the ground to be different from a stand-
ing pose, even though their shapes are similar since they
cannot be concatenated seamlessly. In practice, instead of
rotating the 3D mesh model Mp we first construct a high-
resolution Shape Histogram SH∗(Mq) and store it. Com-
puting the minimal similarity against different φ requires
shifting SH∗(Mq) in dimension φ and re-binning back to
SH(Mq) for comparison. Since we only consider the rota-
tion about the vertical axis, the bin size of high-resolution
Shape Histogram is set to only increase the resolution in di-
mension φ, (∆r∗,∆θ∗,∆φ∗) = (∆r,∆θ, 1◦). Therefore,
we can compute the minima by shifting the histogram with
an array φn = [0, 1, .., 359],

s(p, q) = min
φn

|SH(Mp)� B(SH∗(Mq, φn))| (6)

where B(·) denotes re-binning the high-resolution Shape
Histogram SH∗(·) back to SH(·) and SH∗(Mq, φn) shift-
ing SH∗(Mq) with φn bins in the dimension of φ.

2.2. Multi-Dimensional Scaling

Schwartz et al. [12] introduced a representation of the
intrinsic geometry of the cortical surface of the brain using
Multi-Dimensional Scaling (MDS). Elad and Kimmel [5]
extended the idea and proposed a non-rigid shape recogni-
tion method based on Euclidean embeddings. Here, we use
a simplified version of the MDS based intrinsic dissimilar-
ity measure proposed by Bronstein et al. [3]. MDS dissim-
ilarity measures geometric (Hausdroff) difference between
canonicalized meshes: (a) if the two input meshes have dif-
ference global topology, MDS dissimilarity captures the dif-
ferences between the topology; (b) if the two input meshes
share a global topology, MDS dissimilarity captures the dif-
ferences on the geodesic distance, i.e., the differences of the
amount of deformation. Figure 3 illustrates the canonical-
ization by MDS.

Figure 3. Canonicalization by MDS. MDS deforms extrinsically
dissimilar but intrinsically similar meshes (left) to extrinsically
and intrinsically similar forms (right).

MDS construction. The canonicalization is performed by
finding a deformation which makes the geodesic distances
between all pairs of the mesh vertices be equal to those of
Euclidean distances. The best solution in terms of L2 dis-
tortion is given by MDS [2]. LetD be anN×N matrix and
its (i, j) element stores the geodesic distance between the i-
th and j-th vertices. The vertex positions of the canonical
shape are given as the first three eigenvectors of the double
centred matrix of squared D:

� 1
2

�
I� 1

N J
)
D2
�
I� 1

N J
)
, (7)

where I and J denote an N × N identity matrix and an
N ×N matrix whose elements are all 1. Bronstein et al. [2]
have pointed out that other metric spaces can be used to
obtain better embeddings, but we use Euclidean space for
simplicity and efficiency.
Similarity function. The shape dissimilarity s(p, q) be-
tween p and q are simply given as the Hausdorff distance of
sets of vertices after MDS canonicalization,

s(p, q) = dH(X,Y ) (8)

where X and Y denote sets of vertex positions of corre-
sponding to canonical shapes and dH computes Hausdorff
distance between two sets of points.
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2.3. Reeb Graph

Reeb [11] first introduced the Reeb Graph (RG) as a
high level 3D shape descriptor which represents both 3D
mesh topology and shape using a graphical representation
of surface properties. A Reeb Graph is built using a dif-
ferentiable function µ defined on the model surface. The
critical points of µ allow characterisation of the topology
of the model. The surface is divided into regions accord-
ing to µ values, and then a Reeb graph is obtained by first
associating a node to each region and then linking the con-
nected regions. Hilaga et al. [6] proposed a Multi-resolution
Reeb Graphs (MRG) to estimate similarity and correspon-
dence between 3D shapes. They choose normalised integral
of geodesic distance as the continuous scalar function for
rotation invariance and resistance against noise. The simi-
larity is calculated with a coarse-to-fine strategy using the
attributes of nodes in the MRG and topological consistency.
Here, we use an augmented Multi-resolution Reeb Graph
(aMRG) proposed by Tung and Schmitt [18]. A topologi-
cal consistency criteria and geometric attributes are further
introduced to the nodes in order to obtain better matching
between nodes of graphs when comparing models. Figure 4
shows an example of Reeb Graph descriptor.

Figure 4. Illustration of Reeb Graph.

Reeb Graph construction. We assume 3D surface models
approximated by compact 2-manifold meshes. Let S be a
surface mesh. According to the Morse theory, the topology
of the surface can be characterized using the critical points
of a continuous function µ defined on S. The surface con-
nectivities between the critical points can then be used to
build the Reeb graph of µ, which is the quotient space de-
fined by the following equivalence relation ∼: let X ∈ S
and Y ∈ S, then X ∼ Y if and only if: (1) X and Y be-
long to the same connected component of µ−1(µ(X)), and
(2) µ(X) = µ(Y) [11]. In our framework, the Morse func-
tion µ is defined as in [6]:

µ(v) =

∫
p∈S

g(v,p)dS and µN (v) =
µ− µmin

µmax − µmin

(9)
where g(v,p) is the geodesic distance on S between v and

p, µN : S → [0, 1] is the normalized function µ, and
µmin and µmax are minimal and maximal values of µ re-
spectively. As defined, µN is invariant to rotation, trans-
lation and scale transformations. The integral formulation
provides robustness to local surface noise such as outly-
ing vertices caused by reconstruction artefacts. Extremal
values of µN return critical points corresponding to highly
concave of convex regions of the surfaces. Thus, the Reeb
Graph is constructed by: (1) partitioning the surface model
into regular intervals based on µN values; (2) assigning a
node to every region in each interval; (3) linking nodes
of connected regions. The resolution level R of the Reeb
graph relies on the number of intervals 2R obtained by it-
erative subdivisions of µN ∈ [0, 1]. Lower resolution Reeb
graphs are then obtained by hierarchically merging inter-
vals by pairs. Nodes are also linked to a unique parent-node
from the lower graph resolution [6]. The multi-resolution
Reeb graph is therefore represented as a set of Reeb graphs
of various levels of resolution r = 0...R extracted from the
Reeb graph of the highest resolution R .
Similarity function. The shape dissimilarity s(p, q) be-
tween p and q relies on the similarity evaluation of the Cr
pairs of topologically consistent nodes for all level of reso-
lution r = 0 to R:

s(p, q) =
R∑
r=0

∑
(m,n)∈Cr

sim(m,n) (10)

where sim(·) measures the difference between two node
features [18] by taking into account the embedded at-
tributes, i.e. geometrical features such as surface local area
and topology-based features such as graph connectivity of
neighbouring nodes.

2.4. Similarity Metrics

The frame-to-frame similarity matrix is first obtained
from the 3D Shape Descriptor. Given two 3D video se-
quences P = {pi} and Q = {qj}, the similarity matrix
S := (sij)Np×Nq

where sij = s(pi, qj) measures the shape
dissimilarity between pi and qj from equation 6, 8, 10 ac-
cording to shape descriptors. Temporal similarity can be
evaluated by applying a simple time filter. Here, we adopt
an average weighted filter and the temporal similarity is
evaluated as follows,

stij =
1

2Nt + 1

Nt∑
k=−Nt

s(i+k)(j+k) (11)

where the time filter is with a window size of 2Nt + 1. The
computational cost is dominated by the cost of computing
the frame-to-frame shape similarity with a relatively small
additional cost of time filtering using equation 11. Temporal
filtering is a way of incorporating motion in the similarity
measure [9].
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(a) 3D models

(b) 3D models + MoCap

Figure 5. Synthetic dataset. (a) 14 models; (b) Jigna’s “fast walk”, “rock n’roll”, “run circle left”, “vogue dance”, “sneak”, “sprint”.

Dataset Motions Frames
Synthetic: Adrian, Alan, Dave, EngJon, sneak, walk (slow, fast, turn left/right, circle left/right, cool, cowboy, 39200
Graham, Jez, Jigna, Joel, Marc, elderly, tired, macho, march, mickey, sexy, dainty), run (slow, fast, (100 per
PengWei, Pete, Pip, Venura, Yacob turn right/left, circle left/right), sprint, vogue, faint, rock n’roll, shoot. seq.)
Real: JP, street dance (flashkick, free, head, kickup, lock, pop + transitions) 3592
Roxanne (Character1, Fashion1&2) standard movement (stand, walk, jog, pose, hit, twirl + transitions)

Table 1. Synthetic and real 3D video sequences statistics. Synthetic (14 people× 28 motions) and Real (4 people/costumes× 6-8 motions).

3. Evaluation Methodology
The recognition performance of the shape descriptors is

evaluated using a ground-truth dataset from synthetic 3D
video sequences of people. The best performer is then used
to identify similar frames in real 3D video sequences.

3.1. Ground-truth

A synthetic dataset is created using 14 articulated char-
acter model for people animation using 28 motion capture
sequences (Table 1). Animated models of people with dif-
ferent gender, body-shape and clothing were reconstructed
from multiple view images [14]. The height varies between
about 1.6m to 1.9m. Each model has a single surface mesh
with 1K vertices and 2K triangles. Figure 5 shows example
frames of models and motions for one model.

3.2. Evaluation Criterion

Recognition performance is evaluated using the ROC
curve, showing the true-positive rate (TPR) or sensitivity in
correctly defining similarity against the false-positive rate
(FPR) or one-specificity where similarity is incorrect,

TPR =
ts

ts+ fd
and FPR =

fs

fs+ td
(12)

where ts denotes the number of true-similar predictions, fs
the false similar, td true dissimilar and fd false dissimilar

in comparing the predicted similarity between two frames
to the ground-truth similarity. The similarity for each shape
descriptor is normalised to the range s′ij ∈ [0, 1].

s′ij =
sij − smin
smax − smin

(13)

where smin = 0 and smax is the maximal dissimilarity over
all sij ∈ S similarity matrix of the whole database. A bi-
nary classification matrix for the shape descriptor C(τ) =
[cij(τ)] ∈ {1, 0} is then defined

cij(τ) =

{
1 if s′ij < τ
0 otherwise

(14)

The classification cij(τ) for a given τ is then compared
to the ground-truth similarity classification cGTij defined
the same with that in [9]. The number of true and false
similarity classifications, ts(τ), td(τ), fs(τ), fd(τ) is then
counted. The ROC performance for a given shape similarity
measure is then obtained by varying the threshold τ ∈ [0, 1]
to obtain the true TPR(τ) and false FPR(τ) positive rates
according to equation 12.

Figure 6 presents combined ROC curves of descriptors
with and without time-filtering for evaluating self-similarity
against temporal ground-truth across all people and motions
in the synthetic dataset. For comparison, previous evalu-
ated non-skeletal shape descriptors are also included, i.e.
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(a) Nt = 0 (b) Nt = 1 (c) Nt = 2 (d) Nt = 3 (e) Nt = 4

(f) Nt = 5 (g) Nt = 6 (h) Nt = 7 (i) Nt = 8 (j) Nt = 9

Figure 6. Evaluation of ROC curves for static and time-filtered descriptors on self-similarity across 14 people each performing 28 motions.

Shape Distribution (SD), Spin Image (SI), Spherical Har-
monics Representation (SHR) and two Shape-flow descrip-
tors, the global/local frame alignment Shape Histograms
(SHvrG/SHvrS) [9]. The SHvr is set as the same optimal
parameters in previous evaluation [9], i.e. (Nr, Nθ, Nφ) =
(5, 10, 20). The aMRG has been tuned as a global descrip-
tor in order to characterise large temporal surface varia-
tion at the low resolution r = 2. The recognition per-
formance of all descriptors with time-filtering increases as
the temporal window size increases shown in Figure 6(b-
j). They all show an improved recognition performance
compared to the equivalent frame-to-frame shape similar-
ity in Figure 6(a). This is because temporal filtering re-
duces the lines of similarity in the anti-diagonal direc-
tion which occur for similar shapes with different motions.
The Shape Histograms (SHvr, SHvrT, SHvrG, SHvrS) and
Reeb Graphs (aMRG, aMRGT) give similar characteristics
achieving the best recognition performance of all shape de-
scriptors against ground-truth. Both outperform MDS and
MDST, this is expected as MDS is insensitive to any mesh
deformation which maintains the geodesic distance. Com-
parison of the different shape descriptors with respect to
window size also shows that the Shape Histograms and
Reeb Graphs are relatively insensitive to the change of win-
dow size, Nt = 0 → 9. SHvrG and SHvrT performs
equally well while SHvrT slightly drops at a larger window
size. This has been explained previously as that the SHvrS
with a local-frame alignment is not as robust as the SHvrG
with a global-frame alignment and although SHvrG is more
discriminative with an additional computational cost than
SHvrT, SHvrG only performs marginally better than SHvrT

[9]. Finally, we compare the relative computational cost
between Shape Histograms and Reeb Graphs. As a Shape
Histogram descriptor counts the number of voxels occupied
by the object in each bin, the computational complexity is
O(N3

g ). A Reeb Graph descriptor computes geodesic dis-
tance using Dijkstra’s shortest path algorithm. The com-
putational complexity is O(Nlog(N)) using a binary tree
implementation, where N is the number of vertices. In
practice, the voxel resolution is chosen much lower than the
surface mesh resolution: Ng << N . Typically, for a 3D
mesh with N = 100K vertices, the voxelization resolution
is Ng = 200. Thus Nlog(N) = 500K < N3

g = 8000K,
and therefore a Reeb Graph is about 10 times more efficient
than a Shape Histogram.

4. Similarity Measurement on Real Data
In this section we apply the SHvrT and aMRGT to cap-

tured 3D video sequences of people. Real 3D video se-
quences were reconstructed from multiple camera video
capture available as a public research database [15]. These
include a street dancer (JP) performing complex movements
with baggy clothing, a performer (Roxanne) wearing 3 dif-
ferent costumes with shorts, a short-dress and a long-dress
performing a standard set of movements (Table 1). Cap-
tured 3D video sequences are unstructured meshes with
unknown temporal correspondence and time varying mesh
connectivity, topology and geometry. Evaluation has been
performed for all available sequences with the same reso-
lution parameters used for synthetic evaluation. A different
temporal window size is used for Roxanne (Nt = 4) and
for JP (Nt = 9). Example results presented in Figure 7
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demonstrates typical results with identification of frames
with similar shape and motion. Figure 7(a) for the street
dancer JP performing complex movements shows there is a
lot of visible structure in the similarity matrix produced by
SHvrT and aMRGT, and frames with similar pose and mo-
tion are also correctly identified. In Figures 7(b,c) for Rox-
anne similarity computed by SHvrT and aMRGT clearly
identify the periodic structure of the walking motion and
identifies frames with similar shape and motion even with
the highly non-rigid movement of the loose dress and long-
hair. Figure 7(d) shows a false case of similar pose iden-
tification by aMRGT where both SHvrT and aMRGT cor-
rectly identify a walk pose (Frame 39 of “Stand2Walk”) as
similar to the query frame (Frame 68 of “WalkPose”), how-
ever, aMRG also identify a stand pose with a hand touch-
ing the body (Frame 9 of “Stand2Walk”) as similar, which
is incorrect. This is because the Reeb Graph is intrinsically
sensitive to surface topology changes which occur due to er-
rors in reconstruction as it is based on geodesic distance. In
practice to reduce sensitivity to topology changes a relative
low-resolution Reeb Graph is used (r = 2) decreasing the
resolution results in a erroneous similarity. This evaluation
on real 3D video sequences demonstrates that the temporal
similarity by both of the SHvrT and the aMRGT identify
similar frames for complex movement and loose clothing
while the SHvrT is more robust to global topology change.

5. Applications

Concatenative Human Motion Synthesis. 3D shape sim-
ilarity metrics can be used to identify optimal transitions be-
tween 3D video sequences. Human motion synthesis is then
performed by concatenating existing 3D video sequences to
novel character animation. This example-based method is
attractive as there is no loss of detail of from the original
motion dynamics. The quality of synthesis is dependent on
the smoothness of transitions. SHvrT and aMRGT accu-
rately identify transitions which allow seamless concatena-
tion of 3D video sequences. Example of synthesised motion
by Huang et al. [8] are provided as support materials.
3D Video Summarization and Compression 3D shape
similarity metrics can be used to extract key-frames for a 3D
video. The key-frames can be regarded as a concise summa-
rization. The basic idea is grouping similar frames and se-
lecting representative ones by analysing self-similarity ma-
trix. Huang et al. [7] present a method to optimise the trade-
off between rate (number of key-frames) against distortion
(deviation from the original sequence). Figure 1 shows an
example of key-frame extraction from a 3D video by this
method using self-similarity matrices produced by SHvrT.
Similarly, 3D shape similarity metrics can also be used to
reduce information redundancy in 3D video sequence for
compression [17].

6. Conclusion
A comprehensive performance evaluation of three shape

similarity metrics for 3D video sequences of people has
been presented. Existing skeleton-based Reeb-Graph [18]
which give good recognition performance for rigid shape
retrieval and non-skeletal Shape Histograms [9] which have
previously been shown to give the best recognition per-
formance for time-varying non-rigid shape retrieval [9] to-
gether with a bending-free descriptor MDS [3] have been
evaluated. Temporal shape similarity are presented to over-
come the ambiguity in independent frame-to-frame com-
parison. Evaluation against a ground-truth synthetic 3D
video dataset demonstrates that Shape Histograms and Reeb
Graph consistently give the best recognition performance
for different actors and motions. They are then applied in
the evaluation of similarity measurement on real data. Intu-
itively skeleton-based Reeb Graph could be expected to out-
perform purely shape-based metrics, however, in practice
comparative evaluation of skeletal Reeb Graph descriptors
against non-skeletal Shape Histogram descriptors demon-
strates similar recognition performance. The Reeb Graph
has the advantage of a structured representation of the ar-
ticulated structure. However, in practice it is sensitive to
change in surface topology due to reconstruction error in
real 3D video sequences. Shape Histograms as a simpler
representation demonstrate to have comparable recognition
performance and are robust to surface topology changes for
real 3D video sequences. In future work, other skeleton-
based descriptors such as Medial Axis/Surface [13] will
also be considered.
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