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Abstract

3D shape and motion estimation is an essential requisite for 3D video which
records dynamic visual events in the real would as is. Although 3D video itself
has various applications (e.g., 3D TV or 3D archive of intangible cultural assets,
etc.), it also can be utilized as an input data of other applications such as 3D mo-
tion analysis.

In this thesis, we propose a framework to estimate 3D shape and motion from
multi-viewpoint video using deformable mesh model. Our deformable mesh
model is a kind of active contour model. It integrates multiple estimation cues
such as photometric-consistency or silhouette boundary with local shape con-
tinuity consideration. Since each estimation cue represents a constraint which
should be fulfilled if the mesh model represents the object shape and motion, we
define forces each of which deforms the mesh model so as satisfy the correspond-
ing constraint. So our deformable mesh model changes its shape so as to balance
the forces working on vertices composing it.

With our deformable mesh model, we introduce two types of deformation.
One is intra-frame deformation which estimates static object shape at a frame from
multiple viewpoint images, and the other is inter-frame deformation which esti-
mates the object shape and motion at two frames from multiple viewpoint video.
In the intra-frame deformation, we utilize three constraints: photo-consistency,
silhouette, and smoothness. These constraints defines frame-and-skin model to
represent the object shape. That is, 1) the silhouette constraint defines a set of
“frames” of the object, then 2) the smoothness constraint defines a rubber sheet
skin covering the frames, and 3) the photometric constraint defines supporting
points on the skin that have prominent textures. In the inter-frame deformation,
we add constraints to model the object motion. We model the object motion as
mixture of rigid motion and warping, and apply different deformation process to
each vertex according to its property. We call this deformation process as hetero-
geneous deformation. To realize the heterogeneous deformation, we segment the



mesh model into rigid part and warping part by clustering the roughly estimated
motion flow. Finally, we improve the heterogeneous deformation so that it can
cope with time-varying global topology of the object. In the heterogeneous defor-
mation process, we implicitly assumed a positive correlation between geodesic
distance and Euclidean distance between vertices, and defined vertex forces with
considering their geodesic local neighbors. However, changing of global topology
brings global mesh collision and introduces a negative correlation between them
which breaks down the geodesic proximity based force generation. We solve this
problem by adding new Euclidean proximity based force which makes collided
regions to repel each other so that they avoid global intersection which cannot
deal with geodesic proximity based algorithm.
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Chapter 1

Introduction

1.1 Background

The meaning of the phrase “shot of a person” has been changed by the progress
of technology. In the 19th century, “a shot” meant a photograph. A lot of inno-
vative technologies, e.g., optical lens and films, had been developed at this time.
Although it was a still image, we can imagine how it would been surprising if we
had never seen a photograph. In the 20th century, “take a shot” acquired another
meaning – a video. Today, we cannot live without these visual media because we
make full use of visual information in our everyday lives.

In this early 21st century, we are now about to launch a new visual media: 3D
video[MTG97]. 3D video records dynamic visual events in the real would as is.
That is, it records time-varying 3D object information while conventional video
records 2D information. The applications of 3D video cover a wide spectrum of
human activities: entertainment (3D TV, game), education (3D picture book of
animals), sports (3D playback, coaching), and culture (3D archive of intangible
cultural assets). We believe that 3D video makes unimaginable impact on human
society as 2D photograph and video had done in 19th and 20th centuries.

To realize 3D video, we have to develop a lot of technologies for capturing,
storage, editing, transmission, and visualization as those developed for 2D con-
ventional video. In this thesis, we focus on an algorithm for 3D video capturing.
Capturing of 3D object has been an attractive research topic in computer vision.
Most of the proposed 3D recording systems use multi-viewpoint cameras cir-
cumnavigating a target object [MTG97] [KRN97] [WWTM00] [BD00] [CKBH00]
[MWTN04]. Figure 1.1 shows an example of multi-viewpoint input images and
estimated object shape.
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1. Introduction

Figure 1.1: Input images and visual hull

While most of the systems focused on the estimation of 3D shape or motion in-
dividually, the problem we consider in this thesis is how we can estimate the 3D
object shape and motion simultaneously from captured multi-viewpoint video.
The reason why we estimate not only the 3D shape but also the 3D motion is that
if we can obtain the object motion as dense correspondences between two frames,
it can be used for inter-frame data compression[BSM+03][IR03] and motion anal-
ysis. It is discussed in Section 1.3.1.

1.2 3D Shape and Motion Estimation: Problem Spec-

ification

Before we introduce our deformable mesh model in Section 1.3.1, we review sev-
eral 3D shape and motion estimation algorithms proposed so far.

2



1.2. 3D Shape and Motion Estimation: Problem Specification

CAM1 CAM2

object

visual cone by CAM1

visual cone by CAM2

visual hull

Figure 1.2: Visual hull of the object

1.2.1 3D Shape Estimation

In this section, we first distinguish 2.5D shape reconstruction and full 3D shape
reconstruction, both of which are sometimes called “3D shape reconstruction.”
2.5D shape (also called as depth, range, or Z- image/map) is a half, one-sided
shape of a 3D object typically given by stereo method, and back side of the object
is unknown. Full 3D shape, on the other hand, is the whole shape of the object,
and in this thesis, we focus on how we can obtain it. In this context, 2.5D shape
reconstruction method can be turned into full 3D method by combining several
2.5D shapes of various sides of the object into single full 3D shape. This process
is called registration[WSI98]. Note that the term “3D shape” means full 3D shape
unless otherwise stated hereafter.

To obtain 3D shape, we have to observe an object from different viewpoints.
That is, we need multi-viewpoint images of the object. In general, we have two
choices to realize multi-viewpoint observation of the object. One is a multiple
camera system in which cameras are arranged so as to circumnavigate an object
[WWTM00]. We can refer to this as spatial multi-viewpoint system. The other
one is a temporal multi-viewpoint system. It uses single camera and rotate it
around the object to capture images from different viewpoints[WC01]. Obviously,
temporal multi-viewpoint system asks the object to be fixed while it takes multi-
viewpoint images. Although it is a reasonable requirement if we capture a solid
object (e.g., building or statue), it is not suitable for capturing time-varying 3D
object. So we assume that we use spatial multi-viewpoint system to capture a 3D
object in this thesis.

From each view of multi-viewpoint system, we can obtain several kind of in-

3



1. Introduction

formation as input data. Typically, 2.5D shape estimation methods utilize ob-
ject texture[KRN97], shading[WUM95], or motion[VBR+99] to generate depth-
map. On the other hand, full 3D shape estimation methods utilize object
silhouette[Lau95], texture[KS99], or contour[SF95]. That is, 2D information at
each viewpoint. Hence, 3D shape estimation methods can be categorized into
two types based on what each viewpoint gives. One is two-step method which
first estimate 2.5D shapes at each viewpoint and then integrates them into single
full 3D shape. The other one is one-step method which estimates full 3D shape
directly from 2D information at each viewpoint.

These methods have own advantages and disadvantages based on the
estimation cues which they employ. For example, texture-matching based
stereo[KRN97] or space carving[KS99][SD99] can estimate arbitrary visible sur-
faces if it has prominent texture, but we cannot expect that the object surface
has prominent textures all over it. On the other hand, volume intersection
method[Lau95] estimates full 3D shape from 2D object silhouettes at each view-
point. In general, 2D silhouette estimation is stable than texture-matching, but
volume intersection produces the visual hull of the object. Here, the visual hull
is the intersection of visual cones each of which is generated by projecting the
observed object silhouette from camera center(Figure 1.2). It ensures that the
object is encaged in it by its definition, but it cannot represent such portions of
object shape that cannot be observed from viewpoints as a part of silhouette con-
tour. Roughly speaking, the visual hull cannot represent concave portions. So
recent methods propose frameworks which combine multiple estimation cues to
accomplish more accuracy and stability. For example, Fua[FL94][Fua95][FL95]
represented object shape by a 2.5D triangular mesh model and deformed it based
on photometric stereo and silhouette constraint. Cross[CZ00] and Esteban[ES02]
carved a visual hull, a set of voxels given by silhouettes, using photometric prop-
erties.

1.2.2 3D Shape and Motion Estimation

Similarly to full 3D shape estimation described above, we need spatial multi-
viewpoint video to estimate 3D shape and motion. Note here that there are
some algorithms which deal with multi-viewpoint video and estimate 3D object
shapes at each frame, but not estimate 3D motions between them. For exam-
ple, Goldlüecke[GM04] proposed a 4D space-carving algorithm which estimates

4



1.3. Deformable Mesh Model

vertex
edge
forces

Figure 1.3: Active contour model

time-varying object shape as an isosurface in 4D (3D geometry + 1D time) space.

For object shape and motion estimation, there are two types of algorithm pro-
posed so far. One is a method which requires object model given a priori. For
example, Heap[HH96] proposed an algorithm which tracks human hand using
hexagonal mesh model. Plänkers[PF03] employed a soft object model given a
priori. They first track the object, and then refine its shape based on photometric
and silhouette constraints. The other one is a method which only uses input im-
ages. Vedula[VBSK00] proposed a 6D space carving algorithm which carves 6D
correspondence space based on “photo-consistency,” and generates object shapes
and per-voxel correspondences between two frames.

Since the formers require additional object model, it is not suitable for general
3D shape and motion estimation. On the other hand, the latter algorithm totally
depends on the textures of the object surface as like as 2.5D stereo method, but it
is difficult to expect that every surface regions have prominent texture.

Hence, as discussed for 3D shape estimation algorithms, it is required to in-
tegrate multiple estimation cues for 3D shape and motion estimation so that we
can accomplish both accuracy and stability.

1.3 Deformable Mesh Model

In this thesis, we introduce “deformable mesh model” as basic computation
framework. This is a kind of 3D active contour model[KWT88][SHIR95] which
represents the 3D object shape. As reviewed in the previous section, mesh model
(active contour model) is a reasonable scheme to

• integrate several cues for accuracy, and

5



1. Introduction

• realize shape continuity for stability.

Integration of multiple cues has following meanings.

Least commitment principle If one cue suggests an optimal state, we cannot de-
termine whether it is actually an optima or a fake cause by noise. In this
case, we have no choice but to determine based on a certain threshold if we
use the stereo or other single-cue algorithms. However, with active contour
model, such an uncertain cue can avoid decision (i.e., thresholding) until
others be in consensus.

Mutual compensation Each cues have own advantages and disadvantages. For
example, silhouette-based volume intersection method is stable, but cannot
reconstruct accurate 3D object shape; its output represents just the visual
hull of the object and concave portions of the object cannot be reconstructed.
In contrast, texture-based stereo method can reconstruct any kind of visible
surfaces, but it is difficult to obtain dense and accurate stereo matching. Ac-
tive contour model can combine both cues. If an object surface has a promi-
nent texture, its position is determined accurately by mean of the stereo
method. Otherwise, its position is smoothly interpolated according to its
neighbors whose positions are determined by texture or silhouette.

Detailed situation analysis Active contour model realize better integration
rather than just mixing several evaluated values. It can adaptively control
the weightings of each cues based on the analysis between cues reflecting
the situation of the object shape and motion.

In general, active contour model consists of vertices and edges connecting
each vertex(Figure 1.3), and deforms its shape so as to balance the forces working
at each vertex. Integration of several cues is realized as follows:

1. Suppose we have several cues. Each of them represents a constraint which
should be fulfilled if the active contour model represents the object.

2. For each estimation cue, let us define a force working at each vertex. Each
of forces moves each vertex so as to satisfy the corresponding constraint.

3. By moving each vertex according to the combined forces, we can expect that
each vertex will be placed where the multiple constraints are fulfilled.

6



1.3. Deformable Mesh Model

Mesh model

Multi-viewpoint images

Inter-frame deformation

Intra-frame deformation

Figure 1.4: 3D video capturing using deformable mesh model

Here, each of constraints corresponds to a method which utilize single cue, e.g.,
stereo method or shape from silhouette.

On the other hand, shape continuity for stability is realized by adding new
force which constrains the positions of vertices by their neighbors. This can be
considered as “smoothness constraint.” While it does not estimate the object
shape itself, it can be also integrated as same as other cues.

1.3.1 3D Shape and Motion Estimation Using Deformable Mesh

Model

In this thesis, we introduce two types of deformation using deformable mesh
model: the intra-frame deformation and the inter-frame deformation. The former
is an algorithm to estimate the still object shape at a single frame, and the latter is
an algorithm to estimate the object shape and motion from frame t to t + 1. The
inter-frame deformation uses the object shape at t as its initial shape, and deforms
it so as to represent the object shape at t + 1. Here, since we deform from t to t + 1,
we know per-vertex correspondences as deformation loci, so we can regard it as
dense, per-vertex object motion.

To realize 3D video, we use these two deformations as illustrated in Figure 1.4:

Step 1. Estimate the object shape at frame t by the intra-frame deformation. We
denote this mesh model by Mt.

7



1. Introduction

(a) (b) (c) (d)

Figure 1.5: Frame and skin model.
(a) original object, (b) frames, (c) rubber skin over the frames, (d) sup-
porting points on the skin.

Step 2. Estimate the object shape and motion at frame t + 1 by the inter-frame
deformation. Here, we use Mt as the initial shape, and obtain Mt+1.

Step 3. Repeat Step 2. and obtain Mt+2 from Mt+1, Mt+3 from Mt+2, and so on.

Step 4. Suppose the result of the inter-frame deformation Mt′ at frame t′ cannot
achieve a user-defined shape quality. In this case, estimate Mt′ by the
intra-frame deformation, then go back to Step 2. and estimate Mt′+1 from
Mt′ .

This deformation process can be explained on the analogy of 2D video compres-
sion. We can apply inter-frame compression for mesh data obtained by the inter-
frame deformation[BSM+03][IR03], and for error-recovery, we can insert key-
frames by the intra-frame deformation.

1.4 Outline

As described above, we introduce two types of deformation.

In Chapter 2, we introduce the intra-frame deformation algorithm to estimate
the static 3D object shape. In this chapter, we employ three constraints to estimate
3D shape: photo-consistency, silhouette, and smoothness. These three constraints
define a frame and skin model to represent the 3D object shape:

1. Suppose we want to model the object in Figure 1.5 (a).

8



1.4. Outline

?

R, T
Ri, Ti

(a) (b)

(c) (d)

(e)

Figure 1.6: Object motion models

2. First, the silhouette constraint defines a set of frames of the object (Figure
1.5 (b)).

3. Then the smoothness constraint defines a rubber sheet skin covering the
frames (Figure 1.5 (c)).

4. Finally, the photo-consistency constraint defines supporting points on the
skin that have prominent textures (Figure 1.5 (d)).

and they act so as to fit the mesh to the real object shape based on each estimation
cues.

In Chapter 3, 4 and 5, we introduce the inter-frame deformation algorithm to
estimate the object shape and motion simultaneously. In Chapter 2, we have in-
troduced the shape model of the object defined by three estimation constraints, so
we add new constraints to model the object motion. First, we represent the object
motion as translations of vertices composing the deformable mesh model, and
the problem is how we can estimate these translation vectors of vertices (Figure
1.6(a)). Without any constraint on the object motion, per-vertex translations may
represent a physically-unreasonable object motion as illustrated in Figure 1.6(b).

9



1. Introduction

frame t frame t+1

Figure 1.7: An example of object with time-varying global topology

In this thesis, we categorize the object motion into following four types: rigid mo-
tion, articulated motion, warping, and mixture of them [YS03a]. In rigid motion,
the translation vectors of vertices are governed by only one rotation and transla-
tion (Figure 1.6(c)). In articulated motion, the vertices are segmented into several
parts, and each part moves rigidly (Figure 1.6(d)). In warping, the deformable
mesh model changes its shape freely from a global point of view, but each vertex
keeps its local arrangement between its neighbors (Figure 1.6(e)). In the mixture
model, the vertices are clustered into rigid or warping portions, and each vertex
moves according to this categorization. Obviously, rigid or articulated motion
lacks an ability to represent an object motion like a human accurately, but it is
stable to estimate their motion parameters. On the other hand, warping has an
ability to represent accurate object motion, but it is hard to estimate translation
vectors for vertices without prominent textures, that is, unidentifiable surface re-
gions. So we employ the mixture model, and introduce heterogeneous deformation
model which moves vertices according to their 1) photometric properties (i.e., if
they have prominent textures or not) and 2) physical properties (i.e., if they be-
long to a rigid part or warping part).

Chapter 3, 4 and 5 are organized as follows. In Chapter 3, we introduce ba-
sic inter-frame deformation by modeling the object motion as warping. In this
chapter, we assume that the object surface has prominent textures all over it. In
Chapter 4, we introduce heterogeneous deformation model which models the
object motion as mixture of rigid motion and warping, and changes per-vertex

10



1.4. Outline

deformation processes according to their photometric and physical properties.
In Chapter 5, we extend the heterogeneous deformation process so that it can
cope with time-varying global topology (Figure 1.7). In the heterogeneous defor-
mation process, we implicitly assumed a positive correlation between geodesic
distance and Euclidean distance between vertices, and defined vertex forces with
considering their geodesic local neighbors. However, changing of global topology
brings global mesh collision and introduces a negative correlation between them
which breaks down the geodesic proximity based force generation. We solve this
problem by adding new Euclidean proximity based force which makes collided
regions to repel each other so that they avoid global intersection which cannot
deal with geodesic proximity based algorithm.

Finally, we conclude this thesis in Chapter 6 with discussions and possible
future research directions.
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Chapter 2

Deformable Mesh Model for Static
3D Shape Estimation

In this chapter, we show our deformable mesh model which reconstruct a static
object shape from multi-viewpoint images. This is a method for key-frame esti-
mation of 3D video (in Section 1.3.1), and the basic model to be augmented for
the inter-frame deformation in the next chapter.

As described in Chapter 1.2, 3D shape reconstruction methods from single
reconstruction cue have own advantages and disadvantages. For example, the
volume intersection method is stable, but cannot reconstruct accurate 3D object
shape; its output represents just the visual hull of the object and concave por-
tions of the object cannot be reconstructed. In contrast, the stereo method can
reconstruct any kind of visible surfaces, but it is difficult to obtain dense and ac-
curate stereo matching. Moreover, since the stereo analysis merely generates a
2.5D shape, multi-view stereo data should be integrated to reconstruct the full 3D
object shape.

To accomplish more stability and accuracy, recent methods proposed frame-
works to combine multiple reconstruction cues. For example, Fua[FL94] repre-
sented object shape by a 2.5D triangular mesh model and deformed it based on
photometric stereo and silhouette constraint. Cross[CZ00] carved a visual hull, a
set of voxels given by silhouettes, using photometric properties.

In this chapter, we show a mesh-deformation method for full 3D shape
reconstruction[IS02] which can integrate multiple reconstruction cues. This is
also the basic scheme to be augmented for the dynamic 3D shape reconstruction
in Chapter 3. First, we describe the problem now considered in Section 2.1, and
our approach to solve the problem in Section 2.2. Then we show reconstruction
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2. Deformable Mesh Model for Static 3D Shape Estimation

cues to be used in Section 2.3, and how we design our deformable mesh model
(Section 2.4 and 2.5). Several experimental results and discussions are given in
Section 2.6.

2.1 Problem Description

The problem we consider in this chapter is static 3D shape estimation from multi-
viewpoint images. Here, we assume the estimation target as follows:

• it has arbitrary shape with smooth and continuous surface, and

• it has known reflectance property.

We use Lambertian reflectance model: observed color of the object surface does
not depend on the camera position. This is because that we assumed arbitrary
shape, and simultaneous estimation of unknown shape and reflectance property
without strict shape model is very difficult[WUM95] since most of reflectance
model depends on the surface normal which is to be estimated as well.

Next, we define the input, multi-viewpoint images as follows:

• object images captured by calibrated cameras circumnavigating the object,
and

• object silhouettes segmented from the object images,

where calibrated means that all the intrinsic and extrinsic parameters of cameras
are known. Note that we can consider that observed color of the object surface is
consistent between cameras since we assumed Lambertian surface and calibrated
cameras.

2.2 Approach

As described in Section 1.3, we use deformable mesh model to integrate multi-
ple estimation cues so as to compensate their disadvantages each other. Figure
2.1 shows our deformable mesh model. It consists of the following elements to
represent the object shape:

• vertices,

• edges each of which connects two vertices, and

14
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vertex
edge
triangle face

Figure 2.1: Deformable mesh model

vertex

normal

(a) tow-manifold (b) four-manifold

face

Figure 2.2: Two-manifold and four-manifold mesh models

• triangle faces defined by three edges.

As illustrated in the right of Figure 2.1, each vertex has own connectivities be-
tween their neighbors, we refer to this per-vertex connectivities as local topology
of the mesh model. On the other hand, the left of Figure 2.1 illustrates entire shape
of the mesh model which has two holes. In other words, this is a genus-2 mesh.
We refer to this genus number as global topology of the mesh model. Note here we
assume that our mesh model has no isolated vertices, edges, faces, and no local
holes. That is, our mesh model is a closed, two-manifold discrete triangle mesh
model in which all edges are shared by exactly two faces (Figure 2.2).

With this deformable mesh model, we employ stereo-matching and silhouette
as constraints which should be satisfied by the real shape of object by introducing
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CAM3CAM2

CAM1

is consistent?

meshv

object

self occluding

visible visible

Figure 2.3: Photometric consistency and visibility

forces derived from these constraints.

2.3 Constraints for Estimation

2.3.1 Photometric Constraint

A patch in the mesh model should be placed so that its texture, which
is computed by projecting the patch onto a captured image of visible
viewpoint, should be consistent irrespectively of onto which image it
is projected (Figure 2.3).

Here, visible viewpoints for a vertex is a set of viewpoints from which the vertex
can be observed. In other words, the vertex is not self-occluded by another part of
the mesh model. We henceforth denote the set of those cameras that can observe a
vertex v by Cv. Note again that Cv depends on not only the position of the vertex
v and viewpoints, but the global shape of the mesh model, i.e., the positions of
other vertices.
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3D mesh model

projection center

camera screen
object silhoueete boundary

Figure 2.4: Silhouette constraint

This constraint represents a multi-baseline stereo shape estimation with self-
occlusion consideration.

2.3.2 Silhouette Constraint

When the mesh model is projected onto an image plane, its 2D silhou-
ette boundary should be coincide with the observed object silhouette
boundary on that image plane (Figure 2.4). Moreover, vertices corre-
sponding to 2D silhouette should be placed continuously on the 3D
object surface.

Figure 2.5 shows relationship between 2D silhouette on a viewpoint and 3D object
shape: each point on the 2D silhouette boundary has a corresponding 3D point on
the object 3D surface, called contour generator. As we assumed the object surface
to be smooth and continuous, we can expect that contour generators on the object
surface are placed continuously as well. Strictly speaking, particular object shape
and camera arrangement may map multiple contour generators to single 2D sil-
houette boundary point (Figure 2.6). However, by supposing that cameras are
in general position and object surface is smooth, we assume that only one vertex
corresponds to a 2D silhouette boundary point.
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projection center
camera screen

apparent silhouette boundary

contour generator

object

Figure 2.5: Contour generator
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Figure 2.6: Contour generator and camera arrangement
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(a) (b) (c) (d)

Figure 2.7: Frame and skin model.
(a) original object, (b) frames, (c) rubber skin over the frames, (d) sup-
porting points on the skin.

This constraint makes the mesh model to be tangent to the visual cone defined
by a viewpoint.

2.3.3 Smoothness Constraint

The 3D mesh should be locally smooth and should not intersect with
itself.

We use a two-manifold surface model to represent a mesh model (see below),
and assume that the object surface can be represented by smooth and continuous
connectivity of vertices, that is, without local protrusions, dents, holes, and self-
intersections.

2.3.4 Frame-and-Skin Model

Three constraints described above define a frame and skin model to represent 3D
object shape:

1. Suppose we want to model the object in Figure 2.7 (a).

2. First, the silhouette constraint defines a set of frames of the object (Figure
2.7 (b)).

3. Then the smoothness constraint defines a rubber sheet skin covering the
frames (Figure 2.7 (c)).
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4. Finally, the photometric constraint defines supporting points on the skin
that have prominent textures (Figure 2.7 (d)).

and they act so as to fit the mesh to the real object shape based on each estimation
cues. Note that frames, skins, and supporting points are described as if they are
determined one by one, but they are estimated simultaneously.

2.4 Design of Deformable Mesh Model

2.4.1 Representation

Shape

As described above, we use two-manifold surface model to represent an object
shape. We define a surface not functionally (e.g., Bezier or NURBS surface), but
as a set of triangle patches called triangle mesh, so our mesh model consists of ver-
tices, edges, and faces with Winged-Edge or Half-Edge structure as usual mesh
model. This is because:

• We need to project a surface onto camera planes and compare the textures
of projected regions to implement the photometric constraint. It is difficult,
however, to project a functional surface onto a plane as is, and in many
cases, functional surfaces will sub-divided into small planar triangles to
project.

• In this thesis, we use the visual hull of the object as the initial shape
of the deformation process (described below). Typically, the visual hull
is obtained in volumetric representation, e.g., set of voxels, but it is not
so easy to convert a volumetric representation into functional surface
representation while conversion into polygonal surface has well-known
methods[LC87][BG93][KKI99].

Constraints

To realize the shape deformation like SNAKES[KWT88], we can use either energy
function based or force based methods. As described above, we employed a force
based method. This is firstly, from a computational point of view, because we
have too many vertices (for example, the mesh model shown in Figure 1.1 has
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projection center

camera screen
projected template

mesh model

template

normal

Figure 2.8: Template matching

about 12,000 vertices) to solve energy function, and secondly, from an analyti-
cal point of view, because the silhouette constraint cannot be represented as any
analytical energy function (see below).

2.4.2 Forces at each Vertex

Here, we give how we design each constraints as forces working on each vertices.
The constraints we mentioned above should be satisfied if the deformable mesh
represents the real shape of the object. So we define the forces to move a vertex
so as to satisfy each constraints.

Photometric Force

First, we define the photometric force Fe(v) to deform the mesh to satisfy the
photometric constraint.

Fe(v) ≡

 ∇Ee(qv), if N(Cv) ≥ 2,

0, otherwise,
(2.1)
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where N(Cv) denotes the number of cameras in Cv, Ee(qv) the correlation of tex-
tures to be mapped around v (Figure 2.3):

Ee(qv) ≡
1

N(Cv) − 1 ∑
c∈Cv\cm

NCC (c, cm) , (2.2)

where cm denotes the most facing camera in Cv, c a camera in Cv except cm,
NCC (c, cm) the normalized cross correlation function between c and cm given
by:

NCC (c, cm) ≡
∫∫

wv
(pwv,c (x, y) − pwv,c) (pwv,cm (x, y) − pwv,cm) dxdy√∫∫

wv
(pwv,c (x, y) − pwv,c)

2 dxdy
∫∫

wv
(pwv,cm (x, y) − pwv,cm)2 dxdy

,

(2.3)
where wv denotes the template window around v (Figure 2.8), pwv,c the texture
corresponding to wv on the image captured by c, and pwv,c the average of the
pwv,c . Note that the template window wv for v is a rectangle plane tangent to v
with a certain size, and is projected onto each camera c to obtain the texture pwv,c

(Figure 2.8). The size of the template window in practice is determined by the
distances between neighboring vertices and the resolution of captured images. In
this definition, we assume that:

• Cv, the set of visible cameras of v, is constant when v moves slightly to
compute, and ∇ (Ee (qv)),

• the small region of the object surface around v can be approximated as plane
tangent to v

for the sake of computing performance, and

• object surface is Lambertian,

because it is hard to estimate both the shape and reflectance property simultane-
ously.

This photometric force Fe(v) moves each vertex v so that

• its corresponding image textures observed by the cameras in Cv become
mutually consistent if multiple cameras can observe v, or

• leave v to be moved by other forces if no or only one camera can observe it.
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Sm,c: projected image

So,c: silhouette
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Figure 2.9: Silhouette preserving force

Silhouette Preserving Force

To satisfy the silhouette constraint described above, we introduce a silhouette
preserving force Fs(v). This is the most distinguishing characteristic of our de-
formable model and involves a nonlinear selection operation based on the global
shape of the mesh, which cannot be analytically represented by an energy func-
tion.

Figure 2.9 explains how this force at v is computed, where So,c denotes the
object silhouette observed by camera c, Sm,c the 2D projection of the 3D mesh
onto the image plane of camera c, and v′ the projection of v onto the image plane
of camera c.

1. For each c in Cv, compute the partial silhouette preserving force fs(v, c) by
the following method.

2. If v′ is on the boundary of mesh silhouette Sm,c between the background,
and

(a) v′ is located outside of So,c or
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CAM1

CAM2

object

(a) object and cameras (b) visual hull

(c) captured image at CAM1 (d) captured image at CAM2

phantom volume

viewing line

(e) silhouette outline and correspondings

Figure 2.10: Multiple contour generator candidates for single apparent contour
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(b) v′ is located inside of So,c,

then compute the shortest vector from v′ to So,c (Figure 2.9 2©), i.e., v′s and
assign its corresponding vector to fs(v, c) (Figure 2.9 4©, see below).

3. Otherwise, fs(v, c) = 0.

Here, we compute fs(v, c) (Figure 2.9 4©) as follows:

fs(v, c) =
(
nv · dv,v′

)
nv, (2.4)

where nv denote the normal vector at v and dv,v′ the vector from v′ to v′s. Note here
that dv,v′ is a 3D vector represented in the coordinate system of the mesh model.

The overall silhouette preserving force at v is computed by summing up
fs(v, c):

Fs(v) ≡ ∑
c∈Cv

fs(v, c). (2.5)

Note that Fs(v) acts only on those vertices that are located around the contour
generator[CZ00] of the mesh, which is defined based on the global 3D shape of
the object as well as the locations of cameras’ image planes.

Here, we may have multiple vertices for single point of 2D mesh silhouette
Sm,c even though we assumed that the cameras are in general position. Sup-
pose we are considering an object illustrated in Figure 2.10(a). From two cam-
eras CAM1 and CAM2, the object are observed as illustrated in Figure 2.10(c) and
Figure 2.10(d) respectively. The outlines of these two images generate the visual
hull of the object with phantom volume (in orange) as shown in Figure 2.10(b).
Here, phantom means false-positive portions of a visual hull, and it is generated
as if shadows of true-positive volumes. Since we use the visual hull as the initial
shape of deformation (described later), let us consider the silhouette preserving
force for this visual hull. As illustrated in Figure 2.10(e), we have two contour
generator candidates (white circles on right) for single point (grey circle on left)
of silhouette boundary (bold silver line on left). In this case, partial silhouette
preserving force fs(v) takes both candidates as contour generator, i.e., does not
select itself.

However, it is obviously required to do the selection of contour generator to
obtain the real object shape. We implement selective operation as local support
of contour generator candidates. As we described in Section 2.3.2, contour gener-

25



2. Deformable Mesh Model for Static 3D Shape Estimation

ators should be placed continuously on the object surface, and we assumed that
only one contour generator should correspond to one point of silhouette outline,
we define the local support for a vertex as follows.

Step 1. Initialize the likelihood of each vertex to 0.

Step 2. For each point of silhouette outlines, let each vertex accumulate its likeli-
hood of contour generator. We add the likelihood by the following rule:

• if a silhouette point has n corresponding vertices, add 1
n to each ver-

tex likelihood.

For example, if a vertex has 3 another competitors, it gets 1
4 . We denote

the competitors of v by Comp(v).

Step 3. For each vertex, sum up the likelihood values within its neighbors. We
denote accumulated value by SL(v).

Step 4. For each vertex, compute the modified local support L(v):

L(v) =
SL(v)

SL(v) + ∑v′∈Comp(v) SL(v′)
. (2.6)

This function selects a vertex which has higher local support from its com-
petitors.

With this local support L(v), we modify Fs(v) as follows:

Fs(v) ≡ L(v) ∑
c∈Cv

fs(v, c). (2.7)

Internal Force

Since Fe(v) may destroy the smoothness of the mesh or lead to self-intersection,
we introduce an internal force Fi(v) at v:

Fi(v) ≡
∑n

j qvj − qv

n
, (2.8)

where qvj denotes the neighboring vertices of v and n the number of neighbors.
Fi(v) act as tension between vertices and keeps them locally smooth.

Note that the utilities of this internal force is twofold:
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Figure 2.11: Internal force

1. make the mesh shrink, and

2. make the mesh smooth.

We need 1. in the intra-frame deformation since it starts with the visual hull which
encases the real object shape (described below). 2. on the other hand, stands for
a popular smoothness heuristic employed in many vision algorithms such as the
regularization and active contour models. The smoothing force works to prevent
self-intersection since a self-intersecting surface includes protrusions and dents,
which will be smoothed out before causing self-intersection.

For the inter-frame deformation, on the other hand, we redefine Fi(v) as a
combination of attraction and repulsion between linked vertices (see Chapter 3).
This is because we do not need (1) described above in the inter-frame deformation
process.

Overall Vertex Force

Finally we define a vertex force F(v) with coefficients α, β, γ as follows:

F(v) ≡ αFi(v) + βFe(v) + γFs(v), (2.9)

where coefficients are constant and examples for typical values will be given in
following experiments section. Fe(v) and Fs(v) work to estimate the accurate ob-
ject shape and Fi(v) to smooth and interpolate the shape. Note that there may be
some vertices where Cv = ∅ and hence Fe(v) = Fs(v) = 0.
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(a) 4-manifold (b) 2-manifold

voxel
voxel of  a edge shared by 4 faces
augmented voxel

face
normal

Figure 2.12: Conversion of four-manifold surface to two-manifold

2.4.3 Computation Scheme

We defined the forces to move vertices so as to satisfy the constraints which
should be satisfied if the mesh model represents the real object shape. So if we can
obtain a mesh model such that the forces on each vertex are balanced, we assume
that the balanced mesh model is the estimation result of the object shape.

Initial shape

As described in Section 1.2, the visual hull encages the object by its definition. So
if we assume that we can obtain silhouettes on each viewpoint accurately enough,
it is reasonable to use the visual hull as the initial shape of the deformable mesh
model.

In general, since we can obtain the visual hull as a set of voxels[MWTN04], we
need to convert it into surface representation. We employed discrete marching
cubes method[KKI99]. This is because:

• It is mathematically proven to generate a closed, two- or four-manifold dis-
crete surface, and

• It generates unique triangle mesh.

Note that four-manifold is not a problem. If we detect such points, we only have
to change the sampling rate of the voxel space to higher, and then re-convert
into surface representation. This is because that four-manifold is generated if the
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sampling rate of voxel space is too sparse. Also, in practice, we can expand such
points in voxel space and re-convert it again. That is,

Step 1. Suppose we have a voxel space V. We denote each voxel at (x, y, z)
by V(x, y, z), and assign V(x, y, z) = 1 if the voxel is occupied, and
V(x, y, z) = 0 if empty. The object shape is represented as the set of voxels
such that its value is 1.

Step 2. Convert V into surface representation M by [KKI99].

Step 3. For each edge in M, check if it is shared by four triangles or not. Let E4

denote the set of edges each of which are shared by four triangles.

Step 4. If E4 6= ∅, do the following and then go back to Step 1.

• For each vertex of edges in E4, let us denote its position by (x, y, z)
(green spheres in Figure 2.12).

• Then, for each voxel in the 18-neighborhood of a voxel at (x, y, z), set
its value to 1 (red spheres in Figure 2.12).

Step 5. Now, we have a mesh model such that E4 = ∅, i.e., a two-manifold mesh
model.

Iterative computation

To find the optimal, force-balanced state of the mesh, we use greedy iterative
method:

Step 1. Compute the force Fv acting on each vertex.

Step 2. Move each vertex according to the force.

Step 3. Terminate if all vertex motions are small enough. Otherwise go back to
Step 1.

This is because

1. we have too many vertices to solve directly, and

2. the forces on each vertex affects each other; if a vertex moves, visibilities (Cv)
of others may change. So we cannot subdivide this optimization problem
into sub-problems.
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Note that in each iteration, we assume that visibilities of each vertex are fixed
and we can compute the forces independently by limiting the vertex motion to be
short enough.

This iterative computation is similar to a simulation of physics that computes
temporal deformation of an object shape under forces working on object surfaces.

2.5 Overall Algorithm

Overall algorithm for the intra-frame deformation is as follows:

Input Multi-viewpoint object images and silhouettes.

Output 3D shape of the object represented by triangle patches.

Step 1. Capture the object and obtain the silhouettes at each viewpoint.

Step 2. Acquire the visual hull of the object as a set of voxels from its multi-
viewpoint silhouettes by visual cone intersection method.

Step 3. Obtain the initial shape of the mesh model by converting the visual hull
into triangle patches with discrete marching cubes method.

Step 4. Deform the mesh iteratively:

Step 4.1. Compute the visibilities of each vertex.

Step 4.2. Suppose the visibilities are fixed, and compute the forces Fv

working on each vertex independently.

Step 4.3. Move each vertices according to Fv.

Step 4.4. Terminate if all vertex motions are small enough. Otherwise go
back to Step 4.1.

Step 5. Take the deformed mesh as the estimation result.

2.6 Performance Evaluation

2.6.1 Reconstruction from Synthesized Images

To evaluate the quantitative performance of the mesh model, we conducted
experiments with synthetic objects defined by super quadric functions. Super
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Figure 2.13: Camera arrangement

(a) Synthesized object (b) Visual hull

Figure 2.14: Synthesized object and visual hull
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Figure 2.15: Evaluating the effectiveness of each force
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(a) 100 %

(b) 50 %

(c) 10 %

Figure 2.16: Evaluating the effectiveness of the deformable mesh model.
Left: super quadrics (n = 3.0, e = 1.0) with different degrees of sur-
face textures: k % means k % of the surface area is covered with tex-
ture. Right: reconstructed object shapes.
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(n, e) Synthesized object Visual hull
Deformable
mesh model

(0.0, 0.0)

(1.0, 1.0)

(3.0, 1.0)

(5.0, 1.0)

Figure 2.17: Reconstruction results for various n and e (with 100% textured sur-
faces)
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quadric functions are a set of functions defined in terms of spherical coordinates
u and v:

x(u, v) = a1 cosn u cose v

y(u, v) = a2 cosn u sine v

z(u, v) = a3 sinn u

−π

2
≤ u ≤ π

2
, π ≤ v ≤ π

(2.10)

where n and e denote parameters controlling roundness/squareness, a1, a2, a3 de-
note scale factors for x, y, z respectively. In this experiment, the values of the
coefficients α, β, and γ are the same as used in the experiment with real images,
that is, F(v) = 0.3Fi(v) + 0.4Fe(v) + 0.3Fs(v).

Figure 2.13 illustrates the camera arrangement for this experiment, Figure 2.14
(a) the synthesized object, and (b) the visual hull reconstructed by the volume in-
tersection method. We use the 9 black cameras in Figure 2.13 for the reconstruc-
tion and the white camera in Figure 2.13 for the evaluation.

Figure 2.15 shows reconstruction results of objects (Figure 2.14 (a)) with the
following configurations: (b)F(v) = 0.3Fi, (c)F(v) = 0.3Fi + 0.3Fs, (d)F(v) =
0.4Fe + 0.3Fs, (e)F(v) = 0.4Fe + 0.3Fi, and (f)F(v) = 0.4Fe + 0.3Fi + 0.3Fs. We
used the visual hull of the object (Figure 2.14(b)) as the initial mesh model. The
graph in Figure 2.15(a) shows how the average error between the mesh model
and the real shape changes during the iterative shape deformation. Note that the
mesh models are rendered in grey, but they have randomly generated textures in
the experiments. This is because that if it is rendered with textures, it becomes
hard to observe shape errors. We can observe that

• Without the internal force Fi, a lot of self-intersections breaks down the de-
formation since we cannot estimate the visible cameras for each vertex ap-
propriately.

• The photometric force Fe can estimate concave positions which cannot be
estimated by the visual hull.

• The silhouette force Fs can preserve contour generators i.e., the outline of
the object (Figure 2.15(e) and (f)).

Figure 2.16 shows reconstruction results of objects (n = 3.0, e = 1.0) with (a)
100%, (b) 50%, and (c) 10% textured surfaces. The percentage denotes the surface
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area of the object covered with texture. All images of the synthesized object in
figures are captured by the white camera in Figure 2.13.

From these results we can observe the following:

• Unlike the visual hull (Figure 2.14(b)), the mesh model can reconstruct the
concave parts of the object (Figure 2.16(a) and (b)).

• The mesh model does not necessarily require a dense texture (Figure 2.16(a)
and (b)). This is because the skin over frames (Figure 2.7) can interpolate the
object surface between points with prominent textures.

• The reconstructed shape becomes poor when the object has little texture
(Figure 2.16(c)).

Figure 2.17 shows reconstruction results of objects defined by various n and
e, that is, objects having different concavities. Note that each object has 100%
textured surface.

We can observe that the deformable mesh model with fixed coefficients α, β,
and γ has limitations in recovering large concavities as well as large protrusions
(Figure 2.17, bottom row). This is because large curvature on a vertex yields a
large internal force Fi(v), which dominates Fe(v) even if the vertex has prominent
texture.

2.6.2 Reconstruction from Real Images

Figure 2.18 illustrates the camera arrangement for the experiments, where we use
CAM1, . . . , CAM4 for shape reconstruction and CAM5 for performance evalua-
tion. That is, we compare the 2D silhouette of the reconstructed shape viewed
from the position of CAM5 with the actually observed by CAM5. Note that cap-
tured images are synchronized and blur-free.

Figure 2.20 shows the initial object shape computed by the volume intersection
using the images captured by CAM1, . . . , CAM4, i.e., the visual hull of the object.
The shaded regions of (a) and (b) show the projection of the initial shape, that is,
Sm,5 and Sm,1, respectively. Bold lines in the figures highlight the contours of So,5

and So,1. We can observe some differences between So,5 and Sm,5, but not between
So,1 and Sm,1. This is because the image captured by CAM5 is not used for the
reconstruction.

In the experiments, we evaluated our algorithm with the following configu-
rations : (a) F(v) = Fi(v), (b) F(v) = 0.5Fi(v) + 0.5Fs(v), (c) F(v) = 0.3Fi(v) +
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CAM2
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CAM4CAM3

capture

a bobject

Figure 2.18: Camera arrangement

(a) CAM5 (b) CAM1

Figure 2.19: Input images.
(a) captured from CAM5 in Figure 2.18, (b) from CAM1
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(a) CAM5 (b) CAM1

Figure 2.20: Initial shape of the object (visual hull).
(a) captured from CAM5 in Figure 2.18, (b) from CAM1

0.4Fe(v) + 0.3Fs(v). The left and center columns of Figure 2.21 shows Sm,5 and
Sm,1 for each configuration together with bold lines denoting the corresponding
observed object silhouette contours So,5 and So,1. The graphs in the right column
show how the average error between Sm,c and So,c (c = 1, 5) changes during the it-
erative shape deformation. Note that the processing time of deformation is about
3 minutes for 12000 vertices and 4 cameras.

From these results we can make the following observations:

• With Fi(v) alone (Figure 2.21(a)), the mesh model shrinks, resulting in a
large gap between its 2D silhouette on each image plane and the observed
silhouette.

• With Fi(v) and Fs(v), while Sm,c, c = {1 . . . 4} match well with So,c, Sm,5,
whose corresponding image is not used for the reconstruction, does not de-
form well (Figure 2.21(b)).

• With Fi(v), Fe(v), and Fs(v), Sm,5 matches well with So,5 (Figure 2.21(c)). This
shows the effectiveness of Fe(v).

Note that the values of the coefficients α, β, and γ are given a priori and fixed
throughout the iteration.
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Figure 2.21: Reconstruction results.
Top: (a) Fi(v) alone (α = 1.0, β = 0.0, γ = 0.0), Middle: (b) Fi(v) +
Fs(v) (α = 0.5, β = 0.0, γ = 0.5), Bottom: (c) Fi(v) + Fe(v) + Fs(v)
(α = 0.3, β = 0.4, γ = 0.3)
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Figure 2.22: Input images

2.6.3 Reconstruction of Complicated Object from Real Images

This experiment shows an example of shape reconstruction of complicated real
shape. Figure 2.22 shows input images taken by 25 cameras arranged as illus-
trated in Figure 2.23. Figure 2.24 shows the visual hull of the object, and we use
this as the initial shape of the deformation. This visual hull has about 30,000 ver-
tices and 60,000 triangles, and the length of edges are almost 1cm. Note that this
visual hull has a huge false-positive volume in front of its body. This is because
its body, sleeves, and skirt form a cup shape, and no cameras can observe it as
silhouette contour.

Figure 2.25 illustrates the initial shape of the mesh model and the deformation
result: (a) the initial mesh model, (b) its rendering result, (c) the deformation
result, and (d) its rendering result. Note that we used following algorithm for
rendering:

1. For each vertex v, select the most facing camera cv from visible cameras Cv.

2. Project each v onto the screen of cv and pick the color at projected point as
the color of v.

3. For each triangle patch, fill its internal color by interpolating from its three
vertices.
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Figure 2.23: Camera arrangement

Figure 2.24: Visual hull
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2. Deformable Mesh Model for Static 3D Shape Estimation

(a) (b)

(c) (d)

Figure 2.25: Rendering result.
(a) and (b): the initial mesh and its rendering result,
(c) and (d): deformed mesh and its rendering result.
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internal force
normal

(a) (b)

Figure 2.26: Vertex normal and internal force.
(a) convex surface, (b) concave surface

We can observe that:

• The outlines of the mesh model is preserved after the deformation.

• The concave position in front of the object is not reconstructed well. In Fig-
ure 2.25(a) and 2.25(c), shadowed ellipses indicate false-positive concave
portions, and In Figure 2.25(b) and 2.25(d) we can observe that correspond-
ing regions are rendered poorly while Figure 2.25(d) looks better than Fig-
ure 2.25(b). This is because the fixed coefficients of internal and photometric
force prevents the mesh surface to exceed a certain concavity as discussed
in Section 2.6.1 with synthesized object.

To overcome this limitation, we next introduce an adaptive control algorithm of
the force coefficients.

2.7 Adaptive Control of the Force Coefficient for Con-

cavity

As is well known, it have been a common topic in active contour models how it
cope with a concavity of the object[XP98]. That is, naive implementation of active
contour model has a limitation about the shape concavity since its smoothness
constraint forces the model to be flat basically. To overcome this problem, there
are mainly two points to discuss – one is how and the other is when we should
make the mesh model be able to exceed such a limited concavity.
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2. Deformable Mesh Model for Static 3D Shape Estimation

There are two approaches proposed to allow an over-concavity. One add a
node and the other reduce the ratio of an internal force. In this thesis, we employ
the latter approach because we consider that it is very valuable to preserve the
mesh topology. In the following chapters, we introduce an algorithm to estimate
the object shape and motion in two frames, and its main benefit is to produce
fully per-vertex correspondences between two frames. This full correspondence
is strongly required to compress the meshes by geometry videos[BSM+03][IR03]
which is a typical application of our algorithm.

The next topic is when we should reduce the coefficient of internal force β.
First, we can detect if the vertex v is located at concave part of the mesh surface
with its normal vector nv. We defined the internal force Fi(v) as the vector toward
the gravity of its local neighbors:

Fi(v) ≡
∑n

j qvj − qv

n
, (2.11)

where qvj denotes the neighboring vertices of v and n the number of neighbors
(Equation (2.8)). It is intuitively obvious that if the normal of v and the internal
force are in the opposite direction, the vertex is at convex mesh surface (Figure
2.26(a)). On the other hand, if the normal of v and the internal force are in the
same direction, the vertex is at concave mesh surface (Figure 2.26(b)). With this
concavity detection, we simply introduce following criterion:

When the internal force of a vertex and the surface normal are in same
the direction, and the photometric force indicates the opposite direc-
tion, and no silhouette force works on it, we reduce the coefficient of
the internal force β.

That is,

nv
‖nv‖ ·

Fi(v)
‖Fi(v)‖ < 0 and Fe(v)

‖Fe(v)‖ ·
Fi(v)

‖Fi(v)‖ < 0 and Fs(v) = 0.

Note that we should not apply the adaptive control where the silhouette force
works to keep the apparent contour.

Using this criterion, we modify the deformation process as follows:

Step 1. Compute the force Fv acting on each vertex.

Step 2. If

• the normal nv and Fi(v) are in the same direction, and
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(a)

visual hull object

(b)

(c) (d)

(e)

internal force
photometric force

normal

cameras

object
visual hull
vertex v

Figure 2.27: Adaptive control of the coefficient

• Fe(v) indicates the opposite direction, and

• Fs(v) = 0,

let the coefficient of the internal force β be smaller.

Step 3. Move each vertex according to the force.

Step 4. Terminate if all vertex motions are small enough. Otherwise go back to
Step 1.

Figure 2.27 illustrates how this algorithm works.

1. Suppose we start the deformation with the shape in Figure 2.27(a), and de-
form it so as to be the real object shape in Figure 2.27(b).
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2. Deformable Mesh Model for Static 3D Shape Estimation

2. At the first of the deformation, the surface normal and the internal force of
v are in the opposite direction.

3. If we keep the coefficients be constant, the deformation will stop when the
photometric force and the internal force balance out (2.27(c)). Here, the nor-
mal and the internal force are in the same direction.

4. If the object has prominent textures and the photometric force indicates the
opposite direction, that is, more concavity, the coefficient of the internal
force β became smaller and let the vertex move according to the photometric
force.

5. Smaller β enables the mesh to represent more concave surface, but it will
introduce another limitation and the deformation will stop at a certain con-
cavity (2.27(d)).

6. However, as far as the photometric force indicates better location, β became
smaller and smaller. So if the object surface is well textured, the mesh finally
reaches there (2.27(e)).

2.7.1 Performance Evaluation

Reconstruction from Synthesized Images using Adaptive Coefficient Control-
from

To evaluate the effective of the adaptive control of the coefficient, we show the
experimental results of shape reconstruction for synthesized object with concave
portions shown in Figure 2.28(a). Note that the camera arrangement and other
situations are same as Section 2.6.1.

Compared with the deformation result with fixed coefficient (Figure 2.28(c)),
deformation with adaptive coefficient control gives better result as shown in Fig-
ure 2.28(d). The graph in Figure 2.29 shows how the average error between the
deformable mesh model and the synthesized shape changes during the iterative
shape deformation. Note again that as described in Section 2.6.1, the mesh mod-
els are rendered in grey, but they have randomly generated textures in the exper-
iments.
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(a) Synthesized object
(n, e) = (5.0, 1.0)

(b) Initial Shape
(visual hull)

(c) Deformation result
with fixed coefficient

(d) Deformation result
with adaptive coefficient

Figure 2.28: Deformation result with adaptive coefficient control
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Figure 2.29: Shape error

Reconstruction of Complicated Object with Concavities from Real Images us-
ing Adaptive Coefficient Controlfrom

Next, we show the experimental results of shape reconstruction for complicated
real shape which was used in Section 2.6.3. The camera arrangement, input im-
ages, and the initial shape of the deformation is as same as in Section 2.6.3 (Figure
2.22, 2.23, 2.24).

Figure 2.30 shows deformation results. In Figure 2.30(a), we can observe that
concave portion is well estimated than the result of fixed coefficient deformation
(Figure 2.25), however, there are still false-positive region indicated by shadowed
circle in Figure 2.30(a). We can also observe this false-positive region as poor ren-
dering in Figure 2.30(b). This is because that the lower side of the belt is entirely in
black, and the vertices placed nearby there are also in photometrically consistent
state.

Figure 2.32 shows rendering result of deformed mesh models. All images in
this figure is rendered as if they are observed from CAM12 in Figure 2.23 which is
closest to the concave region at the front of the object. The top row of Figure 2.32
shows deformation results with fixed (left) and adaptive (right) coefficients. The
middle and bottom rows show the generated images rendered by the algorithm
described in Section 2.6.3. Note that the images at the bottom row are rendered
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(a) (b)
Figure 2.30: Deformed shape with adaptive coefficient control.

(a) mesh model, (b) rendering result

Figure 2.31: Reference image (observed from CAM12 in Figure 2.23)
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Mesh model

Rendering
with CAM12

Rendering
without CAM12

Deformation with
fixed coefficent

Deformation with
adaptive coefficent

Figure 2.32: Rendering result
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Figure 2.33: Rendering error

without observed image at CAM12 which is equal to the rendering viewpoint.
We can observe that adaptive coefficient control produces more accurate shape
(Figure 2.32, top row) and gives better rendering results both with and without
CAM12 (Figure 2.32, middle and bottom row) qualitatively.

Figure 2.33 shows quantitative evaluation. We define the rendering error as
follows:

1. Suppose we have a mesh model colored by the algorithm described in Sec-
tion 2.6.3.

2. For each vertex v of the mesh model, project it onto the rendering viewpoint
(CAM12). We denote the project position by v′.

3. If v is visible (not occluded by others and projected inside of the camera
window), compute the sum of absolute difference between the vertex color
and the color of pixel at v′. Note that the pixel is picked from the real image
observed by CAM12.

4. Let the rendering error be the average of the sum of absolute difference
above.
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2. Deformable Mesh Model for Static 3D Shape Estimation

From this graph, we can observe that adaptive coefficient control gives better
result than fixed coefficient deformation.

2.8 Summary

We introduced a static 3D shape estimation method from multi-viewpoint im-
ages. We employed simple iterative computation in SNAKE manner, which re-
quires to start its deformation process with a shape entirely covering / covered
by the object and shrink / expand until it stops. We can use the visual hull of the
object as an initial shape of shrinking, since the visual hull assures the real shape
to be encaged in it.

Compared with the Space-Carving method, which employs photometric con-
sistency as its main reconstruction cue, our approach additionally employs ge-
ometric continuity and a silhouette constraint. Such rich constraints make our
approach more stable and accurate. Moreover, our deformable mesh model can
be extended to dynamic inter-frame deformation, which will enable us to analyze
dynamic object motion and realize highly efficient data compression. The next
chapter describes this inter-frame deformation algorithm.

This intra-frame deformation can be used for key-frame generation of 3D
video as described in Section 1.3.1.
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Chapter 3

Deformable Mesh Model for
Dynamic 3D Shape Estimation

In this chapter, we introduce the inter-frame deformation using our deformable
mesh model. The purpose of this deformation is to estimate the object shape and
motion between two frames.

In recent years, many studies have been done on 3D shape and motion re-
construction. For static 3D shape reconstruction, several frameworks combining
multiple cues such as photometric stereo or silhouette were proposed to accom-
plish better stability and accuracy as described in Chapter 2. For 3D motion re-
covery, Heap[HH96] proposed human hand tracking from camera images using
a given deformable hand model. Bottino[BL01] tracked 3D human action from
multi-viewpoint silhouettes with a known object model. Vedula[VBR+99] intro-
duced a framework to compute dense 3D motion flow from 2D optical flows with
/ without object shape.

The problem we consider in this chapter is how we can estimate dynamic 3D
shape from multi-viewpoint video, i.e., time-varying images. That is, we focus
on how to estimate the shape and motion of the object simultaneously. A naive
method for this shape and motion estimation problem would not be simultane-
ous:

Step 1. reconstruct 3D shape for each frame,

Step 2. estimate 3D motion by establishing correspondences between a pair of 3D
shapes at frames t and t + 1.

However, this approach consists of two-stage computational model and it is not
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so easy to manage each stage to cooperate with the other. This is because that
meshes representing object shape at each frame can

• have own global and local topology, and

• consist of different number of vertices.

Here, global mesh topology means mathematical topology of mesh, i.e., geomet-
ric genus of mesh. Figure 3.1 shows examples of mesh models in different global
topology:

• The left side of the top row shows a genus-0 mesh representing a person
opening her arms and legs. It is topologically equivalent to sphere (right)
from mathematical point of view.

• The middle row shows two genus-1 meshes (left and center) which are topo-
logically equivalent to ring-torus (or roughly speaking, donut) on the right.
Note that left and center meshes are topologically equivalent while the left
one has a hole between its legs and the center one has under its arm.

• The bottom row shows two genus-2 meshes (left and center) which are topo-
logically equivalent to double-torus (or a letter of eight) on the right.

On the other hand, local mesh topology is the local connectivity of a vertex of
the mesh model. In other words, the number of vertices neighboring to a vertex.
It is intuitively difficult to establish dense, vertex-wise correspondences between
two meshes with different genus. Furthermore, even if two meshes have same
genus, it is also difficult to find matching between two meshes which have differ-
ent number of vertices and local connectivity.

For these reasons, we believe that a unified computational model, i.e., simul-
taneous recovery of 3D shape and motion, is better than the two-stage approach.
As illustrated in Section 1.3.1 and Figure 1.4, the outline of our algorithm is as
follows.

1. Suppose we have an initial mesh Mt representing the object shape at a frame
t.

2. To estimate the shape and motion at the next frame, deform Mt so as to
satisfy constraints which should be fulfilled by the object shape at frame
t + 1.
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3. Let deformed Mt be Mt+1, the object shape at t + 1.

4. Since we deformed Mt to Mt+1, we have per-vertex correspondences be-
tween them, i.e., the motion from t to t + 1.

5. To obtain Mt+2, go back to 2. and use Mt+1 as the initial shape of the defor-
mation.

Note that “mesh deformation” means translations of vertices alone. As de-
scribed in Section 2.7, our “deformation” only performs vertex translation,
not addition / collapse of vertex to enable inter-frame compression of mesh
data[BSM+03][IR03].

Toward the simultaneous recovery, for example, Vedula[VBSK00] showed
an algorithm to recover shapes represented by voxels in two frames and per-
voxel-correspondence between them simultaneously. Plänkers[PF03] proposed
a method which uses a soft object model given a priori and refine it based on
photometric and silhouette constraints. Compared with these algorithms, our al-
gorithm has following advantages:

• it can cope with global topology change of the object, and

• it does not require a model given a priori.

In this chapter, we describe basics of our deformable mesh model for dynamic
shape estimation, and show how we deal with global topology change in the next
chapter.

3.1 Problem Description

The problem we consider is 3D shape and motion estimation of the object between
two successive frames. We assume the object which has

• arbitrary but smooth and continuous shape,

• arbitrary motion,

• Lambertian surface reflectance, and

• constant global topology.
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Here constant global topology means that the genus of the object in two frames
are equivalent.

We represent the object shape by deformable mesh model, and the object mo-
tion by translations of vertices composing the mesh. The input data of our algo-
rithm are:

• multi-viewpoint images and object silhouettes at both frame t and t + 1, and

• a mesh model representing the object shape at frame t.

The output data are:

• the object shape at frame t + 1 represented by a mesh model, and

• the object motion from t to t + 1 represented as translations of vertices.

3.2 Approach

As described above, we employ deformation based approach to estimate the ob-
ject shape and motion simultaneously. The most important difference between
the intra-frame deformation in Chapter 2 and the inter-frame deformation in this
chapter is that we cannot start the deformation with a mesh which ensures that
the object is encaged in it.

That is, in the intra-frame deformation, we used the visual hull of the ob-
ject as the initial shape of the deformation. Since the visual hull ensures that it
encages the real object shape, we could take a simple strategy in deformation
in SNAKE manner – shrink if photometric or silhouette preserving force do not
work. This shrinking strategy was implemented into the internal force which
shrinks the mesh while it keep the mesh locally smooth (Section 2.4.2, Equation
(2.8)).

On the other hand, in the inter-frame deformation, we do not have such a
reasonable initial shape and basic deformation strategy. This is because:

• we have to start our deformation with the mesh representing the object
shape at t, and

• we have no a priori knowledge about location to which the mesh basically
deform.
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To cope with this problem, Vedula[VBSK00] proposed a kind of brute-force,
reconstruction-oriented approach which searches all solution space, that is, 6D
correspondence space defined as the direct product of 3D space at t and t + 1.
This approach depends on the spacio temporal photo-consistency on every object
surface, but we assume that we cannot expect that every vertices have prominent
texture. On the other hand, Plänkers[PF03] proposed a model-driven, tracking-
oriented approach using a priori soft object model and track the object motion
with 2.5D depth map first, and then deform the soft object to fit the object outline.
This approach requires object models designed a priori for each target, but it is
not so easy to prepare models for persons with various cloth, e.g., Figure 2.19 and
Figure 2.22.

Compared with these approaches, we propose to introduce basic deformation
strategy for the inter-frame deformation by roughly estimating the object motion
instead of shrinking strategy in Chapter 2. To estimate the object motion, we use
the visual hull at frame t + 1 given by input images. By adding this estimated
motion as new constraint, we extend our deformable mesh model in Chapter 2 to
be able to deform frame by frame.

In the following sections, we describe how we modify and add the constraints
which should be fulfilled by the object at t + 1 and how we compute the defor-
mation process.

3.3 Constraints

3.3.1 Photometric constraint

A patch in the mesh model should be placed so that its texture, which
is computed by projecting the patch onto a captured image of visible
viewpoint, should be consistent irrespectively of onto which image
and frame it is projected.

Since we focus on not shape estimation on two frames, but shape and motion
estimation, it is not sufficient that textures of a patch are consistent at frame t and
also at t + 1 individually. Such constraint allow a patch which represents different
part of the object surface at t and t + 1. To estimate object shape and motion, we
need a vertex such that its texture is also consistent between frame t and t + 1.

Note that since we assumed that we start the deformation with a shape that
represents the object shape at frame t, visible cameras and position of each vertex
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at frame t are fixed through the deformation process. Visible cameras at frame
t + 1 will change in deformation, and may be different from that of t.

3.3.2 Silhouette constraint

When the mesh model is projected onto an image plane, its 2D silhou-
ette should be coincide with the observed object silhouette at frame
t + 1 on that image plane. The contour generators of each projected
mesh silhouette should be located contiguously on the mesh surface.

Moreover, the contour generators at frame t + 1 should be equal to or
nearby the contour generators at frame t.

In the inter-frame deformation, we have two constraints about the silhouettes.
First, as same as that of the intra-frame deformation (Section 2.3.2), projected
mesh silhouette should

1. match with the observed silhouette, and

2. be generated by vertices located contiguously on 3D surface.

Next, as we start the deformation with a mesh representing the object shape at
frame t, we know vertices such that each of them was a part of contour generators
at t. By assuming the object surface to be smooth, we can expect that the contour
generators at t + 1 will located nearby those at t.

This constraint states that

1. apparent contours on viewpoints at t + 1, and

2. spacio-temporal continuity of contour generators

should be satisfied.

3.3.3 Smoothness constraint

The 3D mesh should be locally smooth and should not intersect with
itself.

By assuming the surface to be smooth, we make the mesh model to be able to
interpolate its shape especially where no cameras can observe a vertex.
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3.3.4 Motion flow constraint

A mesh vertex should drift in the direction of the motion flow of its
vicinity.

In the intra-frame deformation, we could use shrinking strategy when a vertex
has no appropriate destination to deform. On the other hand, we cannot have
such an implicit strategy since we do not start the deformation from some special
condition like the intra-frame deformation. Furthermore, we cannot expect that
photometric constraint can lead all the vertices from t to the object surface at t + 1
because:

• the photo-consistency function Ee(v) (defined below) could not find a point
on the object surface for all vertices since we cannot expect that the object
surface has prominent textures all over it, and

• we cannot define the photo-consistency function Ee(v) as a strictly increas-
ing or decreasing function even if the object surface has prominent textures
everywhere on it. So the photo-consistency function Ee(v) may have local
optimas.

So we need a force to guide the deformation process in case if photometric force
cannot find an appropriate deformation destination. Here we introduce “motion
flow” which is a roughly estimated flow of object motion from visual hulls at two
frames t and t + 1, and let the mesh model to deform according to this motion
flow.

3.3.5 Inertia constraint

The motion of a vertex should be temporally smooth and continuous.

The motion flow constraint utilize a result of motion estimation between t and
t + 1. Similarly to the motion flow constraint, this inertia constraint states that
object motion estimated between t − 1 and t can be used to guide the deformation
process by assuming the object motion to be smooth and continuous.

3.4 Motion Estimation

In this section, we introduce two types of motion estimation. One is between
frame t and t + 1, and the other is between t − 1 and t. These two estimation seem

60



3.4. Motion Estimation

to be redundant especially if the object motion is simple and global topology of
the object is kept to be genus-0. However, when global topology of the object
change through frames, which will be described in Chapter 5, we cannot expect
that we can estimate the object motion with both approach. So to cope with time-
varying global object topology, we introduce two different approaches to make
the estimation more stable.

This is a mutual compensation of estimation cues as described in Section 1.3.

3.4.1 Motion Estimation from Two Visual Hulls

As described above, we assume that we have silhouette images and visual hulls
at each frame. With these visual hulls, i.e., sets of voxels, we compute rough cor-
respondences between them by simple point-set-deformation algorithm[Bur81].

Suppose we have two point sets A and B,

A = {ai | i = 1, . . . , NA} ,

B =
{

bj | j = 1, . . . , NB
}

,
(3.1)

where ai and bj denote i-th and j-th point of A and B respectively, NA and NB

denote the number of points in each set.
Let d(x, x′) denote the Euclidean distance between a point x and x′. With this

distance function d, we can define a point in a point set Y which is closest from x.
We denote such a point by yix , where

ix = argmin
i=1,...,NY

d(x, yi), (3.2)

and NY denotes the number of points in Y, and yi the i-th point in Y. So the
nearest point displacement vector from ai to B can be defined as follows:

D(ai, B) = bjai
− ai, (3.3)

and similarly, bj to A as
D(bj, A) = aibj

− bj. (3.4)

If these displacement vectors from A to B and B to A were bijective, we may
use them as correspondences between A and B. In general, however, since NA

and NB, the number of points in each set is not equal, and/or point arrangements
of A and B are different, the displacement vectors may be inconsistent.
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To obtain consistent displacement vectors, we define smoothed displacement
vector from ai to B as follows:

D(ai) =
∑NA

i′=1 GA(ai, ai′)D(ai, B)

∑NA
i′=1 GA(ai, ai′)

−
∑NB

j′=1 GB(ai, bj′)D(bj′ , B)

∑NB
j′=1 GB(ai, bj′)

, (3.5)

where GA(ai, ai′) and GB(bj, bj′) denote Gaussian functions with smoothing ra-
dius σ,

GA(ai, ai′) = exp

(
−|ai − ai′ |2

σ2

)
,

GB(ai, bj′) = exp

(
−

∣∣ai − bj′ − D(bj′ , A)
∣∣2

σ2

)
.

(3.6)

Note that GA and GB are asymmetric to let one displacement vector pull the points
while the other push it.

This D(ai) pushes each point in A toward B. So we can obtain correspon-
dences between A and B by iteratively moving the points in A to B according to
D(ai) until A will be close enough to B.

Step 1. Let A and B be point sets.

Step 2. Compute the displacement vector D(ai) for each point in A.

Step 3. Move ai slightly according to D(ai).

Step 4. If maxai∈A D(ai, B) is not small enough, go back to Step 2.

Step 5. Finally, we have deformed point set A which is close to B.

With this algorithm, we can compute correspondences between voxels of the vi-
sual hull at frame t and t + 1:

Step 1. Compute two visual hulls Vt at t and Vt+1 at t + 1 from multi-viewpoint
silhouettes at both frame.

Step 2. Obtain boundary voxels from Vt and Vt+1, and let them be A and B re-
spectively.

Step 3. Compute correspondences between A and B by the algorithm described
above.
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Here, boundary voxels are a set of voxels in a visual hull such that at least one of
its neighbors is vacant.

Use of Euclidean distance implies that corresponding candidate is determined
individually by single point-to-point distance, and local connectivities between
vertices are implicitly implemented by Gaussian smoothing in Equation 3.5. This
is simple and reasonable approach if the arrangement of two point sets are sim-
ilar to each other. We discuss about rough motion estimation for topologically
changing deformation in the next chapter.

3.4.2 Motion Estimation as Inertia

The motion estimation described above was an estimation using two frames t and
t + 1. Here we introduce another estimation as extrapolation of vertex positions
at t + 1 using the mesh models at t and t − 1.

Suppose we have started our deformation at frame t − 1 with a mesh Mt−1

and it has been already deformed to be the object shape at t. Let this deformed
mesh be denoted by Mt. Now, we are about to deform Mt so as to represent the
object shape at t + 1.

Since we have defined our deformation process as translations of vertices, we
have per-vertex correspondences between two meshes Mt and Mt−1. Let us de-
note the position of a vertex v at frame t and t − 1 by qt

v and qt−1
v respectively. We

estimate the position of v at t + 1 by linear extrapolation,

qt+1
v = qt

v +
(

qt
v − qt−1

v

)
= 2qt

v − qt−1
v .

(3.7)

Note that the time-step between t − 1, t, and t + 1 is constant. With this extrapo-
lation, we obtain the estimated positions for each vertex.

3.5 Forces on a Vertex

In this section, we introduce forces which represent reconstruction constraints.
Note that we assumed that the deformation starts with a shape that represents
the object shape at frame t. We denote the initial position of a vertex v, i.e., the
position of v at frame t by qv̂.
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3.5.1 Photometric Force

To obtain textures of v at frame t, we have to note that:

• frame t is the initial point of deformation,

• the position of v at t is given as qv̂, and

• Cv̂, visible cameras of v at t, is fixed through the deformation process.

So textures at frame t is also fixed through the deformation process and given by
projecting a vertex v at qv̂ onto viewpoints which can observe v at t.

Textures at frame t + 1 is given by similar to the intra-frame deformation. Once
the deformation has started, the position of vertex v is considered as the position
at frame t + 1. We can obtain textures at t + 1 by projecting v onto viewpoints
from which v is visible at t + 1. In what follows, we omit the superfix t + 1 for
a vertex, visible cameras of that vertex, and all others concerning frame t + 1 for
brevity, and we denote x at frame t as x̂. For example, Cv is visible cameras of v
at frame t + 1 and Cv̂ is that of frame t.

Photometric constraint states that these textures at two frames should be con-
sistent. So we define the photometric force for the inter-frame deformation as
follows:

Fe(v) ≡

 ∇Ee(qv, qv̂), if N(Cv) ≥ 2 and N(Cv̂) ≥ 2,

0, otherwise,
(3.8)

where N(Cv) denotes the number of cameras in Cv, Ee(qv, qv̂) the correlation of
textures to be mapped around v:

Ee(qv, qv̂) ≡
1

N(Cv) + N(Cv̂) − 1

(
∑

c∈Cv\cm

NCC (c, cm) + ∑
ĉ∈Cv̂\ĉm

NCC (ĉ, ĉm)

)
,

(3.9)
where cm and ĉm denote the most facing camera in Cv and Cv̂ respectively, c a cam-
era in Cv except cm, ĉ a camera in Cv̂ except ĉm, and NCC (c, cm) the normalized
cross correlation function defined in Equation 2.3.

3.5.2 Silhouette Preserving Force

Let us start the definition of the silhouette preserving force for the inter-frame
deformation from that of the intra-frame deformation in Section 2.4.2.
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To make the mesh model to preserve the observed object outlines at view-
points, we first replace definition of partial silhouette preserving force fs(v) in
Section 2.4.2 so that it preserves the object outlines not at t but t + 1. We reuse the
symbol fs(v) to denote this modified force.

Next, to realize temporal continuity of contour generators, we modify the def-
inition of the local support of silhouette force. Let us recall that the local support
of each vertex was computed with consideration to others nearby the vertex and
its competitors in Section 2.4.2. In addition to these two factors, we introduce
temporal continuity factor as follows.

1. At the beginning of the deformation, that is, at frame t, find vertices such
that they generates apparent contours of each viewpoint. Then, for each
such vertex, set its likelihood defined as Section 2.4.2. We denote this likeli-
hood of a vertex v at frame t by L̂(v). Note that:

(a) this step is done only at once, and L̂(v) is fixed through the deforma-
tion, and

(b) the value of L̂(v) is 0 if v is not a part of contour generator at frame t.

2. Change the initial value of likelihood to L̂(v). In Section 2.4.2, we initialized
the likelihood to 0 at every start of iteration evenly, however, to make ver-
tices which were contour generators at frame t to take higher likelihood, we
use L̂(v) as the initial value.

Applying these modifications, the likelihood L(v) is computed as follows:

• At the beginning of the deformation, compute L̂(v) for each vertex.

• At every iteration,

Step 1. Initialize the likelihood of each vertex to L̂(v).

Step 2. For each point of silhouette outlines, let each vertex accumulate its
likelihood of contour generator. We add the likelihood by the fol-
lowing rule:

– if a silhouette point has n corresponding vertices, add 1
n to each

vertex likelihood.

We denote the competitors of v by Comp(v).

Step 3. For each vertex, summing up the likelihood within its local support.
We denote accumulated value by SL(v).
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structual springs
flex springs

Figure 3.2: Spring model

Step 4. For each vertex, compute the modified local support:

L(v) =
SL(v)

SL(v) + ∑v′∈Comp(v) SL(v′)
, (3.10)

and total silhouette preserving force:

Fs(v) ≡ L(v) ∑
c∈Cv

fs(v, c). (3.11)

3.5.3 Internal Force

As described in Section 2.4.2, we cannot use simple internal force used in the
intra-frame deformation (Equation 2.8). Equation 2.8 makes the mesh shrink
while it keeps it smooth. It was appropriate because the intra-frame deformation
starts with visual hull which encages the object, and shrinking was reasonable
strategy to find the real object surface. On the other hand, in the inter-frame de-
formation now we consider, it starts its deformation process with the shape at
frame t, and change the mesh so as to fit the shape at t + 1. So we should not
make the mesh to shrink.

To realize smoothing function solely, we employ spring model. As shown
Figure 3.2, internal force on a vertex v consists of two components:

• Structural springs connecting to the neighboring vertices of v.

• Flex springs connecting to the vertices v̌j such that v and v̌j is a diagonal
vertex of two neighboring triangle patches.
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3.5. Forces on a Vertex

Structural spring keeps neighboring vertices in a certain length, and flex spring
prevents folding of mesh.

With spring constants ks(v, vj) and k f (v, vj), we define the internal force on v
as follows:

Fi(v) =
N

∑
j=1

fi(v, vj, ks(v, vj)) +
N

∑
j=1

fi(v, v̌j, k f (v, v̌j)) − q̇v, (3.12)

where vj denotes the j-th neighboring vertex, v̌j the j-th diagonal vertex, N the
number of neighboring vertices, ks(·) the structural spring constant between two
vertices, k f (·) the flex spring constant, and q̇v the damping force of spring pro-
portion to the velocity of v. fi(·) is Hookean spring force given by

fi(va, vb, k) = k
‖qva − qvb‖ − l(va, vb)

‖qva − qvb‖
(qva − qvb), (3.13)

where l(va, vb) denote the nominal length of the spring between va and vb. Note
that number of diagonal vertices is equal to that of neighboring vertices, N.

3.5.4 Drift Force

As described in Section 3.4.1, we have roughly estimated motion flow as voxel-
wise correspondences between t and t + 1 since we assume that we have multi-
viewpoint silhouette images and a visual hull for each frame.

Let us denote the voxel set at t by Vt, and the voxel set at t + 1 by Vt+1. Then
we represent voxel-wise correspondences by a set of correspondence lines:

Lt =
{

li| i = 1, . . . , N(Vt)
}

, (3.14)

where li denotes the correspondence line starting from ith voxel in Vt and N(Vt)
the number of voxels in Vt.

Once the motion flow is obtained, we define the potential field Ed(v) generated
by this flow. First, let lv denote the correspondence line in Lt closest to v, plv,v the
point on lv closest to v, and slv the starting point of the correspondence line lv.
Then, we define the potential field as a function of the distance from vt to lvt and
the distance from slvt

to plvt ,vt :

Ed(qv) ≡ ‖slv − plv,v‖2 − ‖qv − plv,v‖2. (3.15)
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Finally, we define the drift force Fd(v) at vertex v as the gradient vector of Ed(qv):

Fd(v) ≡ ∇Ed(qv). (3.16)

3.5.5 Inertia Force

If we assume that the interval between successive frames is short enough, we can
expect that the motion of the object to be smooth and continuous. This assump-
tion tells us that we can predict the location of a vertex at t + 1 from its motion
history as described in Section 3.4.2.

We can represent such predictions as a set of prediction lines connecting qvt

and q̂v, where q̂v denotes the predicted location of v. Then we can define the
inertia force Fn(v) in just the same way as the drift force Fd(v):

Fn(v) ≡ ∇En(qv), (3.17)

where En(qv) denotes the potential field defined for the set of prediction lines,
defined in just the same way as in equation (3.15).

3.5.6 Overall Vertex Force

Finally we define the vertex force F(vt+1) with coefficients α, β, γ, δ, ε, and ζ as
follows:

F(v) ≡ αFi(v) + βFe(v) + γFs(v) + δFd(v) + εFn(v). (3.18)

3.6 Computation Algorithm

3.6.1 Initial Shape

We assumed that we have a mesh model representing the object shape at frame t
and deform it to be that of t + 1, t + 2, ... and so on. To prepare the initial shape
to start the inter-frame deformation, we can use the reconstruction result of the
intra-frame deformation in Chapter 2.
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3.6.2 Deformation Process

In the intra-frame deformation, we could use shrinking strategy realized by in-
ternal force (Equation 2.4.2), and deformation process like SNAKE. On the other
hand, we do not have such a reasonable a-priori strategy in the inter-frame defor-
mation, and we changed the internal force to physical spring model with damp-
ing force. So we employ usual physics simulation here. That is, we solve New-
ton’s law of motion for each vertex.

For each vertex v, Newton’s law of motion gives following equation:

F(v) = mva(v)

= mvq̈v,
(3.19)

where mv is the mass of v, and a(v) the acceleration of v which is equal to the
second derivative of position qv. By assuming mv = Const. for every vertex, and
including it into constants α, . . . , ε of F(v), we have

F(v) = q̈v. (3.20)

To solve this second order ordinary differential equations, we use the forward
Euler method:

q̈v(τ) = F(v, τ), (3.21)

q̇v(τ + ∆τ) = q̇v(τ) + ∆τq̈v(τ), (3.22)

qv(τ + ∆τ) = qv(τ) + ∆τq̇v(τ), (3.23)

where τ denotes a iteration time, ∆τ the iteration step. We start this computation
with τ = t until the movement of each vertex lies under a certain threshold. By
regarding the final value of τ as t + 1, we obtain the shape of the object at t + 1 as
the result of deformation, and object motion as deformation loci of vertices.

As is well known, the forward Euler method is simple but not optimal to solve
ordinal differential equations in general because we have to choose ∆τ carefully
to be small enough so that it fulfills Courant-Friedrich-Levy condition. Other-
wise, the deformation would become unstable, but this increases iteration step
count. To solve this problem, many papers, e.g., on cloth simulation in computer
graphics, have utilized another method like backward Euler method (implicit in-
tegration), or Runge-Kutta method[BW98]. However, these methods require fu-
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ture value of F. For example, backward Euler method is given as follows:

q̈v(τ) = F(v, τ + ∆τ),

q̇v(τ + ∆τ) = q̇v(τ) + ∆τq̈v(τ),

qv(τ + ∆τ) = qv(τ) + ∆τq̇v(τ).

(3.24)

To compute future F(v, τ + ∆τ) at τ, they use Taylor’s theorem,

F(v, τ + ∆τ) ≈ F(v, τ) +
δF(v, τ)

δqv
∆τ +

δF(v, τ)
δq̇v

∆q̇v. (3.25)

Note that F is a function of qv and q̇v (Equation 3.18). In physics simulation, these
derivatives of F is given analytically or can be estimated numerically. However,
our definition of F is not differentiable nor numerically extrapolative, since sil-
houette preserving force Fs(v) does selective operation (Section 3.5.2).

Hence, we cannot use these methods and we use forward Euler method to
solve Equation (3.19). So we define the deformation process as follows.

Step 1 Suppose we have an initial mesh model representing the object shape at
frame t. If we have been in successive inter-frame deformation, use the
mesh deformed from previous frame t − 1, otherwise, use the intra-frame
deformation (in Chapter 2) to obtain the initial shape.

Step 2 Compute the initial likelihood of contour generator L̂(v) for each vertex
(in Section 3.5.2).

Step 3 Estimate the motion flow vector for Fd(v) (in Section 3.5.4).

Step 4 Deform iteratively. For each iteration,

Step 4.1. Compute forces working at each vertex respectively.

Step 4.2. Compute velocities of vertices according to Equation (3.22).

Step 4.3. Update positions of vertices according to Equation (3.23).

Step 4.4. Terminate if the vertex motions are small enough. Otherwise go
back to 5.1 .

Step 5 Take the final shape of the mesh model as the object shape at frame t + 1.
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cameras

object

Figure 3.3: Camera arrangement

3.7 Performance Evaluation

Figure 3.3 illustrates camera arrangement in this experiment. We used 9 cameras
on the ceiling of the room. Figure 3.4 illustrates estimated motion flows between
three successive frames:

• The top row shows captured images from a camera in front of the object.

• The middle row shows the visual hulls of the object which have same global
mesh topology.

• The bottom row shows estimated motion flows by algorithm described in
Section 3.4.1.

Note that the visual hulls at each frame are good first estimation of the object
shape, but they have errors since they only encase the object shapes. For example,
we can find phantom volume between their legs. Thus, computed flows on the
bottom row and the drift force Fd(v) also contain some errors. However, these
errors can be corrected by other forces.

Figure 3.5 and 3.6 illustrate the inter-frame deformation through 3 successive
frames. The columns of Figure 3.5 show, from left to right, the captured im-
ages, the visual hulls generated by the discrete marching cubes method for each
frame, and the mesh models deformed by the inter-frame deformation algorithm
proposed above, respectively. Note that captured multi-view video data are not
completely synchronized and include motion blur. In this experiments, we used
9 cameras arranged in the same way as Figure 2.14 (a) to capture object images.
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frame t frame t+1 frame t+2

Figure 3.4: Estimated motion flow
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Frame Captured image Visual hull
Deformable
mesh model

t+2

t

t+1

=

Figure 3.5: Successive deformation results (overview)

The mesh models consist of about 12,000 vertices and 24,000 triangles, and the
processing time per frame is about 10 minutes by PC (Xeon 1.7GHz). Note that
the visual hull in frame t was used as the initial shape for the intra-frame defor-
mation and then the resultant mesh for the inter-frame deformation. We used
fixed coefficients α = 0.2, β = 0.2, γ = 0.2, δ = 0.3, ε = 0.1 given a priori.

From these results, we can observe:

• Our dynamic mesh model can follow the non-rigid object motion smoothly.

• During its dynamic deformation, our mesh model preserves both global and
local topological structure and hence we can find corresponding vertices be-
tween any pair of frames for all vertices. Figure 3.6 illustrates this topology
preserving characteristic. That is, the left mesh denotes a part of the ini-
tial mesh obtained by applying the marching cubes to the visual hull at t.
The lower bold arrow stands for the inter-frame deformation process, where
any parts of the mesh can be traced over time. Aligned along the upper
bold arrow, on the other hand, are parts of the meshes obtained by apply-
ing the marching cubes to each visual hull independently, where no vertex
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MarchingCubes

Inter-frame
Deformation

t

t+1 t+2

t+1 t+2

Figure 3.6: Successive deformation results (detailed)

correspondence can be established because the topological structures of the
meshes are different.

3.8 Summary

In this chapter, we introduced an algorithm which deforms a mesh model from t
to t + 1. This deformation gives us the object shape at next frame and the object
motion between two frames.

Compared with the intra-frame deformation algorithm in Chapter 2, the inter-
frame deformation in this chapter is different in the following points:
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• In the intra-frame deformation, we could use the visual hull of the object
which ensures the real shape of the object in it. So shrinking of the mesh
was a reasonable strategy of the deformation. On the other hand, in the
inter-frame deformation, we cannot deform according to such a reasonable
strategy. So we introduced motion estimation to guide the deformation.

• We cannot use simple internal force in the intra-frame deformation (Section
2.4.2), since it implements not only the smoothness constraint but also the
shrinking strategy. Instead of shrinking in SNAKE manner, we introduced
spring model as the internal force and solve Newton’s law of motion for the
deformation.

• Instead of the reasonable shrinking strategy in the intra-frame deformation,
we introduced the drift force Fd(v) and inertia force Fn(v) to guide vertices
such that the photometric force cannot find appropriate destination to de-
form.

This inter-frame deformation realizes inter-frame compression of 3D mesh
data[BSM+03][IR03], but this sequential computation scheme cannot avoid er-
ror accumulation fundamentally. So as described in Section 1.3.1, we need to in-
sert key-frames by the intra-frame deformation introduced in Chapter 2 for error-
recovery.
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Chapter 4

Heterogeneous Deformation Model
for Complex Dynamic 3D Shape
Estimation

In Chapter 3, we introduced a basic deformation model to estimate 3D shape
and motion from multi-viewpoint images at two frames. In that algorithm, we
modeled the object motion as warping. That is, vertices composing object surface
can change their position as long as they satisfy their local smoothness constraint
defined by spring model (Section 3.5.3). In general, such a loosely constrained
model has flexibility to adapt itself to a variety of object shapes as evaluated in
Section 2.6.1. Let us call this basic deformation model as homogeneous inter-frame
deformation model since we managed all the vertices equally.

However, we have already analyzed that vertices can be categorized into two
types based on their photometric properties:

• vertices with prominent textures on which the photometric force are domi-
nant, and

• vertices with poor textures on which the internal force are dominant.

That is, characteristics of each vertex are obviously non-uniform. This suggests
that we can make simple homogeneous deformation to be more sophisticated by
changing the deformation process of each vertex according to their feature. Here,
we call such a deformation as heterogeneous deformation model.

In this chapter, we propose two types of vertex categorization. One is based
on their photometric properties as described above, and the other is based on

77



4. Heterogeneous Deformation Model for Complex Dynamic 3D Shape Estimation

their motion. As we proposed in Section 3.4, we have roughly estimated motion
vectors. We utilize this motion vectors to categorize vertices into

• vertices in warping, and

• vertices in rigid motion.

These two motion types enable the mesh model to reconstruct the object which
consists of different kinds of materials, e.g., rigidly acting body parts and deform-
ing soft clothes or its skins, by a single and unified computational scheme.

In what follows, we introduce how we categorize the vertices, and how we
modify the deformation process according to the vertex features. Note that each
vertex has not only its position, but also its photometric property and motion
type.

4.1 Problem Description

The problem we consider is 3D shape and motion estimation of the object between
two successive frames. We assume the object which has

• arbitrary but smooth and continuous shape,

• arbitrary motion, but can be categorized into warping and rigid motion,

• Lambertian surface reflectance, and

• constant global topology.

Here constant global topology means that the genus of the object in two frames
are equivalent.

We represent the object shape by deformable mesh model, and the object mo-
tion by translations of vertices composing the mesh. The input data of our algo-
rithm are:

• multi-viewpoint images and object silhouettes at both frame t and t + 1, and

• a mesh model representing the object shape at frame t.

The output data are:

• the object shape at frame t + 1 represented by a mesh model,
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• the object motion from t to t + 1 represented as translations of vertices,

• motion model of each vertex, and

• texture prominence of each vertex.

4.2 Approach

In general, there is a tradeoff between flexibility and stability. Estimation based on
flexible model has possibility to adapt itself to wider variety of targets than that
based on restricted model. However, restricted model can achieve more stability
while the former may easily affected by noise and break down easily.

In our mesh deformation, “flexible” and “restricted” correspond to per-vertex
deformation and group-wise deformation respectively. Per-vertex deformation
especially performed by the photometric force has ability to estimate vertex posi-
tions precisely, but it is hard to design the photometric force to avoid local optima
since textures may have noise or be consistent accidentally by aperture problem.
On the other hand, group-wise deformation enables to avoid local minima as
long as not most of members have been trapped to, but So in this chapter, we try
to find vertices which should be deform as a group to achieve more stability by
two approaches.

The first one is a categorization of the object motion into two types:

Restricted part: rigid motion, and

Flexible part: warping,

and modify the deformation process based on these categorization.
The other one is a categorization of vertices if it can lead other vertices in

deformation process or not. For each vertex labeled to be a “leader”, we modify
the deformation process of its neighbors to be led by it.

As a result of modification of the deformation process of each vertex our de-
formation process turned to be non-uniform. We call this as “heterogeneous de-
formation”. The main topics in this chapter are:

• how we categorize / characterize the vertices in the mesh, and

• how we can utilize such categorization in the deformation process.

Following sections show tow types of categorization described above.
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4.3 Vertex Categorization by Clustering Motion Flow

Vectors

Since we assumed all the vertices to be warping part in Chapter 3, we first find
out vertices which considered to be rigid part by clustering the motion flow esti-
mated in Section 3.4. To estimate vertex-groups in rigid motion, we first cluster
the roughly estimated motion flow on the basis of flow vector position and direc-
tion. Then for each cluster, we compute its rotation and translation.

We use hierarchical clustering twice to cluster the flow vectors. Hierarchical
clustering is a classical algorithm defined as follows.

1. Suppose we have N items to be clustered.

2. Compute an N × N distance matrix between each item. For example, (i, j)
value of this distance matrix stores the distance between i-th and j-th items.
We denote this distance matrix by M and distance function between items
by d(i, j).

3. Let each item be in its own cluster, and we have N clusters each of which
contains only one item.

4. Search the closest cluster pair from N clusters, then merge the pair into one
cluster. Now we have N − 1 clusters. Let us denote distance function be-
tween two clusters ck and cl by D(ck, cl).

5. Search the closest cluster pair from N − 1 clusters and merge them so that
we have N − 2 clusters.

6. Repeat this “search and merge” operation until clusters are merged to single
cluster which contains all N items.

7. Now, we have a binary tree of merging operation with N − 1 hierarchy. The
root of the tree corresponds to the final single cluster with N items, and the
leaves to the initial N clusters each of which contains only one item.

8. To find clusters located at least L distance apart, descend down from the
root to the leaves until find a merging operation which merged two clusters
in L or further distance.
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Here, we use Euclidean distance as d and average-linkage as D since we simply
cluster vectors representing physical positions and motions. In average-linkage
clustering, D is given by:

D(ck, cl) =
1

N(ck) × N(cl)

(
∑

m∈ck

∑
n∈cl

d(m, n)

)
, (4.1)

where m and n denote a member of the cluster ck and cl respectively, and N(ck)
and N(cl) denote the number of members in these clusters.

Using this hierarchical clustering algorithm, our motion clustering algorithm
is defined as follows.

1. Suppose we have flow vectors as described in Section 3.4, each of which
has its own position, normalized direction, and length (Figure 4.1(a)). We
denote i-th flow vector by fi, its position by pi, normalized direction by di,
and length by li.

2. First, filter out flow vectors such that length of which are under a certain
threshold. In Figure 4.1(b), removed flows are illustrated as thin lines in
light grey color and remaining flows as thick lines in black.

3. Next, apply hierarchical clustering based on the vector position p. Figure
4.1(c) shows a clustering result and each of cluster is in different color.

4. Then, for each cluster, apply hierarchical clustering based on the vector nor-
malized direction d (Figure 4.1(d)).

Note that we need three thresholds: one for filtering and two for clustering. These
thresholds are determined based on the interval between frames and expected
object motion.

Now, we obtained clusters each of which is estimated as rigid motion. We
then extract rotation and translation parameters which describes a rigid motion.
That is, for each cluster, we have the positions of each flow and their destinations,
and we compute the rotation and translation between them.

Let us denote the positions by P = {pi}, the destinations by Q = {qi | qi =
pi + lidi}. Rotation matrix R and translation vector T should minimize following
error function:

err =
N

∑
i=1

‖qi − (Rpi + T)‖2 , (4.2)
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(a) (b)

(c) (d)

Figure 4.1: Clustering of the estimated motion flow vectors
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where N is a number of flow vectors. First, we subtract the mean vector from
each point set:

P̂ = {p̂i | p̂i = pi − p̄}, (4.3)

where p̄ is the centroid of P given by

p̄ =
1
N ∑

pi∈P
pi. (4.4)

Similarly,
Q̂ = {q̂i | q̂i = qi − q̄}, (4.5)

where
q̄ =

1
N ∑

qi∈Q
qi. (4.6)

Rotation R which minimize Equation (4.2) is given as the largest eigenvalue λ of
the following matrix in quaternion form [Hor87][WI95][OK98]

Sxx + Syy + Szz Syz − Szy Szx − Sxz Sxy − Syx

Syz − Szy Sxx − Syy − Szz Sxy + Syx Szx + Sxz

Szx − Sxz Sxy + Syx −Sxx + Syy − Szz Syz + Szy

Sxy − Syx Szx + Sxz Syz + Szy −Sxx − Syy + Szz

 , (4.7)

where

Sxx =
N

∑
i=1

p̂i,xq̂i,x , (4.8)

Sxy =
N

∑
i=1

p̂i,xq̂i,y , (4.9)

and so on. Note that p̂i,x and q̂i,y denote x and y element of the vector p̂i and q̂i

respectively. Conversion from quaternion λ = w + ix + jy + kz to matrix R is
given by

R =

w2 + x2 − y2 − z2 2(xy − zw) 2(xz + yw)
2(xy + zw) w2 − x2 + y2 − z2 2(yz − xw)
2(xz − yw) 2(yz + xw) w2 − x2 − y2 + z2

 , (4.10)
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and applying ‖λ‖2 = w2 + x2 + y2 + z2 = 1, we have

R =

1 − 2(y2 + z2) 2(xy − zw) 2(xz + yw)
2(xy + zw) 1 − 2(x2 + z2) 2(yz − xw)
2(xz − yw) 2(yz + xw) 1 − 2(x2 + y2)

 . (4.11)

Translation vector T is simply given by

T = q̄ − Rp̄. (4.12)

Using this clustering and rotation / translation estimation, we can now cate-
gorize the vertices into two types:

Ca-1 vertices in warping, and

Ca-2 vertices in rigid motion.

For a vertex categorized as Ca-2, we have its rotation matrix and translation vec-
tor, so we replace its motion flow by these parameters:

Step 1. Suppose we have the rotation matrix R, the translation vector T, and the
position of the original motion flow p for each vertex categorized as Ca-2.

Step 2. The destination d of new motion vector is given by

d = Rp + T. (4.13)

Step 3. Using spherical linear interpolation (or SLerp) for rotation and linear in-
terpolation (or Lerp) for translation, we define new motion flow with pa-
rameter t:

sin(θ(1 − t))
sin θ

p +
sin θt
sin θ

d + tT, (4.14)

where θ denotes the angle between p and d.

4.4 Vertex Categorization Based on its Identifiability

As is well known, we can not expect that all the points on the object surface have
prominent texture, nor can recover all their 3D position by stereo method. Hence
not all the vertices of the mesh model are identifiable or localizable. So the pho-
tometric force Fe(v) (Section 3.5.1), which put a vertex on the real object surface
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based on texture correlation, will not work at such vertices. Here we assume that
we can categorize the vertices into two types based on their surface properties:

• a vertex with prominent texture, or

• otherwise.

As described in previous chapters, the photometric force Fe(v) is the component
which explicitly estimate the object shape. This categorization states that we can
classify the vertices into following two types:

Cb-1 vertices which should lead themselves and their neighbors so as to be
placed so that they have consistent textures, and

Cb-2 vertices which should be led by others.

We regard a vertex as identifiable if it has consistent and prominent textures
in visible cameras. Here, we introduce an identifiability-scoring function I(v) as
follows:

I(v) ≡ Ee(qv) × min
{

min
c∈Cv̂

∇pv̂,c, min
c∈Cv

∇pv,c

}
, (4.15)

where Ee(qv) denotes the correlation of textures of v (see Equation (3.9)), ∇pv̂,c

and ∇pv,c the derivatives of the texture of v̂ and v on camera c respectively. With
this function I(v), we compute the identifiability for each vertex, and label as
Cb-1 (identifiable) if the score exceeds a certain threshold, and as Cb-2 if not.

4.5 Heterogeneous Deformation Based on Vertex Cat-

egorization

We introduced two types of vertex categorization. One is based on the motion
clustering from physical point of view, and the other one is based on the surface
property. With these two categorizations, we add following steps in the basic
inter-frame deformation process in Chapter 3.

For each vertex,

• if is it categorized as Cb-1, let the force of the vertex diffuse to those of
neighbors so that it lead its neighbors,

• and / or if categorized as Ca-1, make the springs of the vertex
stiff[Pro95][CMN97] to move together with others.
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We define the diffusion process as follows.

1. Let v be a vertex of type Cb-1, vj a neighboring vertex of v.

2. For each vj, modify the force F(vj):

F(vj) = ωF(v) + (1 − ω)Fprev(vj),

ω = e−Dg(v,vj),
(4.16)

where Fprev(vj) denotes the original force at vj, and Dg(v, vj) the geodesic
distance between v and vj.

Note that for a vertex of type Ca-2 ∧ Cb-2, a vertex without prominent texture or
not a part of a rigid part, its position is interpolated by the internal force Fi(v),
and a vertex of type Ca-1 ∧ Cb-1, a vertex with prominent texture and a part of a
rigid part, deforms so as to lead the rigid part which the vertex belongs to.

Applying these steps, our heterogeneous deformation process is modified as
follows:

Step 1. Suppose we have an initial mesh model representing the object shape at
frame t. If we have been in successive inter-frame deformation, use the
mesh deformed from previous frame t − 1, otherwise, use the intra-frame
deformation (in Chapter 2) to obtain the initial shape.

Step 2. Compute the initial likelihood of contour generator L̂(v) for each vertex
(in Section 3.5.2).

Step 3. Compute roughly estimated motion flow for the drift force Fd(v) and the
inertia force Fn(v).

Step 4. Estimate the motion flow vector for Fd(v) (in Section 3.5.4).

Step 5. Categorize the vertices based on the motion flow:

Step 5.1. By clustering the estimated motion flow, label the vertex
whether Ca-1: it is an element of a rigid part, or Ca-2: it is not.

Step 5.2. Make the springs of vertices labeled as Ca-1 stiff.

Step 6. Deform the model iteratively:

Step 6.1. Compute forces working at each vertex respectively.
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Figure 4.2: Camera arrangement

Step 6.2. For a vertex whose identifiability I(v) exceeds a certain thresh-
old, that is, for a vertex labeled as Cb-1, let the force of it diffuse
to those of neighbors.

Step 6.3. Move each vertex according to the force.

Step 6.4. Terminate if the vertex motions are small enough. Otherwise go
back to Step 6.1.

Step 7. Take the final shape of the mesh model as the object shape at frame t + 1.

4.6 Experimental Results

Figure 4.3, 4.4, and 4.5 illustrate the inter-frame deformation through eight suc-
cessive frames. The columns of Figure 4.3 show, from left to right, the cap-
tured images, the visual hulls generated by the frame-wise discrete marching
cubes method, and the mesh models deformed by the heterogeneous deforma-
tion method, respectively. In these two figures, colored areas of the mesh denote
rigid parts of the object estimated by the clustering at Step 3. Note that the vi-
sual hull in frame t was used as the initial shape for our deformation. In this
experiment, we used 9 cameras circumnavigating the object (Figure 4.2). Cap-
tured multi-viewpoint videos are not completely synchronized and include mo-
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t

t+1

t+2

t+3

t+4

t+5

t+6

t+7

Figure 4.3: Successive deformation results
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t

Visual hull

t+1 t+2 t+3

t+4 t+5 t+6 t+7

Deformation

Figure 4.4: Successive deformation results (detailed)
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t+6

t+7

Figure 4.5: Successive deformation results (detailed, side view)
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tion blur. The mesh models consist of about 12,000 vertices and 24,000 triangles,
and the processing time per frame is about 20 minutes by PC (Xeon 3.0GHz). We
used fixed coefficients α = 0.2, β = 0.2, γ = 0.2, δ = 0.3, ε = 0.1 given a priori.

From these results, we can observe:

• Our deformable mesh model can follow the partially-rigid object motion
smoothly. In Figure 4.3 and 4.4, we can observe that the arms of the object
are labeled as rigid regions.

• During its dynamic deformation, our mesh model preserves both global and
local topological structure and hence we can find corresponding vertices be-
tween any pair of frames for all vertices. Figure 4.4 illustrates this topology
preserving characteristic. That is, the top-left mesh denotes a part of the ini-
tial mesh obtained by applying the marching cubes to the visual hull at t.
The lower light arrow stands for our deformation process, where any parts
of the mesh can be traced over time. Aligned along the upper dark arrow, on
the other hand, are parts of the meshes obtained by applying the marching
cubes to each visual hull independently, where no vertex correspondence
can be established because the topological structures of the mesh data are
different.

• In Figure 4.5, we can observe that the vertices corresponding to the right
lower arm and hand of the object were labeled into different groups (green
and blue) at frame t + 7 because the arm and the hand moved to differ-
ent directions. This tells that vertices labeled as a single rigid part may be
separated into two or more parts through successive frame recovery, and
such vertices labeled into different parts may be grouped together in future
frame. That is, we can find new joint of the object through the recovery, and
we should introduce a deformation model which can learn where is a rigid
part or a joint, and can utilize it to accomplish more robust reconstruction.

4.7 Summary

In this chapter, we proposed a computational framework using a heterogeneous
deformable mesh model based on vertex categorization. We categorized vertices
based on their physical and photometric properties.
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• By clustering the estimated motion flow, we categorized vertices into rigid-
motion part and warping part.

• Using texture-prominency of each vertex, we categorized vertices whether
identifiable (or localizable) or not.

According to these two categorization, we changed the deformation process as
follows:

• For each vertex such that it is a part of rigid-motion, make its spring-
constant stiff to deform together with its neighbors.

• For each vertex such that it is labeled as identifiable, let its force diffuse to
its neighbors so that it can lead its neighbors.

The basic inter-frame deformation in Chapter 3 was totally per-vertex and uni-
form deformation, but heterogeneous deformation is an introduction of group-
wise approach to make the deformation stable.
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Chapter 5

Dynamic 3D Shape Estimation for
Object with Time-Varying Global
Mesh Topology

In this chapter, we introduce an algorithm to estimate the object shape and motion
between two frames with different global mesh topology. That is, we propose a
method to deform a mesh model representing the object shape in genus-0 (Figure
3.1, top row) to the genus-1 or 2 shape (Figure 3.1, middle and bottom rows).

5.1 Problem Description

The problem we consider is 3D shape and motion estimation of the object between
two successive frames with time-varying global topology. We assume the object
which has

• arbitrary but smooth and continuous shape,

• arbitrary motion, but can be categorized into warping and rigid motion,

• Lambertian surface reflectance, and

• time-varying global topology.

Here time-varying global topology means that the genus of the object in two
frames can change.

We represent the object shape by deformable mesh model, and the object mo-
tion by translations of vertices composing the mesh. The input data of our algo-
rithm are:
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(a) mesh at frame t (b) object image at frame t+1

(c) defomed mesh (d) defomed mesh

Figure 5.1: Deformation for object with variable global topology

• multi-viewpoint images and object silhouettes at both frame t and t + 1, and

• a mesh model representing the object shape at frame t.

The output data are:

• the object shape at frame t + 1 represented by a mesh model, and

• the object motion from t to t + 1 represented as translations of vertices.

5.2 Object with Time-Varying Global Topology

In deforming a mesh model so as to represent the object shape in another global
topology, we have to consider not only the geodesic proximity but also the Eu-
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clidean proximity between vertices. Suppose we have a mesh in Figure 5.1(a) as
the object shape at frame t, and deform it so as to be the object shape at frame
t + 1 (Figure 5.1(b)). We can observe that the mesh topology will change from t
to t + 1 and a hole will appear at the “waist”. In this situation, many papers on
active contour model tried to develop algorithms to change the global topology
of the mesh model to be equal to that of the object[DM01][BLS03][YS03b], but it
is advisable for our objective to keep the global topology of the mesh model and
hidden surfaces. That is, we deform our mesh model so that the “hand” of the
mesh deform to touch its body, since it is the actual object motion (Figure 5.1(c)).
However, deformation algorithm in Chapter 4 may produce a different result as
shown in Figure 5.1(d), i.e., the “hand” will be smaller and a protuberance sticks
out from the “waist”.

This is because that we have assumed that there are a positive correlation be-
tween geodesic distance and Euclidean distance for each vertex. Here, geodesic
distance between two vertices is the length of the shortest path on the mesh sur-
face between them. Based on this assumption, we defined the vertex forces so
that they care the vertices only in their geodesic vicinity. However, if the global
mesh topology changes as described above, this assumption will break down and
there will be a negative correlation between geodesic and Euclidean distances.

Since the heterogeneous deformation algorithm in the previous chapter is de-
fined implicitly based on this proximity assumption,

• the motion estimation algorithm in Section 3.4.1 may generate inappropriate
displacement vectors for visual hulls with different global topology, and

• silhouette constraint cannot resolve an ambiguity about contour generators.

This is because they blindly search nearest point as its destination for all vertices
based on proximity assumption, and if the global topologies of two visual hulls
are different, it takes inappropriate destinations for regions to be touched. Figure
5.2 illustrates this situation. Suppose we have two visual hulls having different
global topology (Figure 5.2(a) and (b), red and blue points). For points in touching
/ occluding region (in green), displacement vectors (red arrows) would be inap-
propriate as illustrated in 5.2(c) since such occluded region cannot be observed
by cameras at frame t + 1, and cannot be represented by visual hull.

Next, we discuss about an ambiguity about contour generators. Silhouette
preserving force Fs(v) (Section 3.5.2) which estimates contour generators on the
object surface may also behave similarly to what described above. Figure 5.3
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visual hull (a) visual hull (b)

point-set deformation

frame t frame t+1

occulded region

displacement vector

(c)

Figure 5.2: Naive point-set deformation algorithm applied to visual hulls with
different global mesh topologies
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(a) mesh model at t (b) object at t+1

(c)silhouette force

silhouette force to push the mesh contour

silhouette force to pull the mesh contour

apparent silhouette contour

mesh contour

(d) correct assignment

Figure 5.3: Silhouette preserving force in touching
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explains this situation. Suppose we have a mesh model representing the object
shape at frame t (Figure 5.3(a)), and now we are about to deform it toward frame
t + 1 (Figure 5.3(b)). In this situation, the silhouette preserving force Fs(v) first as-
signs two mesh contours to one observed silhouette contour (Figure 5.3(c)) while
only one mesh contour should be assigned as shown in Figure 5.3(d) at the end
of deformation process. That is, both two candidates will deform to be a contour
generator, and silhouette preserving force Fs(v) cannot select correct one from
these candidates at the begging of the deformation. Figure 5.4 shows another sit-
uation but explained as same as above. Suppose we have a mesh model represent-
ing the object shape at frame t (Figure 5.4(a)), and now we are about to deform it
toward frame t + 1 (Figure 5.4(b)). In this situation, the object will not touch itself,
but from a certain viewpoint, its “hand” self-occludes its “body” (Figure 5.4(c)).
Similarly to what shown in Figure 5.3, silhouette preserving force Fs(v) takes two
mesh contours as candidates to one apparent contour (Figure 5.4(d)).

5.2.1 Solution

To solve this problem, we propose following approach.

1. First of all, we consider that we cannot distinguish / predict correct contour
generators from two or more candidates at the begging of the deformation.

2. Obviously, we need new vertex force to avoid collisions. Let us introduce a
new vertex force working at such a collision part so that two collided sur-
faces push each other. We call this new force as repulsive force.

3. Suppose two surfaces which are contour generator candidates collide as il-
lustrated in Figure 5.5(c).

4. Recall that the silhouette preserving force keeps the mesh to be encaged by
the visual hull, and the internal force keeps the mesh shape be smoothly
interpolated.

5. So if we leave occluded surface to deform by the internal force, the silhou-
ette preserving force and the repulsive force (Figure 5.5(c), red and green
arrows) will push back such a collided surfaces to be inside of the visual
hull (Figure 5.5(d)).
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(a) mesh model at t (b) object at t+1

(c)silhouette force

silhouette force to push the mesh contour

silhouette force to pull the mesh contour

apparent silhouette contour

mesh contour

(d) correct assignment

Figure 5.4: Silhouette preserving force in occluding
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(a) mesh model at t (b) object at t+1

(c) collided

repulsive force

silhouette preserving force

(d) final result

Figure 5.5: Repulsive force at collision

6. That is, even if we have multiple candidates, silhouette force makes the sur-
face which is outside of the observed silhouette to be the final contour gen-
erator and repulsive and internal force push back the other part.

Following sections describes how we modify the motion estimation algorithm
in Section 3.4.1, and the definition of repulsive force.

5.3 Motion Estimation from Two Visual Hulls with

Different Global Mesh Topology

As described in Section 5.2 and shown in Figure 5.2, naive approach in Section
3.4.1 will produce inappropriate motion flows when two visual hulls have dif-
ferent global mesh topology. This is because that touched surface cannot be rep-
resented by the visual hull, and voxels of in-touching surface cannot find their
correspondings in it.
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visual hull (a) visual hull (b)

point-set deformation
with surface normal

frame t frame t+1

occulded region

displacement vector

rejected displacement vector

(c)

Figure 5.6: Motion estimation with surface normal consideration
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The basic strategy to solve this problem is culling out of such miss-
correspondings by considering the surface normal consistency. Suppose we have
visual hulls in two frames (Figure 5.6(a) and (b)). In Section 3.4.1, we simply
used these visual hulls as sets of voxels, however, we use them as surface mod-
els which have vertices and normals to enable the culling. Our culling algorithm
using surface normals is defined as follows:

1. Compute D(ai, B) and D(bj, A) (Equation (3.3) and (3.4) respectively) for
each vertex of visual hulls as usual (Figure 5.6(c), both solid and dotted
arrows in orange).

2. For each point, compute the inner product of normal vectors between cor-
responding points, and if it is under a certain threshold, let D(·) = 0 (Figure
5.6(c), dotted arrows in orange).

So we redefine Equation (3.3) and (3.4) as:

D(ai, B) =
1

1 + exp
(
−σnbjai

· nai

) (
bjai

− ai

)
, (5.1)

and
D(bj, A) =

1

1 + exp
(
−σnbj · nai

) (
bj − ai

)
, (5.2)

with sigmoid function 1
1+exp(−σx) .

5.4 Collision Detection and Repulsive Force

As described in Section 5.2, we introduce new vertex force Fr(v) which represent
a repulsive force between surfaces in touching.

Collision detection is a well-known problem in cloth simulation of computer
graphics or another physics based simulation. There are several “short-cuts” to
detect a collision between special elements, e.g., spheres or functional surfaces,
but collision detection for generic triangle meshes falls back basically to a kind of
brute-force algorithm.

In this section, however, we propose a short-cut of collision detection for our
deformable mesh model. First of all, since we have already introduced the in-
ternal force Fi(v) to prevent a local collision, we focus only on a global collision
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detection, which is a collision between surfaces geometrically close but topolog-
ically apart. Let us recall that in our deformation, global collisions occurs only
at surfaces in touching. On such a touching surface, we can assume that visi-
ble cameras Cv for each vertex to be an empty set ∅. So we can drastically cull
out vertices such that Cv 6= ∅ from collision detection target. After this effective
culling, we apply brute-force algorithm.

We define our collision detection and repulsive force generation algorithm as
follows:

Step 1. For all vertices in the mesh, initialize the repulsive force Fr(v) to 0.

Step 2. Suppose we have a set of vertices such that V∅ = {v | Cv = ∅}.

Step 3. For each vertex v ∈ V∅,

Step 3.1. Compute the Euclidean distances to all the others.

Step 3.2. Find vertices such that they are within less than lmin(v) distance,
where lmin(v) denotes the minimal length of edges connecting to
v. Let Vd(v) denote the set of vertices found for v.

Step 3.3. For each vertex v′ ∈ Vd(v), add following partial repulsive force
fr(v, v′) to Fr(v):

fr(v, v′) =
qv′ − qv

‖qv′ − qv‖3 . (5.3)

5.5 Deformation Process

Finally, we have following vertex force with 6 coefficients:

F(v) ≡ αFi(v) + βFe(v) + γFs(v) + δFd(v) + εFn(v) + ζFr(v). (5.4)

Using this vertex force, we define our final deformation process as follows:

Step 1. Suppose we have an initial mesh model representing the object shape at
frame t. If we have been in successive inter-frame deformation, use the
mesh deformed from previous frame t − 1, otherwise, use the intra-frame
deformation (in Chapter 2) to obtain the initial shape.

Step 2. Compute the initial likelihood of contour generator L̂(v) for each vertex
(in Section 3.5.2).
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Step 3. Estimate the motion flow vector for Fd(v) (in Section 3.5.4 and 5.3).

Step 4. Categorize the vertices based on the motion flow (in Section 4.3):

Step 4.1. By clustering the estimated motion flow, label the vertex
whether Ca-1: it is an element of a rigid part, or Ca-2: it is not.

Step 4.2. Make the springs of vertices labeled as Ca-1 stiff.

Step 5. Deform iteratively. For each iteration,

Step 5.1. Compute forces working at each vertex respectively.

Step 5.2. For a vertex detected as in collision, let its coefficient of the sil-
houette force be 0.

Step 5.3. For a vertex whose identifiability I(v) exceeds a certain thresh-
old, that is, for a vertex labeled as Cb-1, let the force of it diffuse
to those of neighbors.

Step 5.4. Compute velocities of vertices according to Equation (3.22).

Step 5.5. Update positions of vertices according to Equation (3.23).

Step 5.6. Terminate if the vertex motions are small enough. Otherwise go
back to 5.1 .

Step 6. Take the final shape of the mesh model as the object shape at frame t + 1.

5.6 Evaluation

5.6.1 Experimental Results with Synthesized Images

Figure 5.8 shows deformation results of synthesized object using 9 cameras ar-
ranges as shown in Figure 5.7. The left column shows synthesized objects for each
frame, the center column shows visual hulls of the object, and the right column
shows deformed mesh models. Figure 5.9 shows average shape error between
synthesized object and (a) visual hull, (b) the results of intra-frame deformation,
and (c) the results of inter-frame deformation. Here, average shape error is de-
fined as the average distance from each vertex to the nearest point in the synthe-
sized object. Note that we used fixed coefficients α = 0.15, β = 0.15, γ = 0.2, δ =
0.2, ε = 0.1, ζ = 0.2 given a priori.

From these results, we can observe that
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cameras

object

Figure 5.7: Camera arrangement

• The deformable mesh model can cope with global change of topology, i.e.,
can “touch” itself.

• At “elbow” of each deformation results, we can find folded surfaces in the
inter-frame deformation results while the visual hulls and the intra-frame
deformation results do not have such folds. This is because that such region
is represented as a visible surface at the first frame, but it is turned to be
invisible after some frames.

• The results of the intra-frame deformation are better than those of the inter-
frame deformation (Figure 5.9). This is because that the inter-frame defor-
mation cannot avoid error accumulation.

5.6.2 Experimental Results with Real Images

Figure 5.11 and 5.12 illustrate the inter-frame deformation for the object with
time-varying global topology.

The columns of Figure 5.11 show, from left to right, the captured images, the
visual hulls generated by the frame-wise discrete marching cubes method, the
mesh models deformed by the intra-frame deformation method, and the mesh
models deformed by the inter-frame deformation method respectively. In this
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Synthesized
Intra-frame
deformationVisual hull

t

t+1

t+2

t+3

Inter-frame
deformation

Figure 5.8: Estimation results of synthesized object
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Figure 5.9: Average shape error

cameras

object

Figure 5.10: Camera arrangement
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Observed
Image

Visual
hull
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Figure 5.11: Successive deformation results
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Figure 5.12: Successive deformation results (detailed)
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experiment, we used 9 cameras circumnavigating the object (Figure 5.10). Cap-
tured multi-viewpoint videos are not completely synchronized and include mo-
tion blur. The mesh models consist of about 12,000 vertices and 24,000 triangles,
and the processing time per frame is about 2 hours by PC (Xeon 3.0GHz). Note
that we used fixed coefficients α = 0.15, β = 0.15, γ = 0.2, δ = 0.2, ε = 0.1, ζ = 0.2
given a priori.

From these results, we can observe:

• Our deformable mesh model can cope with time-varying global topology as
shown in the bottom row of Figure 5.11.

• During its dynamic deformation, our mesh model preserves both global and
local topological structure and hence we can find corresponding vertices be-
tween any pair of frames for all vertices. Figure 5.12 illustrates this topology
preserving characteristic. In this figure, the visual hulls (the left column)
and the results of the intra-frame deformation (the center column) change
their

– local mesh topologies (per-vertex connectivities), and

– global mesh topologies (mesh models of t are genus-0 and those of t + 1
and t + 2 are genus-1).

On the other hand, the results of the inter-frame deformation (the right col-
umn) preserves both global and local mesh topologies while they represent
the object with time-varying topology.

5.7 Summary

In this chapter, we improved our deformable mesh model to be able to cope with
the object with time-varying global topology. The heterogeneous deformation
model in Chapter 4 utilized a proximity-based force generation model. However,
it cannot adapt to a complexity caused by the global object motion since it causes
global mesh collisions which cannot deal with proximity-based approach.

To solve this problem, we introduced repulsive force to avoid global collision
caused by the global complex object motion. This repulsive force and the sil-
houette preserving force enables the deformable mesh model to deform so as to
represent the object shape with another global topology. That is, the deformable
mesh model can “touch” itself.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we proposed a framework to estimate 3D shape and motion simul-
taneously from multi-viewpoint video. To realize simultaneous shape and motion
estimation, we introduced deformable mesh model and two types of deformation
process – intra-frame and inter-frame deformation. The intra-frame deformation
estimates static 3D object shape from multi-viewpoint images at a frame. On the
other hand, the inter-frame deformation estimates the dynamic object shape, i.e.,
the object shape and motion between two frames.

Our deformable mesh model can

• integrate several cues for accuracy, and

• realize shape continuity for stability.

Here, integration of multiple cues has following meanings.

Least commitment principle If one cue suggests an optimal state, we cannot de-
termine whether it is actually an optima or a fake cause by noise. In this
case, we have no choice but to determine based on a certain threshold if we
use the stereo or other single-cue algorithms. However, with active contour
model, such an uncertain cue can avoid decision (i.e., thresholding) until
others be in consensus.

Mutual compensation Each cues have own advantages and disadvantages. For
example, silhouette-based volume intersection method is stable, but cannot
reconstruct accurate 3D object shape; its output represents just the visual
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hull of the object and concave portions of the object cannot be reconstructed.
In contrast, texture-based stereo method can reconstruct any kind of visible
surfaces, but it is difficult to obtain dense and accurate stereo matching. Ac-
tive contour model can combine both cues. If an object surface has a promi-
nent texture, its position is determined accurately by mean of the stereo
method. Otherwise, its position is smoothly interpolated according to its
neighbors whose positions are determined by texture or silhouette.

Detailed situation analysis Active contour model realize better integration
rather than just mixing several evaluated values. It can adaptively control
the weightings of each cues based on the analysis between cues reflecting
the situation of the object shape and motion.

In the intra-frame deformation (Chapter 2), we utilized following three con-
straints:

• photometric constraint,

• silhouette constraint, and

• smoothness constraint.

They represent the object shape by frame-and-skin model as described in Section
2.3.4.

In the inter-frame deformation, we extended the frame-and-skin model which
models the object shape to be the heterogeneous deformation model by adding
constraints which model the object motion. First, we modeled the object motion
as totally warping (Chapter 3). We estimated the object motion roughly from 1)
observed object silhouettes at two frames, and 2) motion history of the object.
This is an example of mutual compensation between cues (Section 3.4). Next,
we modeled the object motion as mixture of warping and rigid motion (Chapter
4). To find rigid regions, we clustered roughly estimated motion flow (Section
4.3). Finally, we introduced new force which is based on not geodesic but Eu-
clidean proximity to cope with time-varying global topology (Chapter 5). This is
because we implicitly assumed that a positive correlation between geodesic and
Euclidean distance, and we defined forces so that they care the vertices only in
their geodesic vicinity, but if the object global topology has change, this assump-
tion breaks down.
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6.2 Future Work

In this thesis we proposed intra- and inter-frame deformation, and with these two
deformations, we presented a framework to estimate 3D shape and motion of the
object:

Step 1. Estimate the object shape at frame t by the intra-frame deformation. We
denote this mesh model by Mt and this is the first key frame.

Step 2. Estimate the object shape and motion at frame t + 1 by the inter-frame
deformation. Here, we use Mt as the initial shape, and obtain Mt+1.

Step 3. Repeat Step 2. and obtain Mt+2 from Mt+1, Mt+3 from Mt+2, and so on.

Step 4. Suppose the result of the inter-frame deformation Mt′ at frame t′ cannot
achieve a user-defined shape quality. In this case, estimate Mt′ by the
intra-frame deformation, then go back to Step 2. and estimate Mt′+1 from
Mt′ .

As the result of this process, we can obtain 1) the shape and motion of the object
and 2) physical and photometric properties of vertices. So similarly to the 2D
video compression, we can expect that two-pass estimation is promising for more
accuracy.

Next, the proposed method uses the 2D silhouette of the object as its input
data. This means that the accuracy of estimated shape and motion depends on
the accuracy of 2D silhouette. We assumed that it is accurate enough in this thesis,
but it is well known that silhouette extraction of the object is not so easy problem.
To solve this problem, we can use 3D shape estimation process itself. That is,
if we can estimate accurate 3D shape, its projection onto each viewpoint should
generate accurate 2D object silhouette. In other words, there is a projection/back-
projection constraint between 3D shape and 2D silhouettes. While visual cone
intersection method utilizes only the boundaries of 2D silhouettes and generates
3D shape (visual hull) straightforward, we can develop a method which estimates
consensus 3D shape and 2D silhouettes simultaneously.
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