Real-Time Cooperative

Multi-Target Tracking
by Communicating Active Vision Agents

Norimichi Ukita,

Abstract

The dynamic situation understanding is indispensable for realizing computer systems
that autonomously work in the real world. This is because such computer systems have to
understand dynamic situations in the real world, and adapt themselves to the situations
reactively. The dynamic situation understanding has been studied in Computer Vision
and many technologies have been developed. Some of them are applied to real-world
computer systems to increase their flexibilities.

To realize the dynamic situation understanding, object tracking is one of the most
important and fundamental technologies. This is because most of dynamic situations
in the scene can be characterized by object motions. Therefore, we should focus on
such moving objects and obtain the information of the focused objects to understand the
dynamic situation. To apply object tracking to real-world systems, the object tracking
method has to cope with complicated situations and conduct processing in real time.

In this thesis, we propose a real-time flexible object tracking system. Our objective is
to realize the tracking system that can adaptively change its behavior depending on the
situation and task, and persistently keep tracking focused target objects.

In order to realize real-time multi-target tracking in a wide-spread area, we employ
the idea of Cooperative Distributed Vision (CDV, in short). The CDV system consists of
communicating Active Vision Agents (AVAs, in short), where an AVA is a logical model of
an Observation Station (real-time image processor with active camera(s)). For real-time
object tracking by multiple AVAs, we have to solve (1) how to design an active camera for
dynamic object detection and tracking, (2) how to realize real-time object tracking with an
active camera and (3) how to realize cooperation among AVAs for real-time multi-target
object tracking.

First of all, for wide-area active imaging, we developed a Fized-Viewpoint Pan-Tilt-
Zoom (FV-PTZ, in short) camera. This camera is designed so that the projection center
is always placed at the rotational center irrespectively of pan, tilt and zoom controls. This
property allows the system (1) to generate a wide panoramic image by mosaicing multiple
images observed by changing pan-tilt-zoom parameters and (2) to synthesize an image
taken with any pan-tilt-zoom parameters from the wide panoramic image. With the FV-
PT7 camera, we can realize an active camera system that detects anomalous regions in
the observed image by comparing it with the generated background image (background
subtraction method).

Next, for real-time object detection and tracking, we designed an Active Background
Subtraction method with the FV-PTZ camera. To successfully gaze at the target during
tracking, the system incorporates a flexible control system named the Dynamic Memory
Architecture, where multiple parallel processes share what we call the Dynamic Memory,
to dynamically integrate visual perception and camera action modules. The dynamic
memory enables parallel modules to asynchronously obtain the information of another
process without disturbing their own intrinsic dynamics.

Finally, to implement the real-time cooperation among AVAs, we designed a three-
layered interaction architecture:

1st layer (Intra-AVA layer): Visual perception, action and communication modules

i

of an AVA work together by dynamically interacting with each other. Each module
exchange its information through the dynamic memory.

2nd layer (Intra-Agency layer): AVAs that track the same target object form a group
(Agency). AVAs in the same agency exchange the object information to coopera-
tively track the target. Each agency has its own dynamic memory, and all the
member-AVAs exchange their information of the detected objects through the dy-
namic memory. The dynamic memory allows the agency to obtain the reliable result
of object identification from multiple pieces of the object information asynchronously
observed by the member-AVAs.

3rd layer (Inter-Agency layer): In order to adaptively restructure agencies taking
into account targets’ motions, agencies exchange the target and agency informa-
tion with each other.

The dynamic interactions in each layer allow the entire system to track multiple moving
objects under complicated dynamic situations in the real world.

Throughout the thesis, experimental results are presented to demonstrate the effec-
tiveness of our real-time flexible tracking system.

Acknowledgements

First of all, I have to express my deepest thanks to professor Takashi Matsuyama at Kyoto
university. Without him, this thesis could not never exist. He first showed me various
possibilities of my research, and gave me valuable advice and enable me to complete my
thesis.

[would also like to thank the members of my thesis committee, Prof. Michihiko Minoh
and Prof. Hiroshi G. Okuno, for making many useful comments on my thesis.

Next, I express my gratitude to associate professor Toshikazu Wada. He introduced
me to the world of Computer Vision and made me show a keen interest in the research.
He always gave counsel to me, and his steady work in this field certainly influenced my
research.

I would like to thank to lecturer Akihiro Sugimoto. He made smart comments on my
research and supported me to accomplish this thesis. In addition, he read my manuscripts
many times and gave me very useful comments both technically and grammatically.

I would also like to thank Shogo Tokai at Fukui university and Shinsaku Hiura at
Osaka university. They used to debate with me on my idea and guide me in my study.

In addition, I am also grateful to the members of the Cooperative Distributed Vision
Project (JSPS-RFTF 96P00501). They often discussed my work and gave me many useful
comments.

I also wish to express my appreciation for cooperation and kindness of my fellows,
members of Matsuyama laboratory at Kyoto university. They helped my experiments
and debated on diverse issues of my work. Furthermore, they made my deserted student
life enjoyable with their favors.

I would also like to thank Ms. Yuki Watanabe and Ms. Hiromi Monobe who assisted
me in performing office jobs.

Although I did not mention all names, I am also grateful to my friends and many
people for their warm support.

Finally, I would like to thank my families who were sympathetic to my work.

il

Contents

1 Introduction 1
1.1 Background 1
1.2 Categories of Object Tracking Systems 2
1.3 Real-time Cooperative Multi-target Tracking 5

1.3.1 Cooperative Distributed System Architecture 5
1.4 Basicldeas 8
1.4.1 Active Camera for Wide-area Imaging 8
1.4.2 Real-time Object Detection and Tracking 9
1.4.3 Real-time Cooperative Multi-target Tracking 11
1.5 Overview of Thesis 14

2 Fixed-Viewpoint Pan-Tilt-Zoom Camera for Wide-area Active Imaging 17

2.1 Wide-area Active Imaging for Object Detection and Tracking 17
2.1.1 Adaptive Wide-area Observation 18
2.1.2 Image Appearance Variations caused by Changing Camera Param-

eterso 19
2.1.2.1 Parallaxo 21
2.1.2.2 Image Deformation 22

2.2 Fixed-Viewpoint Pan-Tilt Zoom Camera 22
2.2.1 Designing the FV-PTZ camera 22
2.2.2 Imaging geometry of the FV-PTZ camera 23
2.2.3 High-Speed Image Generation between Multiple Screens 25

2.3 Scene Model Representation for the FV-PTZ Camera 26
2.3.1 Appearance Sphere 26
2.3.2 Appearance Plane. 28

2.4 Calibration for Realizing the FV-PTZ Camera 29
2.4.1 Fixing the Viewpoint L Lo 29
2.4.2 Calibrating Internal Camera Parameters 31
2.4.3 Pixel-wise Image Calibration 36

2.5 Experiments L 38
2.5.1 Developing the FV-PT Camera 38

2.5.1.1 Hardware Specification 38
2.5.1.2 Fixing the Viewpoint 39
2.5.1.3 Calibrating Internal Camera Parameters 39

vi

CONTENTS

2.5.1.4 Performance Evaluation

2.5.2 Developing the FV-PTZ Camera
2.5.2.1 Hardware Specification

2.5.2.2 Viewpoint Calibration

2.5.2.3 Calibrating Internal Camera Parameters

2.5.2.4 Performance Evaluation

2.6 Concluding Remarks

Active Background Subtraction for Object Tracking
3.1 Object Tracking using an Active Camera
3.1.1 Task of the Tracking System
3.1.2 Object Detection Methods
3.2 Active Background Subtraction with the FV-PTZ camera
3.2.1 Basic Scheme
3.2.2 Object Detection Algorithm
3.2.2.1 Generating the Panoramic Background Image
3.2.2.2 Image Capturing and Correction
3.2.2.3 Background Subtractiono
3.2.3 Camera Control
3.2.3.1 View Direction Control
3.23.2 Zoom Control oo
3.3 Experiments
3.3.1 System Organization
3.3.2 Tracking Results
3.4 Concluding Remarks

Real-time Object Tracking with Dynamic Memory

4.1 Dynamic Integration of Visual Perception and Camera Action
4.1.1 Dynamic Vision L

4.1.2 Dynamic Memory Architecture: Asynchronous Inter-Module Inter-
action
4.2 Dynamic Memory Lo
4.2.1 Basic Operations
4.2.2 Comparison with Previous Works
4.3 Real-Time Object Tracking System using the Dynamic Memory
4.3.1 System Organization,
4.3.2 Basic Scheme of Real-time Active Background Subtraction
4.3.3 Implementation of the Dynamic Memory for Real-time Object Track-
INE . . .
4.3.3.1 Describing Time Varying Information.
4.3.3.2 Target Object Information

4.3.3.2.1 Target Motion Model and Motion Estimation and
Prediction using Kalman Filter
4.3.3.2.2 Describing Target Motion

CONTENTS vii

4.3.3.3 Camera Information 89
4.3.3.3.1 Camera Motion Model 89
4.3.3.3.2 Describing Camera Motion 91
4.3.4 Perception Module: Dynamic Object Detection Method 94
4.3.5 Action Module: Prediction-Based Camera Control Method 95
4.3.5.1 View Direction Control 95
4.3.5.2 Zoom Control 98
4.3.5.3 Camera Control Process 102
4.4 Experimentso 102
4.4.1 Suppressing Motion Blurs, 102
4.4.2 Tracking Results 104
4.4.3 Performance Evaluation 104
4.4.3.1 Effectiveness of Smooth Camera Motion 104

4.4.3.2 Target Motion Estimation and Prediction using Kalman
Filter 108
4.5 Concluding Remarks oo 110

5 Real-time Cooperative Multi-target Tracking by Communicating Active

Vision Agents 113
5.1 Real-time Cooperative Multi-target Tracking 113
5.1.1 Advantages of Multi-camera Tracking System 114
5.1.2 System Organization 115
5.1.3 Related Works 116
5.1.4 Basic Scheme for Cooperative Tracking 121
5.1.5 Issues in Real-time Cooperative Multi-target Tracking 122
5.2 Task Specification 122
5.2.1 Task-constraint 123
5.2.2 Object-importance 125
5.2.3 Goal-function 125
5.2.4 Summary of the task specificationo 126
5.3 Dynamic Interaction for Cooperative Tracking 127
5.3.1 Layers in the System L. 127
5.3.2 Intra-AVA Layer: Interaction between Modules within an AVA . . . 128
5.3.2.1 Perception Module 129
5.3.2.2 Action Module 133
5.3.2.3 Communication Module 133
5.3.2.4 Dynamic Memory: Interaction between the Modules . . . 134
5.3.3 Intra-agency Layer: Interaction between AVAs 136
5.3.3.1 Spatial Object Identification 136
5.3.3.2 Temporal Object Identification 137

5.3.3.3 Virtual Synchronization for Spatial Object Identification . 138
5.3.3.4 Virtual Synchronization for Temporal Object Identification 142
5.3.3.5 Agency Formation Protocol 143
5.3.3.6 Agency Maintenance Protocol 144

viil

CONTENTS
5.3.3.7 Agency Spawning Protocol 145
5.3.4 Inter-agency Layer: Interaction between Agencies 146
5.3.4.1 Virtual Synchronization for Object Identification between
Agencies 147
5.3.4.2 Agency Unification Protocol 148
5.3.4.3 Agency Restructuring Protocol 149
5.3.4.4 Exclusive Interaction in Inter-agency Layer 150
5.3.5 Communication with the Freelancer-AVA 151
5.4 Completeness and Soundness of the System 151
5.4.1 Completeness for Persistent Tracking 151
5.4.2 Necessity and Sufficiency of Cooperative-tracking Protocols 153
5.4.3 Soundness of Communicating with Other Processes 154
5.4.4 Soundness of State Transitions of the System 155
5.4.4.1 State Transitions of the Modules 155
5.4.4.2 State Transition of the AVA 158
5.4.4.3 State Transition of the Agency 160
5.4.4.4 State Transition of the System 168
5.5 Experiments oL 169
5.5.1 Specifications of the System 169
5.5.1.1 System Organization 169
5.5.1.2 Calibrating External Camera Parameters. 170
5.5.1.3 Designing Goal-function 171
5.5.2 Performance Evaluation 171
5.5.3 Verifying Cooperative-tracking Protocols 172
5.6 Concluding Remarks o 178
Incremental Observable-area Modeling for Cooperative Tracking 181
6.1 Sharing Information for Cooperative Tracking 181
6.1.1 Adaptive Role Assignment 181
6.2 Observable-area Model o 183
6.2.1 Observable-area Model for Adaptive Role Assignment 183
6.2.2 Data Structure of the Observable-area Model 183
6.2.3 Generating Visible/Invisible Information 185
6.2.4 Updating Observable-area Model based on Visible/Invisible Infor-
mation 186
6.2.5 Managing the Observable-area Model 189
6.3 Cooperative Tracking with the Observable-area Model 190
6.3.1 Information flow from the AVA /Agency to the Observable-area Model
Manager 190
6.3.2 Information flow from the Observable-area Model Manager to the
AVA/Agency 191
6.4 Experiments 192
6.4.1 Tracking Results o 193

6.4.2 Performance Evaluation 198

CONTENTS

6.5 Concluding Remarks o

7 Concluding Remarks
7.1 Thesis Summary
7.2 Future Works

X

Chapter 1

Introduction

1.1 Background

The dynamic situation understanding is indispensable for realizing computer systems
that autonomously work in the real world. This is because such computer systems have
to understand dynamic situations in the real world and adapt themselves to the situations
reactively. The dynamic situation understanding has been studied in Computer Vision
and many technologies have been developed. Some of them are applied to real-world
computer systems to increase their flexibilities.

To realize the dynamic situation understanding, object tracking is one of the most
important and fundamental technologies. This is because most of dynamic situations
in the scene can be characterized by object motions. Therefore, we should focus on
such moving objects and obtain the information of the focused objects (e.g., the number,
locations and behaviors of objects) to understand the dynamic situation.

From a practical point of view, on the other hand, object tracking technology allows
us to develop various real-world vision systems such as

e Visual surveillance and monitoring systems [NKI98] [MWM98a] [KZ99],
e Remote conference and distance lecturing systems [KIM00] [KKD™9g],
e ITS (Intelligent Transport System) [NO92| [HIZ00],

e Navigation of mobile robots and disabled people [Ish97] [AB99],

e 3D volume reconstruction and motion capturing systems [WWTMO00] [YAT00] [BD0O0].

To apply object tracking to these real-world systems, the object tracking method has
to cope with complicated situations and reactively conduct processing in real time. Most
of the proposed object tracking methods, however, have some restrictions on functions
and assumptions about the environment. These limitations reduce the effectiveness and
generality of object tracking for real-world systems.

In this thesis, we propose a real-time flexible object tracking system. Our objective is
to realize the tracking system that can (1) adaptively change its behavior depending on
the situation and task and (2) persistently keep tracking focused target objects.

1

2 Introduction

In what follows, we first categorize object tracking systems into several classes and
review related previous works. We then discuss the advantages and disadvantages of each
class (Section 1.2). Based on this discussion, we address our strategy for realizing real-
time flexible object tracking (Section 1.3). We finally present an overview of the thesis in
Section 1.5.

1.2 Categories of Object Tracking Systems

Real-time object tracking systems' can be classified into several different types. For their
categorization, the following characteristics can be used:

Characteristic 1: How many objects in the scene?
Characteristic 2: How many target objects to be tracked?
Characteristic 3: Fixed camera or active camera?
Characteristic 4: How many cameras?

The first characteristic is an assumption on the scene. The second characteristic provides
a task given to a tracking system. The latter two characteristics are concerned with
a system architecture and its functions. These four characteristics define the task and
complexity of the tracking system.

How many objects in the scene? Depending on the number of objects in the scene,
a design of the tracking system changes.
e Single-object system: There is only one object in the scene.
e Multi-object system: There are one or more objects in the scene.
When the number of objects is assumed to be not more than one (i.e, single-object
system), the detected object must be the target object. That is, the detected
object is necessarily tracked by the system. The tracking system, then, need not

discriminate between the target object and the non-target object. Thus, the design
of the single-object system is simplified.

How many target objects to be tracked? Similarly, tracking systems can be classi-
fied into two classes depending the number of target objects.

e Single-target system: There is only one target object to be tracked.
e Multi-target system? : There are multiple target objects to be tracked.

! There are also many researches on object tracking by batch processing, namely non-real-time object
tracking (see [LC83] [PDBSW92] [YM96], for example). This is one of the typical problems in distributed
artificial intelligence. We do not, however, take this issue into account because we put our focus upon
real-time object tracking.

2 Obviously, the multi-target tracking system is included in the multi-object system.

1.2 Categories of Object Tracking Systems 3

In the single-target system, the system keeps tracking a single target object, and
can ignore the information of all the other objects in the scene.

If the system has to track multiple target objects simultaneously, on the other hand,
it need to discriminate between all target objects continuously. That is, temporal
multi-object identification is required. The task of the multi-target tracking system,
therefore, becomes complex in contrast to that of the single-target tracking system.

Fixed camera or active camera?: By employing an active camera as an image sensor,
the system can control the camera parameters (e.g, pan, tilt and zoom parameters)
depending on the given task and the situation in the real world. With the active
camera, the system can continue the following procedures.

1. The system captures the image and analyzes the captured image.

2. Based on the result of the image analysis, the system control camera parameters
to capture a required view.

This active scene observation allows the system to perform tasks adaptively.

In addition, controlling camera parameters gives the system the following advan-
tages.

e The system can observe a wider area by changing the gazing direction and
location of the camera.

e The system can dynamically adjust the visual field of the camera and the
resolution of the captured image by changing the zoom parameter.

As the system can obtain many advantages, we have to design a real-time and re-
active camera controlling method. In this method, we change camera parameters
depending on (1) dynamic situations in the real world and (2) mechanical charac-
teristics of the active camera.

How many cameras? The observable area by a single camera is limited. The single-
camera system can, therefore, obtain little information simultaneously.

Compared with the single-camera system, the multi-camera system has the following
advantages:

Simultaneous wide-area observation: By embedding many cameras in the scene,
multiple different views can be observed simultaneously. The system can, there-
fore, gaze at target objects that are distant from each other.

Continuous wide-area observation: The arrangement of cameras in the wide
area also enables the system to continuously track the focused target object
even if the target object moves around the wide area.

Reconstruction of 3D information: If the external camera parameters (i.e., 3D
positions of all cameras) are calibrated, 3D information of the object can be
reconstructed from 2D information of the object observed by multiple cameras.

4 Introduction

For example, a stereo vision method allows the system to reconstruct the 3D
position of the object by employing the images observed from multiple direc-
tions.

To make full use of these advantages of the multi-camera system, we have to solve
the following camera-cooperation problems:

1. To simultaneously track multiple objects with multiple cameras, the system has
to identify each detected object among images observed by multiple cameras.

2. To keep tracking the moving target object without a break, a camera need to
request another camera to take over tracking of the target object.

3. To robustly reconstruct 3D information of the object, 2D object information
synchronized among multiple cameras is required. The system then need to
integrate the object information observed by cameras.

Depending on how to realize the above cooperation among cameras, we establish
two types of distributed camera systems. We will describe the properties of these
systems in Section 1.3.

As mentioned above, there are four basic characteristics of object tracking, and each
characteristic has two classes. In total, there are 16 (= 2*) classes. The complexity of the
system depends on combinations of the characteristics.

A large number of works about single-target tracking have been reported:

e Using a single fixed camera: [WADP97].

Using a single active camera: [MWM99] [MB94].

Using multiple fixed cameras: [CA99].

Using multiple active cameras: [MWMO98a].

On the other hand, the number of reported multi-target tracking systems is not as
many as that of the single-target tracking systems. Since the multi-target tracking system
is required to apply the system to general purposes, researchers recently concentrate on
multi-target tracking and the works about it has been increasing:

e Using a single fixed camera: [IB98] [HHDO0Oa].
e Using multiple fixed cameras: [NO92] [NKI98].

Nevertheless, there are few multi-target tracking systems using multiple cameras. In
particular, hardly any multi-target tracking system that employs multiple active cameras
has been reported. This is because we have to solve many problems to develop such
systems. Since the multi-target tracking system with multiple active cameras (that is, (1)
multi-object, (2) multi-target, (3) active camera and (4) multi-camera tracking system)

1.3 Real-time Cooperative Multi-target Tracking 5)

g! Processor

Imag%I l Commands

Processors
Command

e 0
Camera
Object Object
(a) Centralized processing system (b) Distributed processing system

Figure 1.1: Types of multi-camera systems.

includes the properties of all other classes, it is the most powerful way to cope with
various tasks and situations in the real world. We consider that this tracking system
is a technology worth being developed. Accordingly, we aim at developing a real-time
tracking system that can gaze at multiple target objects simultaneously by employing
multiple active cameras.

1.3 Real-time Cooperative Multi-target Tracking

1.3.1 Cooperative Distributed System Architecture

As mentioned in the last section, we concern a multi-camera system for real-time object
tracking. In general, we can design two types of multi-camera systems: centralized pro-
cessing system and distributed processing system. We should examine the advantages and
disadvantages of these systems, and choose the system which is appropriate for realization
of our tracking system.

Centralized processing (Figure 1.1 (a)): To integrate the object information observed
by multiple cameras, a single processor gathers all the captured images through the
network. This processor then analyzes all the images and obtains the integrated
object information.

Integrating the observed object information by a single processor causes the follow-

ing disadvantages:

e Increasing network-load: Since all the captured images are transmitted to a
single processor, a huge network-load is caused.

6 Introduction

e Increasing computational processing: Since all the captured images are ana-
lyzed by a single processor, the computational load of the processor increases
depending on the number of cameras.

These factors make real-time processing difficult. To solve these problems, Sogo—
Ishiguro—Trivedi[SIT00] reduces the size of each image® and enables a single pro-
cessor to conduct all required processes in real time. In this method, however, the
lager the number of cameras becomes, the lower the image resolution is.

Besides these technological problems, the centralized processing system has an es-
sential limitation: a large variety of the observed situations have to be managed by
only the single processor. It has to, therefore, cope with all complicated situations in
the real world by itself. This expands the computational complexity of the process
that is conducted by one processor. Moreover, we have to design such a complex
behavior taking into account all combinations of predictable situations.

Distributed processing (Figure 1.1 (b)): To solve the problem that arises in the cen-
tralized processing system, each camera is coupled to its own processor. That is,
tasks of a single processor in the centralized processing system becomes decen-
tralized. In this distributed processing system, each processor analyzes the image
captured by its coupled camera, and exchanges the result of the image analysis with
the other processors.

This distributed processing enables the system to solve the disadvantages in the
centralized processing system as follows:

e Decreasing computational processing: Since the image captured by a camera is
analyzed by each processor, the computational complexity for each processor
can be simplified rather than that of the centralized processing system.

e Decreasing network-load: Since the image is analyzed by each processor, all
processors exchange only the result on this image analysis. The amount of
these results are much smaller than that of the image itself. This property can
reduce network congestion.

By composing the system as a group of multiple processors, we can represent the
complex behavior of the entire system through the interaction between processes.
Designing the entire system can be, therefore, reduced to designing each process.
Furthermore, the states and their transitions of the entire system increase enor-
mously by combining those of all the processors. This property allows the system
to cope with various and complicated situations in the real world. This is a great
advantage of the distributed processing system in contrast to the centralized pro-
cessing system. We believe that this property is indispensable to realize a flexible
real-world system.

3 All observed images are put together into a single image by a multi-to-one image converter. An image
processor can, therefore, manage all observations as a single image.

1.3 Real-time Cooperative Multi-target Tracking 7

Figure 1.2: Cooperative distributed vision [Mat98].

Accordingly, the distributed processing system is suitable not only for tracking the target
object in a wide-spread area but also for performing complex behaviors.

For all processors in the distributed processing system to effectively work together
as an integrated tracking system, we consider that cooperation among the processors is
significant. In order to realize real-time flexible tracking in a wide-spread area, we employ
the idea of Cooperative Distributed Vision (CDV, in short) [Mat98]. The CDV system
consists of a group of network-connected Observation Stations (real-time image processor
with active camera(s)) as shown in Figure 1.2, and realizes

1. wide-area dynamic scene understanding and
2. versatile scene visualization.

In the CDV system, each observation station possesses Visual Perception, Action and
Network Communication functions. By dynamically integrating these three functions, the
observation station can behave as an intelligent autonomous system. With cooperation
among observation stations, the system as a whole works persistently as a real world
system.

In addition to these advantages, the CDV system has the following advantages that
are the properties of a distributed system:

e Robustness achieved by integrating multilateral information.

e Flexibility of the system organization.

8 Introduction

e Compensation for breakdowns.

Although we do not focus on these advantages in this thesis, they are also required func-
tions to realize a real world system that works persistently. In recent years, therefore, a
number of related researches are reported (see [Kan97], [SH97] and [CLK'00], for exam-

ple).

In this thesis, we propose a real-time cooperative tracking system that gazes at multiple
objects simultaneously based on the concept of the CDV system. The system consists of
communicating Active Vision Agents (AVAs, in short), where an AVA is a logical model
of an observation station. For real-time object tracking by multiple AVAs, we have to
solve the following problems:

1. How to design an active camera for dynamic object detection and tracking.
2. How to realize real-time object tracking with an active camera.
3. How to realize cooperation among AVAs for real-time multi-target object tracking.

In what follows, we propose our basic ideas to solve these problems.

1.4 Basic Ideas

1.4.1 Active Camera for Wide-area Imaging

The observation station for real-time object tracking should (1) keep tracking the moving
object, (2) detect the object information in the observed image in real time, and (3)
change its focusing visual field to effectively gaze at the target object. An active camera
of the observation station is, therefore, required to

Function 1: observe a wide (omnidirectional) area,

Function 2: adjust its camera parameters to obtain the required information of a target
object, and

Function 3: capture an image that facilitates quick and robust detection of object re-
gions while changing camera parameters.

With an active camera which can physically control its visual field, the above function 1
can be obtained. In previous active camera systems (e.g., Active Vision [AWBS88] [Bal89],
Visual Servo [Bro90] [WSN87] and Robot Vision [RH90] [BT93]), function 2 was mainly
discussed. Without function 3, however, the system has to analyzes the complex observed
images which involve various 3D information (geometric and photometric information).
This makes real-time and robust processing difficult.

To solve this problem, we propose a well-calibrated rotational camera, where its op-
tical projection center is placed at the rotational center (i.e., an intersection of pan and
tilt axes). We call this camera a Fized-Viewpoint Pan-Tilt camera. With this camera,

1.4 Basic Ideas 9

camera parameters
4/—\
VIS"II Camera LI) Visul —le-Camera_ple— Visul —p}e—Camer LI)
Perception Action Perception Action Perception Action

scene information

(a) Information flow (b) System dynamics

Figure 1.3: Behavior of the system in active vision.

Pysical Camera

Visual Perception

X rer (k=ng)
delay:ng

Scene + noise

Figure 1.4: Position-based visual feedback system with delays.

appearance variations in the observed images are suppressed. This property greatly facil-
itates the image processing (e.g., detecting object region in the image while dynamically
changing the view direction).

Usually, the projection center shifts according to zooming. It breaks down the fixed-
viewpoint rotation. We can however realize a Fized-Viewpoint Pan-Tilt-Zoom (FV-PTZ,
in short) camera by adjusting the projection center to the rotational center while zooming.

1.4.2 Real-time Object Detection and Tracking

With an FV-PTZ camera, we can easily realize real-time object detection and tracking.
The tasks of the system are as follows:

Task 1: Detect an object that comes into the scene,
Task 2: Track it by controlling pan and tilt parameters, and
Task 3: Capture object images in as high resolution as possible by controlling the zoom.

Task 1 is the function of visual perception, and tasks 2 and 3 are the functions of action.
Since the action planning is determined based on image analysis by visual perception, the
integration of visual perception and action is significant.

In many Active Vision systems, the visual perception and camera action modules are
activated alternately as shown in Figure 1.3. With this procedure, one of the modules is

10 Introduction

Phisical Camera

P

Dynamic Memory

/’ Video 501 |t ok o : :

pan — 7 t

tilt Ty

control

o
A_ction Module

-.-“‘

o
Perception Module

III“‘

zoom t

control ; t

. Information flow
history predicted values —

now
Processing

Figure 1.5: Real-time object tracking system using the dynamic mem-
ory (dynamic vision system).

suspended while the other module is working. It degrades the reactive response of the
system. This disadvantage is fatal for real-time system that works in the real world.

In Visual Servo, various dynamic control methods have been studied based on the
control theory. For example, visual feedback that takes into account both control and
perception delays[Bro90] is employed as shown in Figure 1.4. In this system, the visual
perception and camera action modules work in parallel and exchange the information
with each other. Inter-module interactions, however, are simple and fixed. That is, this
system cannot adapt itself to the situation with unpredictable dynamic variations.

To cope with unpredictable dynamic variations in the real world, more flexible dy-
namic interaction between the visual perception and action modules is required. We
introduce a novel scheme named Dynamic Vision, where the event driven asynchronous
interaction between the visual perception and action modules is realized. In dynamic
vision, each module has its own dynamics and asynchronously exchange information with
other modules as the occasion demands.

To implement a dynamic vision system, the Dynamic Memory Architecture] MHW™00]
is useful as illustrated in Figure 1.5. In this example, the visual perception and action
modules share what we call the dynamic memory. In the dynamic memory, histories
of control signals as well as state variables such as pan, tilt and zoom parameters are
recorded as time-series data. The visual perception and action modules write into and
read from the dynamic memory depending on their objectives and dynamics. It enables
the modules not only to asynchronously exchange the information with other modules
but also to obtain the information observed at any time, including prediction. Figure 1.5
illustrates the actual processing (i.e., image analysis and camera control) and information
flow in object tracking with dynamic vision.

1.4 Basic Ideas 11

Open-Network

Figure 1.6: System architecture and organization.

In this thesis, we first show the active background subtraction with the FV-PTZ
camera for object detection and tracking, and then present real-time object tracking
system with the dynamic memory. By employing this real-time object tracking, each
observation station can track its target object independently.

1.4.3 Real-time Cooperative Multi-target Tracking

Finally, we design real-time cooperative multi-target tracking by communicating AVAs.
As mentioned before, for the system to effectively perform distributed processing, coop-
eration among AVAs is most important. We therefore put our focus upon how to realize
real-time cooperation among AVAs.

In our system, each AVA consists of a network-connected computer with a single
FV-PTZ camera. By employing the properties of the FV-PTZ camera, each AVA can
detect objects and track its target object independently in real time. Many cameras are
embedded in the real world, and observe a wide area as shown in Figure 1.6. To effectively
observe the scene, we have to arrange the cameras depending on the task:

Effective camera configuration: In Computer Vision and Robot Vision, many camera-
configuration planning methods for various tasks have been studied [TAT95] [TTA95]
[CK88|. In general, effective camera configuration is determined depending on the
task given to the system. This is one of the most important problems for establishing
multi-camera systems.

In this thesis, although we do not concentrate on realizing the effective camera
configuration for object tracking, we impose the constraint about the camera con-
figuration on the system: visual fields of cameras are overlapping with each other in

12 Introduction

(a) Overlapped configuration (b) Isolated configuration

Figure 1.7: Camera configuration for wide-area observation.

FAVAL AV A2 FAVAL AV A2

AVA4, AVA3]

(a) Gaze navigation (b) Cooperative gazing (b) Adaptive tracking

Figure 1.8: Basic scheme for cooperative tracking.

order to keep tracking a target object in the observation scene without a break (Fig-
ure 1.7 (a)). That is, in our system, the area of the observation scene is determined
by the number of cameras and their visual fields.

With the above system organization, we realize a multi-AVA system that cooperatively
detects and tracks a target object. Following are the tasks of the system:

1. Initially, each AVA independently searches for an object that comes into the obser-
vation scene.

2. When an AVA detects an object, the AVA examines whether or not the information
of the detected object is required to the given task. If the information is required,
the AVA regards the detected object as a target object.

1.4 Basic Ideas 13

3. If the AVA detects the target object, the AVA navigates the gaze of other AVAs
towards the target object as illustrated in Figure 1.8 (a).

4. An AVA, which is required to gaze at the target object by another AVA, decides
whether it accepts the navigation or continues its current role depending on the
situation.

5. AVAs, all of which gaze at the same object, keep tracking the focused target object
cooperatively without being disturbed by obstacles and other moving objects as
illustrated in Figure 1.8 (b). A group of AVAs that track the same object is called
an Agency.

6. Depending on the target motion, each AVA dynamically changes its target object
as illustrated in Figure 1.8 (c).

7. When the target object gets out of the scene, the AVA decides whether it searches
for an object again or tracks another target object that is tracked by other AVAs
depending on the situation.

To realize the above cooperative tracking, we have to solve the following problems:

Multi-target identification: To gaze at each target, the system has to discriminate
between multiple objects in the scene.

Real-time and reactive processing: To cope with the dynamics in the scene (e.g.,
object motion), the system has to execute the process in real time and deal with
the variations in the scene reactively.

Adaptive resource allocation: We have to implement a two-phased dynamic resource
(i.e., AVA) allocation:

1. To perform both object search and tracking simultaneously, the system has to
preserve AVAs that search for a new object even if the system is tracking the
target object.

2. For each target to be tracked by the AVA that is suitable for gazing at, the
system has to adaptively assign AVAs to their targets.

We solve these problems with real-time cooperative communication among AVAs and
agencies.

In order to implement the real-time cooperation, we propose a three-layered interaction
architecture. In each layer, parallel processes exchange different kinds of information for
effective cooperation. To realize a real-time information exchange and processing, we
employ the dynamic memory architecture. The dynamic interaction in each layer allows
the whole system to track multiple objects under complicated dynamic situations in the
real world.

14 Introduction

1.5 Overview of Thesis

In this section, we present the organization of the subsequent chapters in the thesis.
Figure 1.9 shows a flow of the thesis.

Chapter 2 presents a Fized-Viewpoint Pan-Tilt-Zoom camera with the goal of estab-
lishing an active camera which is possessed by the observation station. The FV-PTZ
camera can control its gazing direction (pan and tilt parameters) and the resolution of
the image in its capturing (zoom parameter).

An active camera of the observation station is required to (1) be able to observe the
wide area, (2) be able to adjust its camera parameters to obtain the required information
of the target object, and (3) capture an image that facilitates quick and robust detection
of object regions while changing camera parameters. We realize these functions with
the FV-PTZ camera. Experimental results demonstrate the practical effectiveness of the
FV-PTZ camera for the wide-area active sensing.

Chapter 3 presents an Active Background Subtraction method for object tracking by
employing the FV-PTZ camera. In this section, we describe the basic idea for controlling
pan, tilt and zoom parameters to continuously gaze at the target object.

To effectively gaze at the target object during tracking, we have to design an integra-
tion of visual perception and action functions of the camera. We realize this integration by
the dynamic information exchange between the visual perception and action modules. We
prove the effectiveness of the active background subtraction by experiments in tracking a
moving object.

Chapter 4 first introduces a novel dynamic system architecture named Dynamic Mem-
ory Architecturel]MHW™00]. This architecture can be applied for the system consisting
of multiple parallel processes. Through the dynamic memory, multiple parallel processes
can (1) exchange the information without synchronization, and (2) obtain the value which
are taken at arbitrary time by recording the information into the dynamic memory as the
time-series data.

By employing the dynamic memory, we can dynamically integrate the visual perception
and action modules of the tracking system to realize a flexible temporal coordination
between them. As a result, the system can increase the tracking ability and obtain
intimate information of the target object with smooth camera motion. Experimental
results demonstrate the great improvement of the performance and stability of object
tracking with the dynamic memory.

Chapter 5 proposes a Real-time Cooperative Multi-target Tracking System based on
th concept of the CDV system, which is a main contribution of this thesis. This track-
ing system consists of communicating multiple AVAs. For real-time object tracking by
multiple AVAs, we put our focus upon how to realize real-time cooperation among AVAs.

In order to implement the real-time cooperation among AVAs, we propose a three-
layered interaction architecture. With the real-time cooperation through the dynamic
interaction in each layer, the system as a whole can track multiple moving objects under
complicated dynamic situations in the real world.

Experimental results demonstrate that the proposed real-time cooperation method
enables the system to (1) successfully acquire the dynamic object information and (2)

1.5 Overview of Thesis 15

adaptively assign the appropriate role to each AVA.

Chapter 6 presents an Observable-area Model of the scene for real-time cooperative
object tracking by multiple AVAs. It is one of augmentations of our cooperative tracking
system. We put our focus upon sharing knowledge of all the AVAs’ abilities (i.e. observable
area in the scene) for efficient object tracking. With this knowledge, the tracking system
can plan an efficient role assignment to AVAs so that the system as a whole effectively
tracks all the target objects.

To realize this efficient role assignment, the system gathers the observable-area in-
formation of all AVAs to incrementally generate the observable-area model (i.e., scene
model) during tracking. We experiment to verify the effectiveness of the proposed scene
model for cooperative tracking.

Chapter 7 summarizes the work of this thesis and points out next steps for the future
real-world vision systems.

Chapter 2
Fixed-Viewpoint Pan-Tilt-Zoom Camera
for Wide-Area Active Imaging (Chapter 4 A
Dynamic Memory
v Architecture
Chapter 3
Active Background Subtraction ———> Real-time Object Tracking
for Object Tracking L with the Dynamic Memory y
v
Chapter 5

Real-time Cooperative Multi-target Tracking | €=
by Communicating Active Vision Agents

v

Chapter 6
Incremental Observable-area Modeling
for Cooperative Tracking

Figure 1.9: Flow of the thesis.

Chapter 2

Fixed-Viewpoint Pan-Tilt-Zoom
Camera for Wide-area Active
Imaging

2.1 Wide-area Active Imaging for Object Detection
and Tracking

In this chapter, we present a Fized-Viewpoint Pan-Tilt-Zoom camera that has been de-
signed to achieve the goal of active control by an observation station for real-time object
tracking.

The observation station for real-time object tracking should

e monitor a wide-spread area,

e detect object(s) from the observed image in real time,

e keep tracking a target object as it moves around, and

e change its visual field for effectively gazing at the target object.

Accordingly, a camera controlled by the observation station must perform the following
functions:

Function 1: Observe a wide area.
Function 2: Focus on a target object to obtain a high-resolution object image.

Function 3: Capture an image that facilitates quick and robust detection of object re-
gions while camera parameters are changed.

That is, adaptive wide-area observation is required for real-time object detection and
tracking. We have realized these functions with the FV-PTZ camera.

17

18 Fixed-Viewpoint Pan-Tilt-Zoom Camera for Wide-area Active Imaging

2.1.1 Adaptive Wide-area Observation

We categorize wide-area observation methods into two classes.

Optical methods: Omnidirectional cameras using fish-eye lenses and curved mirrors
[YYO91] [YYY95] [PN97].

Mechanical methods: Computer-controlled active cameras that can change their visual
field [IYT90] [MB94].

In the optical methods, a fixed camera captures the omnidirectional image on the
curved mirror. Yagi et al[YY91], Yamazawa et al.[YYY95], and Peri et al.[PN97] pre-
sented omnidirectional image acquisition methods using cone-shaped, hyperbolic-curved,
and parabolic mirrors, respectively. Since these methods capture the omnidirectional im-
age onto a single sensing element (CCD), they can provide video-rate wide-area image
capturing. Their image resolutions are, however, fixed and limited:

e Since all of the omnidirectional view is captured onto a single CCD, the acquired
appearance information is coarse.

e Optical methods cannot control the zooming factor of the camera to acquire the
high-resolution image of the focused object.

Moreover, since the camera observes through a mirror in these methods, objects beyond
the mirror cannot be observed.

In the mechanical methods, on the other hand, the instantaneous visual field of an
active camera is limited. However, an omnidirectional scene can be observed by controlling
the camera parameters, and high-resolution images can be acquired by controlling the
zoom parameter.

Visual surveillance tasks, including object tracking, require high-resolution image ac-
quisition because accurate information on the object is useful for reliable object identifi-
cation. Furthermore:

e An active camera can adaptively control the resolution to accommodate the dynamic
situation in the real world.

e We can avoid the problem of a narrow instantaneous visual field by employing
many cameras. That is, multiple cameras can supplement each other to cover their
unobservable fields.

For these reasons, we have adopted an active camera as the image sensor to realize func-
tions 1 and 2 described in Section 2.1 (i.e., wide area observation and close observation
for gazing at the target object). Next, we discuss how to realize function 3, namely how
to capture images that facilitate image processing for object detection.

2.1 Wide-area Active Imaging for Object Detection and Tracking 19

2.1.2 Image Appearance Variations caused by Changing Cam-
era Parameters

In active camera control, an observed image is first analyzed, and then camera parameters
are determined based on the result of the image analysis. For example, in object tracking:

1. Detect the object region in the observed image.

2. Determine the next camera parameters so that the object will be projected in the
center of the observed image.

Such an observation method is called Active Vision[AWB88][Bal89).
By controlling the camera parameters, various appearance variations are caused in the
observed image:

e Geometric variations: These are caused by changing the camera location, view
direction and zoom.

e Photometric variations: These are caused by changing focus® | iris, gain control
and shutter speed.

When we employ an active camera to detect and track objects over a wide area, two
camera parameters, which produce the above types of variations, should be controlled:

e Geometric camera parameters: These must be controlled to change the visual
field of the camera for wide-area observation.

e Photometric camera parameters: In general, when the visual field of the cam-
era is changed, illumination conditions in the visual field are variable. In addition,
since target objects move around the scene at various speeds, constant shutter speed
is not enough to prevent motion blurs from being included in the observed image.
Depending on the illumination conditions and the target motion, therefore, the pho-
tometric camera parameters should be controlled to acquire the meaningful object
information. The following examples show how this is done:

— Iris and gain control are used to adjust the dynamic range of the camera to
the illumination.

— If an object moves at high speed, the shutter speed is increased. Since a
fast shutter speed darkens the observed image, iris and gain control should be
controlled to acquire a meaningful image.

In this thesis, we assume that the system does not control the photometric parameters
and concentrate on controlling the geometric parameters.

To analyze images taken with different variations of geometric camera parameters, we
have to discuss the factors that cause appearance variations in the observed image (Figure
2.2 and Figure 2.3).

! Strictly speaking, geometric variation is also caused by changing the focus parameter. However, this
geometric variation can be easily calibrated and is negligible with a telecentric lens. Hence, here we
simplify the camera model so that focus control only causes photometric variation.

20 Fixed-Viewpoint Pan-Tilt-Zoom Camera for Wide-area Active Imaging

Real image plane
(Ccb

Projection
Imaginary ~ Center
image plane

Figure 2.1: Perspective projection.

Image plane— |

Projection cmtef‘t':!
|

‘Dpj4
N EE——
[

mlin

Observedimage1l Observedimage2 Observed image 3

Figure 2.2: Images with parallax.

We suppose a projection from a 3D scene to a 2D image to be a Perspective Projection|Fau93].
With this projection, all rays are projected onto the image plane through the projection
center (Figure 2.1). In a practical projection system, the projected image is reversed on a
CCD. To simplify this concept, we assume an imaginary image plane at the opposite side
of the projection center and let the image be projected onto the imaginary image plane
without reversal. Hereafter, we call such an imaginary image plane simply the image
plane.

If the camera observes the 3D scene while changing its camera parameters, the object
appearance in the observed image changes. This variation is caused by the following two
factors, namely parallax and image deformation.

2.1 Wide-area Active Imaging for Object Detection and Tracking 21

|

|
Image plane —t
‘..:.. i ;‘;'

Projection center ¢

S

D

Observedimage1l Observed image2 Observed image 3

Figure 2.3: Images without parallax.

2.1.2.1 Parallax

If the camera observes the 3D scene while moving its projection center, the camera ob-
serves objects in the scene from different view positions and angles. Consequently, object
appearances in the observed images vary. These variations between the observed images
are called Parallax. Figure 2.2 shows examples of parallax. Observed images 1, 2, and
3 are captured while the projection center of the camera is moved. In these images, the
side of the object is visible or invisible depending on the geometric configuration between
the projection center and the object.

By employing parallax information, several real-time stereo vision system reconstruct
3D information of the scene based on the concept of the triangulation [TWMO01] [SO00].
These systems posses multiple cameras, and these cameras observe the scene simulta-
neously. In [TWMO1], 3D depth map is obtained from trinocular images based on the
multiple-baseline stereo method[YK86] [OK93]. These images are taken by the trinocular
lenses mounted on the pan-tilt camera head. The system can (1) detect a moving object
by comparing the input 3D map with the 3D map of the stationary scene and (2) track
it by controlling pan-tilt directions, without being interfered by variations of illumination
conditions. In [SO00], the system with five cameras integrates the results of (1) active
region extraction, (2) multi-view stereo with occlusion handling, and (3) multi-view stereo
without occlusion handling, each of which is analyzed by different PCs. By effectively
integrating all the results, the system can acquire the precise 3D depth map at video-rate.

If the projection center is fixed during observation, on the other hand, the geometric
configurations between the projection center and objects in the scene are unchanged. This
property is kept even if the location and the posture of the image plane change. We call a
camera whose projection center is fixed a Fized- Viewpoint camera (FV camera, in short).

22 Fixed-Viewpoint Pan-Tilt-Zoom Camera for Wide-area Active Imaging

An FV camera enables us to observe and take images as shown by the examples in Figure
2.3. These images are observed while the location and posture of the image plane are
changed. Since the geometric configuration between the projection center and the object
is fixed, parallax does not occur in the observed images. These images facilitate image
processing with appearance based analysis.

In the above camera configuration, variable camera parameters are restricted to the
view direction (pan and tilt angles) and the zoom. Such an FV camera is defined as a
Fized-Viewpoint Pan-Tilt-Zoom camera (FV-PTZ camera, in short).

Restricting variable camera parameters reduces the visual field of the camera because
the 3D location of the camera is fixed. This disadvantage can be overcome by employing
many cameras. That is, they can cover each others unobservable visual fields.

2.1.2.2 Image Deformation

Even if the projection center of the camera is fixed, the geometric configuration between
the projection center and the image plane varies when the posture of the image plane is
changed. Therefore, while images observed by an FV-PTZ camera do not include any
geometric variations due to the 3D scene geometry, object shapes in the images vary with
the camera motion as shown in Figure 2.3. These variations are caused by the movement
of the image plane (i.e., variations in the location and posture of the image plane). We
call this difference in the image appearance an Image Deformation. We cope with this
problem by employing a geometric transformation between images taken by the FV-PTZ
camera.

In what follows, Section 2.2 first presents a geometric configuration of the projection
center for realizing the FV-PTZ camera and then describes a geometric property of im-
ages taken by the FV-PTZ camera (Section 2.2.1) and high-speed image transformation
between these images (Section 2.2.3). Section 2.3 shows (1) a scene model representation
with a group of images taken by the FV-PTZ camera and (2) an image generation method
from this scene model. Section 2.4 proposes a practical camera calibration method to re-
alize the FV-PTZ camera system. In Section 2.5, experimental results demonstrate the
practical effectiveness of our idea for wide-area active sensing.

2.2 Fixed-Viewpoint Pan-Tilt Zoom Camera

This section presents an active image sensing and processing method to cope with ap-
pearance variations in observed images.

2.2.1 Designing the FV-PTZ camera

We realize the FV-PTZ camera configuration with the following practical active camera
design:

1. Make pan and tilt axes intersect with each other. The intersection should be at a
right angle to facilitate later geometric computations.

2.2 Fixed-Viewpoint Pan-Tilt Zoom Camera 23

Figure 2.4: Projection onto two different image planes from a 3D point.

2. Place the projection center of the camera at the intersection point. The optical axis
of a camera should be perpendicular to the plane defined by the pan and tilt axes.

We call the above designed active camera the Fized- Viewpoint Pan-Tilt (FV-PT, in short)
camera.

Zooming can be usually modeled by shifting the projection center along the optical
axis[LDPD97]. Therefore, to realize the FV-PTZ camera, either of the following additional
mechanisms should be employed:

e Design a zoom lens system whose projection center is fixed irrespectively of zooming.

e Introduce a slide stage that keeps the projection center fixed irrespectively of zoom-
ing.

With the fixed-viewpoint camera, the reflection on the object and other photometric
appearances are also invariable between observed images. This is because the geometric
configuration between the projection center and the light source is fixed. This guarantees
that variations in the view point do not produce parallax, as do photometric variations
due to the 3D scene structure.

2.2.2 Imaging geometry of the FV-PTZ camera

If a 3D point is projected onto different multiple images by the FV-PTZ camera, the
projected 2D points can be transformed alternately irrespective of the location of the
projected 3D point. This property can be proven as follows.

24 Fixed-Viewpoint Pan-Tilt-Zoom Camera for Wide-area Active Imaging

Figure 2.4 illustrates a projection onto two different image planes (denoted by plane,
and planeg) from a 3D point (denoted by P) in the scene. In this figure, the origin of
the coordinate system denotes the projection center of the camera. Plane, is an image
plane that is determined by the following parameters:

e Distance from the origin to plane, is p4 (> 0). pa is identical to the focal length of
the camera (i.e., the zoom parameter).

e 3D vector Dy (= (ka,la, mA)T) is a unit normal vector of planey. D 4 corresponds
to the view direction of the camera (i.e., the pan and tilt parameters).

e Plane, is expressed as kax + [4y +maz = pa.

P4, which is a 2D point projected from a 3D point P (DZ;P > 0) onto planey, is then
expressed by
P,=-A p (2.1)
DP
A 3D point P4 can be expressed as the 2D point p, in a 2D image coordinate system
whose origin is psD 4.

X
= P 2.2
pa= (34) P 2:2)
where X4 and Y4 are the 3D orthogonal basis vectors of the image coordinate system.
1 la
Xpp = ——| —ka (2.3)
V1 —m? 0
—ky4
Yo = —A | (2.4)
V1—=m?4 | 1=mi
ma

That is, X, Yya =0, X D4 =0,Y ., D,y=0and || Xa|| = ||Vsal| = 1.
Conversely, the 2D point p, can be expressed as the 3D point P 4:

Py= (XpaYpa) Py +paDa (2.5)

If a 3D point P is projected onto planeg, a 2D point pj is represented by the following
equation from equations (2.1), (2.2) and (2.5).

XT
PB (Y%B > {(X4 Yoa) Pa+paDa}
bB

DL{(Xoa Yoa)pa+paDa}
where planeg has a unit normal vector D g, distance from the origin pg, and 3D orthogonal
basis vectors (Xp, Y 5).

From equation (2.6), it is obvious that p, and pg, each of which are projected from the
same 3D point P onto different image planes, can be mutually transformed independent
of P. By employing this property, we can rectify the image deformation between images
taken by the FV-PTZ camera. Thus, we can easily compare multiple observed images for
image processing and analysis.

Pp = (2.6)

2.2 Fixed-Viewpoint Pan-Tilt Zoom Camera 25

YT ANC BNC

Figure 2.5: Basic idea of linear-wise transformation between images.

2.2.3 High-Speed Image Generation between Multiple Screens

Since 2D coordinate transformation between different planar screens is defined by equa-
tion (2.6), we can generate (1) a seamless wide panoramic image (described below) from
observed images and (2) an image taken with any pan-tilt-zoom parameters from the
panoramic image, by a transformation between 2D coordinates. This transformation,
however, requires a complex non-linear computation and degrades real-time processing.

To reduce the number of arithmetic operations in a transformation between two planar
images, we can exploit the following property (Figure 2.5):

For any combination of two planes A and B, there exists at least one set of planes
{C} whose member C satisfies the condition that two intersection lines ANC and BN C
are parallel and C involves a fixed line P passing a point o.

Proof

e Planes A and B are not parallel, there exists an intersection line AN B.
The planes A and B can be decomposed into two disjoint sets of parallel lines {L 4}
and {Lp}, both of which are parallel to A B. Let a line P passing the point o
be parallel to A B. A plane C involving line P makes two intersection lines A C
and BN C.

Since plane C involves P and P is parallel to A B, plane C is also parallel to
A B. Therefore, plane C' can also be decomposed into disjoint set of parallel lines
{L¢}, whose members are parallel to A B. Hence, the parallel line decompositions
{L4}, {Lp}, and {L¢} all consist of lines parallel to A(\B. Any two different
lines chosen from {L4} U{Lp}U{Lc} never intersect because all of these lines are
parallel. That is, AN C = {LA} ﬂ{Lc} = Lic,and BN C = {LB}ﬂ{Lc} = Lpc.
Since Lac,Lpc € {L¢}, AN C and BN C are parallel.

26 Fixed-Viewpoint Pan-Tilt-Zoom Camera for Wide-area Active Imaging

e Planes A and B are parallel, any plane C' that is not parallel to these
planes makes two intersection lines A () C and B C, both of which are obviously
parallel. Hence, {C'} can be defined for any line P passing point o.

Q.E.D.

According to the above property, the projection between two planes A and B can be
decomposed into projections between two parallel lines ANC and BNC (C € {C})
by regarding point o as the center of projection. Since these two lines are parallel, the
projection between two lines is simplified to 1D scaling. This can be implemented as linear
scanning: starting from two corresponding points 7§ and)73, subsequent corresponding
points on these lines are computed by adding constant 2D vectors 3 and X to these
points:

Ii—>+1:35i+?, H:z—l-z} (2.7)

This means 4 additions are enough to compute one-to-one correspondence between
points in two different planes. However, there are initialization overheads to compute (1)
starting point pair 7§ and)TS, and (2) scaling coefficients. These overheads are equivalent
to computing two one-to-one correspondences between points in two planes, two vector
subtractions, and two scalar divisions per line pair. In the case of transformation to a
plane consisting of n, x n, elements, the overheads per point are estimated as: IG/M
additions, 12/, /ngn, multiplications, and 6/,/n,n, divisions, where ,/n 7, represents the
estimated number of lines on the plane.

2.3 Scene Model Representation for the FV-PTZ Cam-
era

Rectifying the image deformation between images taken by the FV-PTZ camera allows
us to integrate all observed images by projecting them onto a common virtual screen. On
the virtual screen, the projected images form a seamless wide panoramic image.

For the integration, we can use arbitrarily shaped virtual screens. Sections 2.3.1 and
2.3.2 describe typical examples.

2.3.1 Appearance Sphere

When we observe the 360° panoramic view by rotating the camera, a spherical screen can
be used (Figure 2.6). We call this spherical screen APpearance Sphere (APS, in short).
The omnidirectional image re-projected to the APS is called an APS image. In general,
omnidirectional images can be re-projected to any star-shaped closed screen. In the APS,
since the distances from the projection center to all positions on the virtual screen are
equal to each other, the image resolutions are uniform for all directions.

We will first describe the APS image generation method. All pixel values in the APS
image are projected from observed images taken by the FV-PTZ camera. Figure 2.7

2.3 Scene Model Representation for the FV-PTZ Camera 27

' : - ") _
Image Mapping Image Generation

Figure 2.6: Appearance sphere.

illustrates a projection onto an image plane and a spherical screen (APS) from a 3D
point. The 3D points P4 and S(¢*, %) are projected points from a 3D point P onto
image plane, and a spherical screen, respectively. Let a 3D point P4s be a projected
point from P 4 onto a spherical screen.

A spherical screen is expressed as follows:

S (¢,0) =1 (cospcosb,cospsinf,sin), (2.8)

where 7 is a radius of the sphere and —F < < 7,0 < 0 < 27. §(p*0*) is then expressed

g 27
as follows: ,

S (¢",07) = ||P||P’ (2.9)

where ¢* = cos™! (\/ﬁ» 0* = cos ! <\/£Ty2> = sin~! (ﬁ)

To generate the APS image from observed images, every pixel value at 2D coordinates
p, in the observed image is re-projected onto the APS. P, is expressed with p, by
equation (2.5). Therefore, P45 can be obtained by substituting the right side of equation
(2.1) for P in equation (2.9).

T

P —
A = T Xoa¥on) pa + paDall

(X0aYp4) Pa+paDat (2.10)

Xpa, Yy, pa and Dy are given depending on the posture of the observed image plane.
For every p,, P s is determined by employing the above equation. A pixel value at p,
is re-projected onto the corresponding P 45 in the APS.

Next, we will describe the image generation method using the generated APS image.
Pixel values in the APS image are projected onto the image plane. To generate an image
from the APS, a transformation between p , and S(¢*0*) is required. Here again, equation
(2.10) can be used. Since P4g is the 3D point on the APS (i.e., S(¢*0*)), S(¢*0*) is
determined for every p, by employing equation (2.10). A pixel value at S(p*6*) is
projected onto the corresponding p, in the image plane.

28 Fixed-Viewpoint Pan-Tilt-Zoom Camera for Wide-area Active Imaging

Figure 2.7: Projection onto an image plane and a spherical screen from
a 3D point.

Depending on r (i.e., radius) of the APS, the surface area of the APS changes. As the
surface area is increased, the accuracy of the APS image increases. We can adjust the
radius of the APS depending on the task as follows:

Large radius: If high resolution is required: surveillance in a large space, inspection of
precise parts.

Small radius: If high resolution is not required: Surveillance in a narrow area.

2.3.2 Appearance Plane

When the rotation angle of the camera is limited and all observed images can be re-
projected to one side of a bounded plane, we can use a planar screen (Figure 2.8). We
call this planar screen APpearance Plane (APP, in short). The panoramic image on the
APP is called an APP image.

Since both the APS screen and the observed image plane are planar, the transformation
between them is expressed as in equation (2.6). As we proved in Section 2.2.3, this
transformation can be quickened. This property allows the system to establish real-time
processing in contrast to the image generation method using the APS.

By combining multiple APPs, we can utilize the following virtual screens:

e With multi-view APPs, an omnidirectional virtual screen identical to the APS can
be generated.

e By adjusting the distance from the projection center to each APP, variable image
resolution can be implemented. This enables us to change the quality of the image
resolution depending on the direction of the camera.

2.4 Calibration for Realizing the FV-PTZ Camera 29

Image

Gen?r

Re-projection

Image Mapping Image Generation

Figure 2.8: Appearance plane.

Since the image generation from the APP is a 2D coordinate transformation between
two image planes, we can utilize the high-speed image transformation technique described
in Section 2.2.3. This technique greatly improves the real-time image processing.

2.4 Calibration for Realizing the FV-PTZ Camera

The omnidirectional image representations mentioned in Section 2.3.1 and Section 2.3.2
are equivalent to those in [Gre86] and [Che95] in Computer Graphics and Virtual Reality.
Our objective, however, is not to synthesize panoramic images natural to human viewers
but to develop an active camera system that facilitates image analysis for wide area
surveillance. That is, in our case both the image acquisition and the projections on/from
virtual screens should be accurate enough to closely match physical camera motions. To
attain such an accuracy, we have to develop sophisticated camera calibration methods.

2.4.1 Fixing the Viewpoint

In this section, we explain how to place the projection center and the intersection of pan
and tilt axes for proper setup of an FV-PTZ camera.

To confirm the geometric configuration of the projection center and the rotation cen-
ter of the camera, the equipment illustrated in Figure 2.9 is used. Since a laser beam
passes through two translucent screens, bright spots appear on both screens. The camera
observes them while rotating its pan and tilt angles? .

We employ the following two properties to adjust the position of the projection center
to the rotational axes:

Property 1: If a ray passes through the projection center, all 3D points along the ray
are projected to the same point on the image plane.

2 For simplification, only the pan angle is rotated in Figure 2.9

30 Fixed-Viewpoint Pan-Tilt-Zoom Camera for Wide-area Active Imaging

+ Rotation center " Translucent screen [] Beam light source

[] [[l [l [l [[] [] []

8%

(c) Not cariblated (case 2)

L4

Image
(a) Calibrated (b) Not cariblated (case 1)

Figure 2.9: Calibration using laser beam.

Property 2: If the projection center is placed precisely on the rotational axes, a ray
passing through the projection center always passes the point while the camera is
rotated. All 3D points along the ray are necessarily projected to the same point on
the image plane.

Because of the above properties 1 and 2, if the projection center is placed exactly at the
intersection of the rotational axes, both bright spots are always projected onto the same
position, even while the camera angle is rotated. That is, only one bright spot appears
in the image (Figure 2.9 (a)). With other arrangements of the projection center and the
rotation center, on the other hand, each bright spot is projected onto different positions
in the image plane while the camera angle is rotated. In Figure 2.9 (b), the projection
center is between the scene and the rotational axis. In Figure 2.9 (c), the rotational axis
is between the scene and the projection center.

We actually establish the above calibration with a linear slide stage mounted on a
rotational stage and a laser beam oscillator. The following procedures are applied for
calibration:

Step 1: Set a laser beam so that it passes through the projection center. A bright spot
appears on a translucent screen by the laser beam as shown in Figure 2.10, Step 1.
If the beam passes through the projection center, two spots on translucent screens
are projected to the same position on the image plane.

Step 2: Rotate the camera stage to the left side and measure the distance between beam
spots in the observed image while sliding the linear stage (Figure 2.10, Step 2). The

2.4 Calibration for Realizing the FV-PTZ Camera 31

Stepl Step2 Step3

Figure 2.10: Calibrating the geometric configuration of the projection
center and the rotation center.

same measurement is performed for the same angle to the right side (Figure 2.10,
Step 3).

Step 3: The stage location, which minimize the sum of the distances between beam
spots, is considered to be optimal.

These procedures place the projection center of the camera at the pan axis. The same
procedures enable adjustment of the tilt axis.

2.4.2 Calibrating Internal Camera Parameters

In general, both the projection center and the image plane shift along the optical axis
while the focal length (i.e., the zoom parameter) is changed. In the FV-PTZ camera
system, however, the projection center is fixed. This enables us to consider the variation
in the focal length as only a shifting of the image plane.

If the camera captures images while the focal length is changed, the captured images
are enlarged or reduced around a specific position in the image. This position is called a
Focus of Expansion (FOE, in short). The FOE is always placed on the optical axis of the
camera, even while the focal length is changed.

In accordance with the above discussion, we define a camera model of the FV-PTZ
camera as follows:

Camera model of the FV-PTZ camera: An optical axis is equivalent to a straight
line between the projection center and the FOE in the image plane. Depending on
the zoom parameter, the position of the FOE shifts along the optical axis, and the
position and posture of the image plane changes. The x and y axes of the image

32 Fixed-Viewpoint Pan-Tilt-Zoom Camera for Wide-area Active Imaging

projection

Tr center\

Pan axis

Projection
center

AN

I Image plane

Tilt axis

Figure 2.11: Camera model of the FV- Figure 2.12: Slant angles of the image
PTZ camera. plane (CCD).

plane are parallel to the tilt and pan axes, respectively. Figure 2.11 illustrates
variations in the image planes while the zoom parameter is changed.

Based on this camera model, we define the internal camera parameters required for an-
alyzing images taken by the FV-PTZ camera. We establish a two-phased calibration
procedure for estimating the internal camera parameters:

1. Initially, the FOE is estimated.

2. Next, all other parameters (i.e., radial distortion, aspect ratio, and CCD slant angle)
are estimated simultaneously.

The FOE is estimated by analyzing images taken with varying zoom parameters. The
2D points, which are projected from the same 3D point onto the image plane while the
zoom is changed, are on a straight line in the image plane. This straight line necessarily
passes through the FOE. Therefore, we can estimate the FOE as follows:

1. Draw multiple points randomly on a 3D plane that is at a right angle with the
optical axis of the camera (Figure 2.13 (a)).

2. Observe these points and capture images while the zoom is changed (Figure 2.13

(b)).

3. Estimate straight lines that are each determined by 2D points projected from the
same 3D point (Figure 2.13 (c)).

4. Obtain the intersection point of all straight lines. This point is considered to be the
FOE (Figure 2.13 (c)).

2.4 Calibration for Realizing the FV-PTZ Camera 33

Camera
L]
. . L]
Observation with e ° Overlapping ™. FOE Straight line
multiple zoom par ameters all images A
o ° LN \ S =
Optical axis o ® oo
Drawn point S
Plane 2] b4 o .
\ o
) T) o ° °
®
o Observed images

(a) (b) ()
Figure 2.13: Calibration of the FOE.

To realize the FV-PTZ camera, we suppose a projection from a 3D scene to a 2D image
to be a perspective projection. In a practical lens system, however, the actual projected
image is different from the image generated by the perspective projection due to various
distortion factors. Because of these factors, the assumption about the projection is not
accurate enough to facilitate image analysis.

In [Tsa86], the following factors were employed to correct the observed image with

distortion.

Radial distortion: A projection point (x,,¥,) on a perpendicular plane to the optical
axis will be shifted to (x4, y,q) by the radial distortion:

Trg = (24 — 20)(1 + KA?) + z, (2.11)
Yra = (Yu — y0)(1 + KA?) + o, '

where k represents radial distortion coefficient, and
A% = (1, —20)* + (yu — %0)* - (2.12)
Aspect ratio: The aspect ratio only affects = coordinate values, and the point (g, ysq)

will be shifted to (2.4, ysq), where
Tag = (Tsqg — T.) + T . (2.13)
To increase the calibration accuracy, we additionally introduce slant angles of the

image plane (CCD) as illustrated in Figure 2.12.

CCD slant angle: The point (2,4, yrq) Will be shifted to (254, ys4) by the CCD rotations
(0c, ¢, pe) around the x-axis, y-axis and z-axis.

34 Fixed-Viewpoint Pan-Tilt-Zoom Camera for Wide-area Active Imaging

"':.. projection
e jcenter

Figure 2.14: Image stitching based calibration with APP.

A (Trd — Te)
Tsd) = cos B, cos e Yrd — e +(*) (2.14)
Ysd Trqg — T¢ Ye
D,«T Yrd — Ye
p
where (x.,y.) represents the rotation center, p the focal length, and
A - COS Y COS ¢ — sin B, sin . sin ¢, — cos . sin @,
N sin ¢, cos ¢, + sin f. cos p.sin . cos . cos . ’
— cos B, sin ¢,
D, = sin 6, . (2.15)

cos 8. cos ¢,

In order to estimate xq, ¥y, Kk, «, 0., ¢., and ¢., we employ the properties of the
FV-PTZ camera. If images taken by the perspective projection FV-PTZ camera system
are projected onto the same virtual screen (e.g., APS and APP), the projected images
are seamless on the virtual screen. Accordingly, if we have correct camera parameters
as denoted above (i.e., pan, tilt, focal length, aspect ratio, radial distortion coefficient,
radial distortion center, and slant angles of CCD plane), a seamless image stitching can

2.4 Calibration for Realizing the FV-PTZ Camera 35

be realized. In other words, these camera parameters can be calibrated in such a way as
to achieve seamless image stitching. According to this scheme, camera parameters can
be calibrated by minimizing the image difference in the overlapping area on the virtual
screen shown in Figure 2.14.

We set the internal camera calibration as follows:

1.

5.

We capture a set of partially overlapping images of a stationary scene by changing
pan and tilt angles with a fixed zoom parameter.

. We give appropriate initial parameters.

Based on equations (2.11) ~ (2.15), we obtain the corrected images (x,, y,) from the
observed images (44, Ysq). We then project the corrected images onto the virtual
screen.

. The image difference in the overlapping area should be minimized. We evaluate

the similarity between images by the normalized correlation and maximize it by
employing non-linear optimization. Let f and g be the overlapping areas of the
different observed images projected onto the virtual screen. If pixels (zq,y;) and
(x9,y2) in f and g, respectively, are projected to the same position in the virtual
screen, the normalized correlation of these pixels (denoted by S) is computed as

_ > f(@1,u1) - g(x2, 42)
\/Z S (1, yl)\/E 9% (22, y2)
The range of S'is 0 < S < 1. Let P be the combination number of image pairs that

are overlapped in the virtual screen. We calculate all S;(i = 1,---, P) and obtain
the evaluation value for non-linear optimization.

(2.16)

P 2
> Sk Ny
D=|1-*%!

S
> N
k=1

: (2.17)

where N;(i = 1,---, P) denotes the total sum of pixels that overlap with another
image in the virtual screen.

If the value of equation (2.17) is small enough, optimization is finished. Otherwise,
values of all parameters are adjusted, and go back to 2.

The advantages of this calibration method are:

No Calibration Object: This method does not require any specially designed calibra-

tion object.

No Human Inspection: Since this method only uses observed images taken by chang-

ing view directions, it will not be affected by human mistakes.

36 Fixed-Viewpoint Pan-Tilt-Zoom Camera for Wide-area Active Imaging

No External Camera Parameters: Most camera calibration methods (e.g., [Tsa86])
estimate internal and external camera parameters simultaneously. In these methods,
internal and external parameters may interfere with each other, and inconsistent
internal parameters may be obtained depending on the calibration object. In our
method, however, only the internal camera parameters are obtained.

2.4.3 Pixel-wise Image Calibration

Even if the above two calibrations work out satisfactorily, it is difficult to attain the exact
pixel-wise alignment between the observed image and the scene image generated from the
APS/APP. Various factors cause this alignment error:

Imprecise calibration: Depending on the precision of the calibration result, the accu-
racy of the generated image changes. For example, since we estimate the internal
camera parameters by the optimization method so that the total error is minimized,
the precision the generated image varies at each position in the APS/APP. Further-
more, a divergence of the camera’s projection center may occur during extended
utilization.

Quantization error: In practical camera systems, the quantization error in the observed
image is caused by the A-D conversion done for image capturing. This produces the
difference between each observed image and the generated image.

Mechanical limitation: In general, the camera angle and the zoom are also included
in the internal camera parameters that should be estimated for active imaging with
the FV-PTZ camera.

Camera angle: The camera angle is represented by the pan (#) and tilt (¢) angles.
In equation (2.1), the view direction is expressed by a unit vector D.

Zoom: The zoom of the camera is represented by the focal length p.

We control pan, tilt and zoom parameters to observe the wide area and acquire
the required object information. Since we employ a computer-controlled active
camera, we can obtain current values of these parameters during observation. The
accuracies of the obtained parameters depend on the mechanical characteristics of
the camera (i.e., the resolution of the rotational angle and the zooming factors).
If its performance is not high enough to generate an image that is identical to an
observed image, the result of image analysis becomes unreliable.

Active control: In particular, if the camera captures the image while changing pan-tilt-
zoom parameters with smooth (non-stop) camera motion, it is difficult to align the
observed image exactly with the image generated from the APS/APP.

To obtain a reliable result of image analysis, an accurate rotational angle is especially
required. This is because the distance from the projection center to the image plane is
much longer than the pixel size in most cases, and hence a small angular error produces

2.4 Calibration for Realizing the FV-PTZ Camera 37

ptan%

L]
Imageplane -
7/

/7
1

/ 7
I
:////
.

Projection center Projection center

(a) Angular resolution (b) Discrepancy of the pixel and the
rotational angle

Figure 2.15: Consideration of the angular accuracy.

a crucial geometric error in generating images from the APS/APP. To obtain the actual
(accurate) rotational angle, therefore, we examine the difference between the observed
image and images generated with different combinations of pan-tilt parameters. Let
image, whose rotational angle is (6,, ¢,) have the minimum error with the observed image.
(0, o) is then considered to be the current actual rotational angle.

Although an accurate angle can be found by minimizing the error, this procedure is
computationally expensive. This is because all synthesized images compared with the
observed image are generated from the APS/APP. Fortunately, since a small angle of
the rotation can be approximated by the translation, it is sufficient to find the optimal
translation minimizing the error.

The angle resolution 0(x) corresponding to the pixel resolution at x on the plane is

represented as:
- (x + 0.5) ~tan-l (x — 0.5>
P P

where p represents the distance from the projection center to the plane (Figure 2.15 (a)).
The angular error w that produces 1-pixel image distortion satisfies the equation

tan <g> ~ tan (g - w) — 2tan <%>‘ =1, (2.19)

i(z) =

, (2.18)

p X

38 Fixed-Viewpoint Pan-Tilt-Zoom Camera for Wide-area Active Imaging

Figure 2.16: Developed FV-PT camera head.

where 6 represents the view angle of the camera (Figure 2.15, (b)). Accordingly, if the
error of the rotational angle is less than w, we can approximate the angular error by the
translation of the image without any errors.

2.5 Experiments

We actually developed two types of fixed-viewpoint cameras (FV-PT camera and FV-PTZ
camera). In this section, we demonstrate (1) the accuracy of our calibration method for
implementing the proper setup of a fixed-viewpoint camera and (2) the effectiveness of
the image generation method from the scene model (i.e., APS and APP).

2.5.1 Developing the FV-PT Camera
2.5.1.1 Hardware Specification

We experimented to verify the effectiveness of our idea by using a pan-tilt rotation camera
head. Figure 2.16 shows the FV-PT camera head we developed, where the pan and tilt
axes intersect at a right angle and a video camera is mounted on a group of adjustable
slide and slant stages. Table 2.1 shows the mechanical specifications of the camera head.
Rotational angles of the camera head can be controlled via RS-232C by a computer.

We mounted a SONY camera XC-003 with a C-mount lens VCL-08 WM on this camera
head. By using this camera head, any (compact) video camera with any lens system can
be calibrated to realize a fixed-viewpoint camera. In this experiment, the focal length
was fixed. With these resources, we developed an FV-PT camera.

2.5 Experiments 39

Table 2.1: Specification of the FV-PT camera head.

Pan rotation —180° ~ 180°
Tilt rotation 0° ~ 45°
Maximum rotational velocity 100° /sec
Maximum rotational acceleration 100° /sec?
Angular resolution 0.012°
Backlash less than 0.167°

2.5.1.2 Fixing the Viewpoint

For the calibration to realize the FV-PT camera system, we employ the calibration method
described in Section 2.4.1. All of the observed images were projected onto a single screen
(i.e., APP) to evaluate the image differences in the overlapping areas of different images.

Figure 2.18 shows the calibration result. We turned the pan and tilt angles by 6° and
10° in either direction (i.e., pan: left and right directions, tilt: up and down directions),
respectively. The horizontal and vertical axes represent the linear stage location and the
distance between the projected bright spots, respectively. From the calibration result, the
optimal location of the slide stage for realizing the FV-PT camera was determined to be
5.45 [cm] for pan axis and 1.55 [cm] for tilt axis.

2.5.1.3 Calibrating Internal Camera Parameters

We captured 18 images by panning and tilting the camera. Figure 2.19 shows the observed
images. The size of each image is 320 x 240 [pixel]. Pixel values in the observed images
are darkened due to the vignetting distortion]AAB97]. We can cancel the vignetting
distortion in the observed image by the following procedures:

1. Capture a white plane illuminated uniformly. The vignetting distortion appears in
the captured image.

2. Compute rates of pixel values between the brightest pixel and all other pixels. Each
rate shows the relative extent of the vignetting distortion for each pixel.

3. Correct the vignetting distortion based on the analysis achieved in 2.

In this experiment, although the focal length was known as a physical length, we need
the focal length as a pixel length to integrate all of the observed images and generate a
scene image model. This is because 2D coordinates in the observed image are represented
by pixels, and so the unit length is also represented by pixels in equations (2.1) ~ (2.15).

We estimated the internal camera parameters (i.e., focal length p, radial distortion
K, To, Yo, aspect ratio «, and slant angle of CCD 6., ¢., p.) by the calibration method
described in Section 2.4.2. In this calibration, all of the observed images were re-projected

40 Fixed-Viewpoint Pan-Tilt-Zoom Camera for Wide-area Active Imaging

L aser beam
oscillator
Translucent screen 1~,

Figure 2.17: Experimental environment.

[pixel] [pixel]

% 3 i 5 8 0 12 14 0513 4 6 8 SR
5.45 [em] 155
(a) Pan rotation (b) Tilt rotation

Figure 2.18: Distance between two bright spots on translucent screens.

2.5 Experiments 41

(36°,18°) (48°,18°) (60°,18°)

(48°,9°) (60°,9°)

(36°,0°) (48°,0°) (60°,0°)

Figure 2.19: Observed images for calibrating the internal camera pa-
rameters.

42 Fixed-Viewpoint Pan-Tilt-Zoom Camera for Wide-area Active Imaging

onto a single planar screen (i.e., APP). During optimization of the parameters, the rota-
tional angle of the APP screen is fixed (0°,0°). The distance from the projection center
to the APP screen, on the other hand, is dynamically changed so that it is equal to the
optimizing focal length of the observed image. Following are the given initial parameters:

e Initial parameters:

Focal length p: 1090.0 [pixel]

Radial distortion coefficient : 0.0[(x107®) pixel

Radial distortion center (xy,,): (159.5 [pixel], 119.5 [pixel])
Aspect ratio a: 1.0

Slant angle of CCD (0., ¢., ¢.): (0.0°, 0.0°, 0.0°)

The initial focal length (1090.0 [pixel]) is determined by the following procedures:
1. Determine a landmark in the observed scene.

2. Rotate the pan angle of the camera so that the landmark is projected in the right
edge of the image. Let this angle be a.

3. Similarly, rotate the pan angle so that the landmark is projected in the left edge of
the image. Let this angle be .

4. The geometric configurations between the above two image planes (as illustrated in
Figure 2.20) are represented by

040 = f—a , (2.20)
S, —C

tanf = o= (2.21)

tanf = % : (2.22)

where S; and C' denote the image size and the coordinates of the FOE, respectively.
We assume C' = S;/2 (= 320/2) and solve the above equations.

Following are the estimated optimal parameters:

e Optimal parameters:

Focal length p: 1086.86 [pixel]

Radial distortion coefficient x: —1.24[(x107®) pixel 2]
Radial distortion center (zy,yp): (158.55 [pixel], 118.67 [pixel])
Aspect ratio a: 0.994

Slant angle of CCD (0., ¢., ¢.): (0.109°, 0.163°, 0.014°)

2.5 Experiments 43

Landmark

Optical axis I
» (8-0)

FOE)

.
.
.
T
fl. < | .
. ,
\ .

Projection center

Figure 2.20: Determining the initial focal length.

After all of the observed images were corrected based on the above estimated parame-
ters, we generated an APS (Figure 2.21). This APS image consists of 180 observed images.
By employing it as a scene model, we can generate a scene image taken with arbitrary
combinations of pan, tilt and zoom parameters® . Figure 2.22 shows the panoramic image
generated by re-projecting all of the observed images onto an image plane.

In this experiment, from equations (2.18) and (2.19) and the estimated focal length
(p = 1086.86), we can obtain the following values: §(0) = 0.0527° at the image center,
§(256) = 0.0516° at the image frame, and w = £0.38° which corresponds to +5.574-pixel
translation. That is, if the rotational stages have a small angle step of less than 0.06°,
it is not required to correct the view direction. Furthermore, if the angular error is less
than 0.38°, we can obtain the optimal scene image by translating a generated image.

2.5.1.4 Performance Evaluation

To verify the accuracy of camera calibrations and the generated APS, we compare the
observed image with the image generated from the APS.

Figure 2.23 (a) shows an observed image at (3°,15°), (b) is the generated image at
the same pan-tilt angles, and (c) is the difference between (a) and (b). This result shows
that the generated image is approximately identical to the observed image.

To obtain the more accurate detected result, several shifted versions of the observed
image are generated and their differences from the background image were computed.
When the observed image was shifted to (—1[pizel], —1[pizel]), the least overall gray level
difference was obtained. Figure 2.23 (d) shows the image with the least difference. As
we can see, the shifting of the observed image is adequate to match it with the generated

3 In this experiment, the rotational tilt angle of the camera head was limited. Therefore, we could not
generate a fully spherical virtual screen.

44 Fixed-Viewpoint Pan-Tilt-Zoom Camera for Wide-area Active Imaging

Figure 2.21: APS representation of Kyoto University Clock Tower scene
(Dome-shaped APS).

Figure 2.22: Panoramic representation of the APS image.

image when the view directions of these image are roughly the same.

2.5.2 Developing the FV-PTZ Camera
2.5.2.1 Hardware Specification

Here, we show experimental results for internal parameter calibration and image genera-
tion by using an off-the-shelf active video camera, SONY EVI-G20, which we found to be
a good approximation of an FV-PTZ camera. Figure 2.24 shows the appearance of EVI-
G20. Table 2.1 shows the mechanical specifications of EVI-G20. The rotational angles
and zooming factor of EVI-G20 can be controlled via RS-232C by a computer. Pan-tilt
rotations are designed as a gimbal mechanism (Figure 2.25).

2.5 Experiments 45

(a) Observed image (b) Generated image (c) Difference (d) Precise difference
(3°,15°) (3°,15°) (I(a) = (0)1)

Figure 2.23: Comparison between the observed image and the gener-
ated image

Table 2.2: Specification of SONY EVI-G20.

Pan rotation —30° ~ 30°
Tilt rotation —15° ~ 15°
Horizontal view angle 15° ~ 44°
Maximum rotational velocity 245° [sec
Maximum zooming (changing view angle) velocity 4° /sec
Angular resolution 0.00193°

The following descriptions give the differences between the experiments in this section
and those in Section 2.5.1.

Bounded (narrow) horizontal view angle: The pan-rotation and horizontal-view an-
gles of EVI-G20 are —30° < pan rotation < 30° and 15° < horizontal view < 44°,
respectively. The total horizontal and vertical view angle of the camera are 104°
and 59° (< 180°), respectively. This allows us to represent the entire scene model
as a single APP.

Variable zoom: Since the zoom parameter of EVI-G20 can be controlled from a com-
puter, we can obtain a high-resolution APP by controlling the zoom during obser-
vation.

With EVI-G20, we can realize a high-resolution APP.

2.5.2.2 Viewpoint Calibration

To utilize EVI-G20 as an FV-PTZ camera, we must first confirm that it is a good approx-
imation of the FV-PTZ camera. We experimented to verify the geometric configuration
of the projection center by the laser-beam-based calibration described in Section 2.4.1.

46 Fixed-Viewpoint Pan-Tilt-Zoom Camera for Wide-area Active Imaging

Rotation

]] center
Tilt rotation

(c‘lzan rotation

Figure 2.24: Off-the-shelf FV-PTZ cam- Figure 2.25: Gimbal mechanism.
era: SONY EVI-G20.

The experimental results showed that the projection center is about 1.1 [cm] off the
rotation center along the optical axis when the zooming factor is set smallest, and that
as the zooming becomes large, the former comes closer to the latter. This displacement,
however, does not cause serious problems in detecting anomalous regions in a wide area;
image deformation is kept to less than 2 pixels when the observed scene is farther than
2.5 [m].

The above verification allows us to model EVI-G20 as an FV-PTZ camera.

2.5.2.3 Calibrating Internal Camera Parameters

Since we control the zoom parameter in this experiment, the position of the FOE is
needed to generate the APP by integrating observed images taken with multiple zoom
parameters. We estimated the FOE of EVI-G20 by the calibration method described in
Section 2.4.2.

Figure 2.26 shows the estimated result of the FOE. From this figure, it is confirmed
that 2D positions projected from a specific 3D point are in a straight line and that all of
the straight lines cross each other at a point. From this result, we considered the position
of the FOE to be (322.825,228.215).

Next, in order to estimate other internal camera parameters, we observed six images
(Figure 2.27). The size of each image is 640 x 480 [pixel]. These images were taken at the
following combinations of the pan and tilt parameters: (—30°,10°), (0°,10°), (30°,10°),
(—30°,—10°), (0°,—10°) and (30°, —10°). The focal length was fixed so that the view angle
was the widest one. The vignetting distortions of all observed images were corrected by
the procedure proposed in Section 2.5.1.3.

We re-projected the images onto an APP and performed the calibration method de-
scribed in Section 2.4.2. In this experiment, we used the following initial values for internal
camera parameters:

2.5 Experiments 47

Yy (pixel)

1 S 1 I I N 1
0 100 200 300 400 500 600
x (pixel)

Figure 2.26: Estimated result of the FOE.

Focal length p: 800 ~ 910 [pixel] (every 10 pixels)

Radial distortion coefficient x: 0 [pixel

Radial distortion center (z¢,yp): (319.5 [pixel], 219.5 [pixel])
Aspect ratio a: 1

Slant angle of CCD (6., ¢., ¢.): (0°, 0°, 0°)

During optimization, the rotational angle of the APP screen is fixed at (0°,0°). The
distance from the projection center to the APP screen, on the other hand, is dynamically
changed to synchronize it with the optimizing focal length of the observed image. The
optimization results are shown in Table 2.3.

The smallest evaluation value was obtained when the initial value of the focal length
was 880 [pixel]. We considered the following results estimated from this initial value to
be the optimal parameters for images taken with the widest view angle:

Focal length p: 830.746 [pixel]

Radial distortion coefficient x: -10.26050 [(x10~%) pixel 2
Radial distortion center (xg,yp): (295.594 [pixel], 222.853 [pixel])
Aspect ratio a: 0.99926

Slant angle of CCD (0., ¢, 0.): (0.16900°, -0.12219°, 0.20683°)

Figures 2.28 and 2.29 show the generated APPs and the subtraction images in the
overlapping areas. The images in Figures 2.28 and 2.29 were obtained with the initial and

48

Fixed-Viewpoint Pan-Tilt-Zoom Camera for Wide-area Active Imaging

Table 2.3: Estimated results of the internal camera parameters (with
the widest view angle).

Initial value of p [pixel]
| 800.000 | 810.000 | 820.000 | 830.000 | 840.000 | 850.000
Estimated parameters

p [pixel] 824.167 | 824.628 | 822.651 | 825.712 | 827.856 | 827.189
k [(x10 ®)pixel %] | 1.28871 | -0.91411 | —0.10969 | —1.34124 | -4.70199 | —4.58066
o [pixel] 317.832 | 318.823 | 319.529 | 319.335 | 330.391 | 318.939
Yo [pixel] 233.228 | 238.544 | 239.475 | 239.982 | 242.843 | 238.924
. [degree] 0.17505 | 0.21363 | 0.18359 | 0.19752 | 0.21267 | 0.21842
0. [degree] -0.13269 | —0.03613 | 0.06012 | —0.02292 | 0.03743 | —0.02453
¢ [degree] -0.08613 | 0.05345 | —0.07940 | —0.13657 | —0.06581 | 0.03032
a 0.99847 | 0.99927 | 1.00138 | 0.99815 | 0.99845 | 0.99905
Value | 0.000878 | 0.000685 | 0.000808 | 0.000677 | 0.000447 | 0.000447

Initial value of p [pixel]
| 860.000 | 870.000 | 880.000 | 890.000 | 900.000 | 910.000

Estimated parameters
p [pixel] 828.236 | 829.776 | 830.746 | 869.297 | 885.749 [902.773
k [(x10 ®*)pixel %] | -5.75362 | -8.94146 | —10.26050 | —4.16316 | —2.94475 | ~1.90708
o [pixel] 320.335 | 327.315 | 295.594 | 319.540 | 312.649 | 321.092
Yo [pixel] 248.540 | 236.692 | 222.853 | 245.173 | 242.828 | 235.821
. [degree] 0.21356 | 0.21781 | 0.20683 | 0.26423 | 0.22791 | 0.21102
0. [degree] -0.01601 | —0.06926 | 0.16900 | 0.02403 | —0.07008 | —0.13933
¢ [degree] 0.06843 | 0.12875 | —0.12219 | -0.16378 | 0.11192 | —0.94443
a 0.99876 | 0.99921 | 0.99926 | 0.95158 | 0.93295 [0.91564
Value [0.000377 | 0.000252 | 0.000232 | 0.009550 | 0.011132 [0.013109

2.5 Experiments 49

(—30°, —10°) (0°, —10°) (30°, —10°)

Figure 2.27: Observed images (with the widest view angle: p =
830.746).

optimal parameters, respectively. Since the APP generated with the optimal parameters
is seamless, the estimated parameters are confirmed as appropriate.

Similarly, as with the above procedure, we estimated the internal camera parameters
for other zoom parameters. To control the zoom parameter of EVI-G20, we assign a value,
which we call the zoom command parameter, to EVI-G20. The domain of the value is
from 0 (the widest view angle) to 16384 (the narrowest view angle). The relationship
between this value and the focal length, however, is not known. To control the view angle
of the camera based on the image analysis (e.g., the region size of the detected object), the
relationship between the physical value (i.e., the focal length) and the zoom parameter
must be determined.

Table 2.4 shows the estimated optimal parameters for each zoom command parameter.
We deduce the following properties of the internal camera parameters from this result:

e The focal length p changes linearly in proportion to the zoom command parameter
as illustrated in Figure 2.30.

e The radial distortion coefficient £ becomes smaller* as the view angle narrows.

4 If the radial distortion coefficient is less than 107°, the effect of the radial distortion can be
disregarded.

50 Fixed-Viewpoint Pan-Tilt-Zoom Camera for Wide-area Active Imaging

Figure 2.28: Upper: APP image generated with the initial parameters
(p = 880 [pixel], image size = 1036 x 585 [pixel]). Six
observed images taken with the widest view angle are re-
projected. Lower: Gray level difference in overlapping
area.

2.5 Experiments 51

Figure 2.29: Upper: APP image generated with optimal parameters
(p = 830.746 [pixel], image size = 1036 x 595 [pixel]).
Six observed images taken with the widest view angle are
re-projected. Lower: Gray level difference in overlapping
area.

52

Fixed-Viewpoint Pan-Tilt-Zoom Camera for Wide-area Active Imaging

Table 2.4: Estimated results of the internal camera parameters (with
nine kinds of zoom command parameters).

Zoom command parameter

0

2048

4096

6144

8192

Initial value of p [pixel]

| 880.000 | 1060.000 | 1240.000 | 1450.000 | 1680.000

Estimated parameters

p [pixel] 830.746 | 1034.436 | 1240.532 | 1450.434 | 1674.187
k [(x10 %)pixel %] | -10.26050 | -5.01263 | -0.05896 | -0.04233 | -1.80669
o [pixel] 295.594 | 329.148 | 319.499 | 319.472 | 319.977
Yo [pixel] 222.853 | 245.286 | 239.499 | 239.513 | 241.053
. [degree] 0.20683 | 0.20056 | 0.17184 | 0.20055 | 0.21095
0. [degree] 0.16900 | -0.03004 | 0.09698 | 0.01854 [-0.10951
¢, [degree] -0.12219 | -0.00005 | -0.10632 | -0.03674 | -0.26838
a 0.99926 | 0.99872 | 1.00059 | 1.00079 [0.99563
Value | 0.000232 | 0.000210 | 0.000145 | 0.000077 | 0.000035
Zoom command parameter
| 10240 | 12288 | 14336 | 16384
Initial value of p [pixel]
| 1880.000 | 2080.000 | 2290.000 | 2500.000
Estimated parameters
p [pixel] 1879.794 | 2080.520 | 2290.162 | 2500.622
K [(x10"%)pixel %] | -0.08400 | 0.17395 | 0.13470 | 0.26613
zo [pixel] 319.490 | 319.497 | 319.519 | 319.535
yo [pixel] 239.510 | 239.517 | 239.513 | 239.570
. [degree] 0.17008 | 0.17086 | 0.17986 | 0.16592
0. [degree] -0.06010 | -0.06500 | -0.09137 | -0.17498
¢, [degree] -0.14444 | 0.01277 | 0.15575 | 0.17341
o 0.99668 | 1.00092 | 1.00102 | 1.00280
Value | 0.000034 | 0.000023 | 0.000017 | 0.000011

2.5 Experiments 23

2500

2000 | B

1500 -
.0

focal length (pixel)

1000 i

500 -

I I I I I I I I
0 2000 4000 6000 8000 10000 12000 14000 16000

zoom command parameter

Figure 2.30: Relationship between the zoom command parameter and
the focal length.

e The estimated result of the radial distortion center (g, yo) becomes inaccurate with
the decline in the view angle.

e Other parameters (i.e., 0., ¢., ¢. and «) are nearly constant.

Based on the above properties, we define the variations in internal camera parameters
while the zoom command parameter changes:

Focal length p: This changes linearly in proportion to the zoom command parameter
as illustrated in Figure 2.30.

Radial distortion coefficient x: The value estimated with the widest view angle is
considered to be the optimal value, and this value changes linearly in proportion to
the zoom command parameter.

Radial distortion center (zy,yp): The value estimated with the widest view angle is
considered to be the optimal value, and the value is constant irrespective of zooming.

Other parameters 0., ¢., ¢. and «a: These parameters are constant irrespective of zoom-
ing. The average of the estimated values for all zoom command parameters is con-
sidered to be the optimal value.

By employing the above analysis of the internal camera parameters, we can generate an
APP that is consistent with all zoom parameters.

Figure 2.31 shows the APP that is generated by integrating the observed images taken
with nine kinds of zoom command parameters (i.e., 0, 2048, 4096, 6144, 8192, 10240,
12288, 14336 and 16384). Since the generated APP image is seamless, it is confirmed

o4 Fixed-Viewpoint Pan-Tilt-Zoom Camera for Wide-area Active Imaging

Figure 2.31: High resolution APP (p = 2500.622 [pixel], image size =
6332 x 3684 [pixel]): the images taken with various zoom
parameters are re-projected onto an APP.

that the internal camera parameters of EVI-G20 are efficiently integrated among all zoom
parameters. This APP is synthesized by re-projecting the images taken with the narrow
view angle, namely when the camera zooms in. The high-resolution APP is, therefore,
obtained.

2.5.2.4 Performance Evaluation

To verify the accuracy of the obtained camera model and the generated APP, we compared
the observed image with the image generated from the APP.
These experiments were conducted with the following camera parameters:

Figure 2.32: Pan, tilt and zoom command parameters were —20.0°, 4.0° and 4096, re-
spectively.

Figure 2.33: Pan, tilt and zoom command parameters were —12.0°, 6.0° and 12288,
respectively.

Figures 2.32 and 2.33 show the observed images, generated images, and subtraction image.
From these results, we can verify that (1) the estimated internal camera parameters were

2.5 Experiments 95

Observed image generated image Subtraction image

Figure 2.32: Comparison between the observed image and the gener-
ated image (Generated image: zoom = 4096, View direc-
tion = (—20.0°,4.0°)).

Observed image Generated image Subtraction image

Figure 2.33: Comparison between the observed image and the gener-
ated image (Generated image: zoom = 12288, View di-
rection = (—12.0°,6.0°)).

appropriate and (2) images taken with arbitrary combinations of pan, tilt and zoom
parameters could be generated from an APP.

However, the observed image was not completely identical to the generated image.
The difference between the observed and generated images was caused by the following
factors:

e Although the employed camera (SONY EVI-G20) is a good approximation of an
FV-PTZ camera, the position of its projection center is not placed precisely at the
rotation center as described in Section 2.5.2.2.

e Since the accuracy of the camera control from a computer was not adequate, the view
direction of the observed image did not closely approximate that of the generated
image. The influence of this difference can be canceled by translating the generated

56 Fixed-Viewpoint Pan-Tilt-Zoom Camera for Wide-area Active Imaging

image as described in Section 2.4.3.

2.6 Concluding Remarks

We proposed an active camera for wide-area observation, which we call an FV-PTZ cam-
era. With the FV-PTZ camera, we can realize the following functions.

e By changing the view direction, the camera can observe a wide area.

e By adjusting the zoom parameter, the camera can dynamically control the image
resolution. This increases the adaptability and flexibility of the camera system.

e By mosaicing multiple images observed by changing pan, tilt and zoom parameters,
the appearance model of the scene (i.e., APS and APP) can be easily generated.

While the instantaneous visual field of the FV-PTZ camera is limited, we can solve this
problem by incorporating a group of distributed cameras.

Hereafter in this thesis, although we apply images generated from the scene model
(i.e., APS/APP) only to the background subtraction method for object detection® , our
method can be employed for many other vision tasks with active sensing. We, therefore,
regard the FV-PTZ camera as a fundamental mechanism for Active Vision.

5 We will address the object detection and tracking method using the APP in the next chapter.

Chapter 3

Active Background Subtraction for
Object Tracking

3.1 Object Tracking using an Active Camera

3.1.1 Task of the Tracking System

This chapter proposes an active vision system for object detection and tracking using an
active camera. We employ an FV-PTZ camera as an active camera.
The tasks of the tracking system using the FV-PTZ camera are defined as follows:

1. Detect an object that comes into the scene. This task is required to search for an
object in the scene. In this chapter, we assume that there is only one object at most
in the scene.

2. Track the object by controlling the pan-tilt parameters of the camera. To continue
to track the focused target object, the system has to control the view direction of
the camera towards the target object.

3. Capture images of the object in as high resolution as possible by controlling the
zoom parameter of the camera. High resolution images are required to acquire the
precise information about the object and achieve robust object identification.

To fulfill these tasks, the system has to incorporate image capturing, image processing,
and camera control functions. This is because these functions need to be implemented
based on the results of the other types of processing.

3.1.2 Object Detection Methods

Comparing a fixed camera, an active camera makes object detection difficult. This is
because various appearance variations are caused in the observed image by varying camera
parameters. The system, therefore, has to discriminate between these variations and
object regions to properly detect object regions in the observed image.

57

o8 Active Background Subtraction for Object Tracking

We solve this problem with the FV-PTZ camera. Employing the FV-PTZ camera
enables rectifying image variations caused by varying the camera rotation and zoom.
With this ability, the system can detect object regions in the observed image taken while
changing pan-tilt-zoom parameters by utilizing the same method as object detection with
a fixed camera.

To detect object regions in the observed image, we can use the following methods:

Background subtraction: In this method, the observed image is compared with a sta-
tionary background image that is taken in advance. The regions different from the
background image are considered to be object regions: if the gray level difference
between pixels in these images is larger than a threshold, this pixel in the observed
image is considered to be in object regions.

To utilize this method, the stationary background image has to been taken in ad-
vance.

In addition, the effectiveness of the background subtraction method is limited be-
cause the stationary background scene assumption does not always hold in the real
world:

Variations in the scene

e Variations in an object’s shape and posture: A fluttering leaf and flag, and
the flickering of a CRT display (continuous small variations). Movements
of a background object (intermittent large variations).

e Variations in the illumination: Sunlight fluctuations caused by sun and
cloud movements and room-light variations.

To cope with variations in scenes, many works have been reported [SG99] [HHDOOb]
[SMKUO00] [MOHO00]. To cancel variations in a scene, [SG99] and [HHDO0Ob] employ
probability distributions to model the intensity variations at each pixel. For ex-
ample, in [SG99], the pixel intensity is modeled as K Gaussian distributions (for
continuous small variations). In [SMKUOQ0], the background scene image is adap-
tively renewed by employing M-Estimation (for intermittent large variations). In
[MOHO0], non-stationary objects in the scene are modeled by (1) variations in the
overall lighting conditions, and (2) local image pattern fluctuations, and so on.
These methods solve the problem of variations in the scene.

Subtraction between consecutive images: By comparing images taken at ¢ and ¢ +
1 with each other, the variations between the two images can be detected. The
detected regions are considered to be moving objects.

This method cannot detect stationary objects.

In [MB94], the system can detect moving objects by subtracting consecutive images
even if the camera is rotated during the observation. The implementation of back-
ground image compensation allows the system to apply motion detection techniques
for the fixed camera to images taken with different camera rotations.

3.1 Object Tracking using an Active Camera 59

Optical flow: By comparing the window regions in the images taken at ¢t and ¢ + 1
with each other, the window regions projected from the same object in the scene
are identified with each other between these consecutive images, and their motions
between the images are estimated. The window regions showing different motions
from those of the background region are are considered to be moving objects. Since
appearance information has to be compared between images, it is difficult to detect
objects with poor surface textures.

Similar to the above subtraction between consecutive images, this method cannot
detect stationary objects.

In [MWMO98b], moving objects are detected by an FV-PT camera. Since optical flow
patterns caused by combinations of pan-tilt rotations can be estimated, the system
can detect moving object regions by extracting those patterns that are different
from the flow pattern of the background scene.

Template matching: This method is used for detecting the target region in the observed
image. The target region is recorded as a target model called a template. By
comparing the template with each region in the observed image, we can find the
target region.

The template needs to be acquired in advance. Therefore, only the target recorded
as the template can be detected.

In [HB96], a deformable template image and illumination basis for the target ap-
pearance are employed to cope with changes in the geometry and shading of the
target object. With this knowledge, the system can track the target object without
interference by variations in (1) the object’s location and posture and (2) illumina-
tions. In [WADP97], a multi-class statistical color and 3D shape model is used to
obtain a 2D representation of a person’s head and hands in a wide range of view-
ing conditions. The obtained 2D appearance is compared with the region in the
observed image, and the object shape and posture can be recognized.

As mentioned above, each method has its own advantages and disadvantages, and we
should select the appropriate method depending on the task.

In our system, we employ the background subtraction method for object detection.
This is because if the background image is taken in advance, the background subtraction
method can detect all object regions without any prior knowledge about target objects
whether they are in motion or still.

To detect object regions while changing the camera rotation and zoom, the system has
to perform the background subtraction method with input images taken with arbitrary
combinations of pan, tilt and zoom parameters. We realize such an active background
subtraction method by comparing the input image with the background image generated
from a background image model (i.e., APS/APP).

In what follows, we first present our active object detection and tracking method with
the FV-PTZ camera (Section 3.2). Then, experimental results are shown to demonstrate

60 Active Background Subtraction for Object Tracking

Inp age CameraAction
I —
3, 1
_@ - Appearance Plane

(Panoramic Background Image)
Generated Image '

Anomalous Regions

4
. Pan, Tilt, Zoom
—— — s)

Figure 3.1: Object detection and tracking by the active background
subtraction with an FV-PTZ camera.

that the proposed object detection and camera control method allows the system to detect
object motions and keep tracking a moving object in a wide area (Section 3.3).

3.2 Active Background Subtraction with the FV-PTZ
camera

3.2.1 Basic Scheme

Figure 3.1 shows a basic scheme for moving object detection and tracking using the FV-
PTZ camera.

Step 1: Generate a background image model; with the FV-PTZ camera, a panoramic
background image (i.e., APP) can be easily generated by integrating multiple images
observed by changing pan-tilt-zoom parameters.

Step 2: Extract a window image from the panoramic background image according to the
current pan-tilt-zoom parameters and regard it as the background image; with the
FV-PTZ camera, one-to-one mappings exist between the positions in the panoramic
background image and pan-tilt-zoom parameters of the camera.

Step 3: Compute the differences between the generated-background image and an ob-
served image.

3.2 Active Background Subtraction with the FV-PTZ camera 61

time
asynchronous cycles
¥
(CameraAction)
to ;
A
Image Capture -
tp H 1
Compute Object Center
video cycle
v
CameraAction
ts :
A
(Image Capture)
v

Figure 3.2: Time chart of the system cycle.

Step 4: If object regions are detected in the difference image, select one and control the
camera parameters to track the selected target (the system is then in the tracking
mode). Otherwise, move the camera along the predefined trajectory to search for
an object (the system is then in the search mode).

Figure 3.2 shows the time chart of the system cycle. Suppose the image acquisition
is initiated at ty,. The right vertical bar in Figure 3.2 illustrates the video cycle, which is
not synchronized with the system; the camera repeats its own video cycle' .

Note that the image capturing should be done after the camera stops. The reasons
why the camera should stop for image capturing are as follows:

Exact alignment between the observed image and the background image: It is
necessary for object detection by the background subtraction method to align the
observed image exactly with the background image. As we mentioned in Section
2.4.3, however, it is hard to attain pixel-wise exact alignment between the observed
image and background image generated from the APS/APP under a smooth (non-
stop) camera motion. To guarantee good conditions for the background subtraction
method, therefore, the camera should be made to stop to observe the scene and
maintain its pan-tilt-zoom parameters until the image capturing is finished.

Motion blur avoidance: A fast camera motion causes motion blurs in the observed
image and they incur many false alarms in the background subtraction method.

L If the camera can accept external triggers, the system can capture images whenever required.

62 Active Background Subtraction for Object Tracking

The degree of motion blurs depends on the shutter speed and the rotational velocity
of the camera:

e A fast shutter speed can avoid motion blurs in the observed image. To perform
such image acquisition, (1) the camera has to possess a mechanism for control-
ling the shutter speed and (2) bright illumination is required to observe the
scene with a short exposure time. That is, the restrictions about the camera
function and the scene condition are required.

e The rotational velocity in the observed image is determined depending on the
following factors: (1) the focus length of the camera, (2) the rotational velocity
of the camera, (3) the distance between the camera and the object, and (4) the
velocity of the object motion. Only the above factors 1 and 2 (i.e., the focal
length of the camera) can be adjusted by the system. If the focal length is
short (namely, the view angle of the camera is wide), the rotational velocity of
the camera decreases because it is enough to keep tracking the target object.
Then, motion blurs can be prevented. However, the camera cannot observe a
high resolution image of the object. If the focal length is long (namely, the
view angle of the camera is short), on the other hand, the rotational velocity
of the camera increases to keep tracking the target object, and then motion
blurs appear. Motion blurs, therefore, cannot be prevented to keep obtaining
the meaningful target image as long as the camera captures the image while
changing the camera parameters.

While we can solve the problem of motion blurs by analyzing them and removing
their effects from the observed image[WGCM96], this analysis unfortunately makes
real-time processing difficult.

Hence, in our tracking system, the camera repeats a ‘stop and motion’ process to stably
detect object regions by the background subtraction method without the strong restric-
tions about the camera and the scene.

In the basic scheme of active background subtraction, image capturing, image process-
ing, and camera control are, in turn, activated by the information managed by the other
functions:

Image capturing: After the camera stops, the image is captured.

Image processing: After the newest image is captured, the system detects objects in
the captured image.

Camera action: After the information of the detected object is obtained, the system
determines and starts the next camera action.

3.2 Active Background Subtraction with the FV-PTZ camera 63

3.2.2 Object Detection Algorithm

3.2.2.1 Generating the Panoramic Background Image

For active background subtraction, we utilize our earlier proposed APS/APP image model
as the background image model. The reliability of object detection with the APS/APP
image depends on the following factors:

1. Accuracy of the fixed-viewpoint.
2. Precision of the estimated (geometric and photometric) internal camera parameters.

3. Differences in the camera parameters between the observed image and generated-
background image.

To guarantee the reliability of the detected result, we proposed (1) a calibration method
for fixing the viewpoint, (2) an internal parameter calibration method, and (3) active
camera parameter estimation and correction functions in chapter 2.

In addition, to increase the accuracy of object detection, we adaptively change the
threshold for the background subtraction method depending on the coordinates in the
APS/APP. The practical procedure for the variable threshold is as follows:

1. Generate the APS/APP image.

2. Capture the stationary background image while changing the pan-tilt-zoom param-
eters.

3. Re-project all captured images onto the APS/APP screen, and compute the gray
level differences between the re-projected images and the APS/APP image for each
pixel.

4. Record the maximum difference for each pixel into a virtual screen whose data
structure is identical to that of the APS/APP screen.

The pixel values in the above new virtual screen are considered to be the thresholds for
the background subtraction method. We call this newly generated image the Threshold
APS/APP image.

3.2.2.2 Image Capturing and Correction

A captured image can be affected by various image distortion factors. On the other hand,
the background image generated from the APS/APP image is a good approximation of
the perspective projection, because the APS/APP image is corrected by the estimated
internal camera parameters. This difference between the captured and generated images
incurs detection errors.

To solve this problem, the captured image also needs to be corrected by the estimated
internal camera parameters. The image correction is implemented by the same method
as the generation of the APS/APP image.

64

Active Background Subtraction for Object Tracking

Target object direction
‘ (Pobi(to), Tobi(to))

Cameraview direction

y (Peam(to) ,'Tcam(tﬂ))

Image plane

Figure 3.3: Directions of the Camera view and the target object.

3.2.2.3 Background Subtraction

The system repeats the following steps for object detection:

. Capture the image just after the camera motion is stopped. Let the image capture

time be tg.

. Correct the distortions of the captured image.

. Generate the background and threshold images from the APS/APP and threshold

APS/APP images, respectively, according to the current pan-tilt-zoom parameters.

. Compute the gray level difference between the captured and generated-background

images.

. Compare the difference with the threshold image. If a pixel value of the difference

is larger than that of the threshold image, this pixel is considered to be in an object
region.

. Compute (1) the centroid of the detected object region and (2) the number of pixels

considered to be in the object region (this number is denoted by NP;). The 2D
vector from the image center to the computed centroid is denoted by (x4, y4).

. Based on the information of the target object (i.e., (x4,y4) and NP;), the system

determines the next camera parameters (mentioned later).

3.2 Active Background Subtraction with the FV-PTZ camera 65

3.2.3 Camera Control
3.2.3.1 View Direction Control

The system determines the next view direction of the camera based on the detected object
information (i.e., (z4,yq)). We define a straight line from the projection center to the FOE
on the image plane as the view direction of the camera? . To gaze at the target object,
the system turns the view direction of the camera towards (x4, y4) in the observed image
taken at tg. Let (P (t), Team(t)) and (P (), Top;(t)) denote the pan-tilt directions of
the camera view and those of the target object, respectively, and f(t) denote the focal
length of the camera at t. The direction from the projection center to the target object
at ty is represented by

(ot)= (et) (mmsmteaton) g

as illustrated in Figure 3.3.

Then, to capture the target object at the image center in the next capturing time
(denoted by t1), the current view direction of the camera (Ppgy (), Team(t)) should be
changed by (arctan(zy/f(to)), arctan(yq/ f(to))). That is,

(Pcam(tl)) . (Pcam(tO) > + (arctan(md/f(tg)) > _ < Pobj(tO) > (3 2)
Tcam (tl) o Tcam (tU) arCtan(yd/f(tO)) B Tobj (tO) .
For the background subtraction to obtain a successful result, the camera has to stop
before the image is captured. The system, therefore, controls the view direction and holds
it at (Ppy;(to), Tonj(to)). To confirm the camera motion, the system continues inquiring
about the camera’s current view direction (i.e., (P.am(t), Team(t))) until the difference
between (Propm (t), Team(t)) and (Poy;(to), Tobj(to)) is less than the threshold. When the
current camera parameter satisfies this criterion, the system starts image capturing and
object detection again. Let the time when the system captures the next image to + t,* .
The time spent in controlling the view direction (i.e., t; — (o + ¢,)) is determined by
(arctan(z4/ f (1)), arctan(yq/ f(tp))) and the motion characteristic of the camera.

3.2.3.2 Zoom Control

The objective of view direction control is to track the target object while keeping its
captured silhouette at the center of the observed image. On the other hand, the zoom is
controlled to accomplish the following two tasks:

Stabilization of tracking: To keep capturing the object’s silhouette in the image with-
out failure, the zooming factor should be controlled so that the view angle becomes
wider.

2 Namely, the view line is identical to the optical axis of the camera.
3 See, Figure 3.2.

66 Active Background Subtraction for Object Tracking

Acquisition of precise object information: To observe a high resolution image of
the object, the zooming factor should be controlled so that the view angle becomes
narrower.

The zoom controlling method is designed to take into account the above conflicting tasks.

We evaluate the degree of achievement of the above two tasks by the centroid of the
detected region (i.e., (x4,y4)) and the pixel count of the detected region (i.e., NPy). If
the distance between the image center and the centroid of the detected region is smaller
than the threshold Consty (namely, ||(x4,yq)|| < Consty), the system considers that the
current view angle is wide enough to keep tracking the target object and controls the
zoom parameter to zoom in. Let the total number of pixels in the observed image be
NP;. The zoom parameter is then adjusted so that the rate of NP; (namely, NP;/N Py)
becomes the predefined constant. Otherwise (namely, ||(z4,yq)|| > Consty), the camera
zooms out to increase the tracking stability.

In the above discussion, we do not address the time spent in changing the zoom
parameter. Although all of the camera parameters are controlled at the same time (to+17,
in Figure 3.2), the intervals spent by them might differ from one another. To track the
target object persistently, the view direction control should have a higher priority than
the zoom control. Accordingly, the system stops zooming when the view direction reaches
the destination (i.e., (P (to), Ton;(to))) even if the zooming has not finished.

3.3 Experiments

3.3.1 System Organization

We conducted experiments with the following architecture:

Active camera: SONY EVI-G20: When the camera angle and the zooming factor were
changed for tracking, both of them were controlled at the maximum speed? .

PC: Sun Microsystems Sun Ultra2-1300.

Image capturing board: Active Imaging Snapper: We calibrated the internal camera
parameters of EVI-G20 for a 640 x 480 [pixels| image as discussed in chapter 2.
In this experiment, however, we resized the gray image from 640 x 480 [pixels] to
320 x 240 [pixels| in order to cancel the effect of interlace scanning. The internal
camera parameters were adjusted to the image size:

e 0, (x9,%0) and FOE: a half of the original values.
e r: four times of the original value.

e (0., b, 0.) and a: No transformation.

4 The mechanical specifications of EVI-G20 are shown in Section 2.5.2.1.

3.3 Experiments 67

Figure 3.4: Generated APP image (left) and threshold APP image
(right).

3.3.2 Tracking Results

To demonstrate the effectiveness of our active background subtraction method, we con-
ducted experiments to detect and track a radio-controlled toy car. The car was manually
controlled by a human; it moved around on a 4[m] x 4[m]| flat floor while avoiding sev-
eral obstacles and sometimes stopped and changed directions. The FV-PTZ camera was
placed about 2.5[m] above the floor corner looking downward obliquely.

We first generated the APP and threshold APP images. Figure 3.4 shows these images.
In the threshold APP image, high thresholds are given especially at the edges of objects.
The threshold image, therefore, enables the system to cancel quantization errors caused
by the A-D conversion in the image capturing.

Figure 3.5 and Figure 3.6 show sequences of observed images and detected target
silhouettes. We gave a number to each observed image in the order of capture (from No.
1 to No. 40). In this experiment, the zooming factor was controlled so that the ratio of
the pixel count of the detected object region to the total pixel count of the image was 0.15
to 1. Figure 3.7 and Figure 3.8 illustrate the histories of the pan-tilt and pan-tilt-zoom
controls during tracking, respectively. The type of the history line denotes the system
state. The dotted and solid lines denote the search and tracking modes, respectively.

In images No. 1 ~ 4, the system moved the camera view along the predefined trajectory
with the widest view angle to search for an object. After the system detected an object
in the 5th observed image, the system considered it to be the target object, and the
camera was controlled to capture the centroid of the detected region at the image center
during the 6th ~ 11th observations. When the system observed the 12th image, the target
object stopped its motion. The system then started capturing the target object’s image
in a high resolution by controlling the zoom. The view angle of the camera became the
closest in the 22nd observed image. When the target object started moving again, the
system zoomed out to track it stably. In particular, from the 36th to 40th observations,
the view angle became wider because the target object moved at a higher speed.

68 Active Background Subtraction for Object Tracking

No.11 No.12 No.13 No.14 No.15

--- &

No.16 No.17 No.18 No.19 No.20

Figure 3.5: Images observed during tracking (upper: input images,
lower: detected object silhouette).

3.3 Experiments

No.36 No.37 No.38 No.39

Figure 3.6: Images observed during tracking (upper:
lower: detected object silhouette).

No.40

input images,

69

70

Active Background Subtraction for Object Tracking

--%-- Search Mode
—»— Tracking Mode

L] L] L] L] T ‘10
1 -5
40 g
=]
15 z
Q
@
1 10
1 15
1 20
1 25
.eme=meXStart
2k L 30
5 10 15
Tilt Angle
Figure 3.7: History of pan-tilt control.
===+ Search mode
start
Horizontal View Angle —x»— Tracking mode ‘,x
45 r end X
40
35
30
25
20
15
10
-10

0

5
15 Tilt Angle
20
Pan Angle 25 30 -15

Figure 3.8: History of pan-tilt-zoom (horizontal view angle) control.

3.4 Concluding Remarks 71

The entire tracking period was 22 seconds (i.e., about 1.8 image-observations/second
on average). The interval between observations was not short enough to stably track
the target object and satisfactorily acquire the object information. The reason why the
interval was this long was because the image capturing could not be done while the camera
was moving in order to avoid motion blurs. That is, the long interval between observations
was caused by the mechanical characteristic of EVI-G20 (T, > T,)° .

3.4 Concluding Remarks

We proposed an object tracking system with an active camera. We employ an active back-
ground subtraction method with the FV-PTZ camera for object detection and tracking.
The system keep tracking a target object persistently as follows:

e The system detects object regions in the observed image taken with any combina-
tions of pan-tilt-zoom parameters by the active background subtraction method.

e The system controls the camera not only to keep tracking the target object but
also to capture the object image in as high resolution as possible while taking into
account the information of the detected target object.

In order to augment this tracking method, the following technical problems remain:

e Study on an object detection method that can work independent of the camera’s
actions (e.g., employing optical flow analysisfMWM98b]).

e Consideration of the target motion and camera motion. As mentioned in Section
3.3.2, the time spent in controlling the camera is longer than the time for the other
processes. This long interval makes reactive tracking difficult. To solve this problem,
a type of prediction-based camera control that takes into account the target motion
and camera motion might be effective. Such a method is described in the next
chapter.

e Realization of more flexible system dynamics. A sequential perception-action cy-
cle is too simple to reactively cope with dynamic object motion. For the flexible
system dynamics, therefore, both the perception and action functions should be
implemented as parallel modules. In the next chapter, we propose a Dynamic Vi-
siton, where the perception and action modules work together while dynamically
interacting with each other.

5 In this system, the image capturing, generation and subtraction processes are completed in less than
one video cycle (i.e., 1/30 [sec]).

Chapter 4

Real-time Object Tracking with
Dynamic Memory

4.1 Dynamic Integration of Visual Perception and
Camera Action

In the last chapter, we proposed an active background subtraction method for object
detection and tracking. The basic scheme for this method is to simply repeat the steps
described in Section 3.2.1.

To improve the dynamics of this tracking system, a prediction-based active vision
system using an active camera is proposed in [MWM99]. The system incorporates a so-
phisticated temporal coordination mechanism among image capturing, image processing,
and camera control. That is, the functions of the system’s perception and action mod-
ules are well-coordinated to work together. Figure 4.1 shows the dynamics of the system
developed in [MWM99]. For object tracking, the system incorporates a prediction-based
dynamic control method (1) to cope with delays involved in the image processing and
physical camera motion and (2) to synchronize the image acquisition and camera motion.
With this prediction-based method, the system adaptively controls both the camera pa-
rameters and the next observation timing so that a ‘best-looking’ object image can be
captured. While this system employs a sophisticated prediction-based camera control, its
fundamental dynamics is still limited to the sequential one; the activations of the percep-
tion and action modules are just interleaved on the temporal axis (Figure 4.1). That is,
one module stays idle while the other is activated.

Such sequential control introduces non-smooth camera motions and intermittent ob-
servations. Furthermore, the system dynamics realized by the sequential steps is too
simple to cope with dynamically changing situations as found in the real world. To over-
come these disadvantages, a flexible system dynamics to control visual perception and
camera action should be incorporated into the system. That is, we should introduce a
dynamic system architecture, where perception (image capturing and image processing)
and action (camera control) modules run in parallel. Such an architecture would allow
the system to adapt itself to dynamically changing situations in the real world.

73

74 Real-time Object Tracking with Dynamic Memory

Action
Action * ° (Camera action)
g o Sl o 77 i
£ 5| 2 Perception
% § % § //% (Background image generation)
3| 8 3| 8 N Perception
° ° o &\\ (Bacek%round subtraction)
Perception ” * *
o ® Perception
5 5 (Object detection)
& &
@) O

Figure 4.1: Dynamics of the object tracking system proposed in
[MWMO99].

4.1.1 Dynamic Vision

The fundamental functions of the tracking system are summarized as follows:

Image capturing: When a meaningful image can be observed, the system captures the
image.

Image processing: The system analyzes the captured image to detect an object.

Camera Action: Based on the information of the detected object, the system deter-
mines the next camera parameters (i.e., pan-tilt angles and zooming factor). The
system then starts controlling the camera.

Since the camera parameters at the time when the image is captured are required
to analyze the observed image taking into account the camera motion, the perception
module has to require them from the action module. Similarly, in order to determine the
next camera parameters to gaze at the target object, the action module has to request
the target object information from the perception module.

The above information flows between the perception and action modules are illustrated
in Figure 4.2. The perception and action modules are activated alternately, and their
functions depend on each other. We therefore have to design temporal interaction between
the two modules.

The integration of visual perception and camera action has been studied in Active Vi-
sion [AWBS8] [Bal89] and Visual Servo [Bro90] [WSN87]. In the former, although many
studies have been done on the Where to Look problem (i.e., geometric camera motion
planning based on image analysis), only a few analyses have been done on the system
dynamics. Weiss—Sanderson—Neuman [WSN87] called this dynamics the ‘static look and
move structure’ where visual perception and camera control modules are activated se-
quentially.

4.1 Dynamic Integration of Visual Perception and Camera Action 75

Camera parameters

4/\

Perception Action
Module Module

\—/

Target information

Figure 4.2: Information flows between the perception and action mod-
ules for object detection and tracking.

When to Look
How to Look
4 \ AN
Image Image Action .
Capture Analysis Command InAction

\ 4

N

Per ception Where to Look Action

Figure 4.3: Information flows in dynamic vision.

In visual servo, on the other hand, various dynamic control methods have been studied
based on the control theory. For example, Brown[Bro90] showed that prediction-based
control is effective for coping with delays.

In visual servo systems, visual perception and camera control modules work in parallel
and the information flows continuously through the signal lines connecting the modules.
However, the inter-module interactions are rather simple and fixed. First of all, the types
of information exchanged between the modules are exactly the same as those of active
vision. Second, the interactions are continuously synchronized by analog and discrete
time parameters and no asynchronous interaction mechanisms are incorporated. In fact,
asynchronous events usually happen in the real world. That is, the world itself has its
own dynamics, which exhibits asynchronous features as its complexity increases. To make
a system work adaptively in such complexity, we should develop more flexible dynamic
interaction mechanisms between visual perception and camera control modules.

Based on the above discussions, Matsuyama[Mat98] proposed a novel scheme named
Dynamic Vision, where event-driven asynchronous interactions are realized between visual
perception and action modules. The distinguishing characteristics of dynamic vision are
as follows.

e In a dynamic vision system, complicated information flows are formed between

76 Real-time Object Tracking with Dynamic Memory

visual perception and action modules to solve the When to Look and How to Look
problems as well as the common Where to Look problem (Figure 4.3).

Where to look problem: Based on the result of an image analysis, the system
decides the next gazing location and the viewing trajectory. The system then
starts controlling the camera.

When to look problem: The next camera action gives the system the subsequent
image capturing timings. These timings are determined by taking into account
both the object motion and the mechanical characteristic of the camera. For
example, the image capturing timings should be determined depending on the
camera motions, because quick motions can degrade observed images.

How to look problem: When the image capturing timings are determined, the
system is also endowed with the appropriate way to detect object regions.
Actual examples are given in the following:

— If the interval until the next capturing is long enough for the camera to
gaze the goal direction and stop its motion, the background subtraction
method is suitable for object detection.

— If the camera cannot achieve the above stop-and-sensing observation due
to mechanical limitations, another object detection method is required’ .

That is, the image analysis should be facilitated by the camera parameters
(focus, iris, zoom as well as motion parameters).

In this thesis, however, we do not focus on the ‘how to look problem’ in order
to concentrate on designing the system dynamics, and detect object regions
only by the background subtraction method.

e The system dynamics is represented by a pair of parallel time axes, on which the
dynamics of visual perception and action modules are represented. The dynamic
interactions between the modules are represented by inter-time-axes coordinations.

4.1.2 Dynamic Memory Architecture: Asynchronous Inter-Module
Interaction

To realize dynamic vision systems, we have to make the modules run in parallel and
develop an asynchronous dynamic interaction mechanism between the modules. The
asynchronous interactions cause the following problems:

Problem 1: A reactive response from the other module is not guaranteed due to the
asynchronization between the modules; when a module requires the other module
to transmit its information, the requested module might not reactively respond to
the requirement because it is executing its own task autonomously.

1 In [MWMO98Db], object regions are detected while a camera is rotated based on the optical flow analysis.

4.1 Dynamic Integration of Visual Perception and Camera Action 7

Problem 2: The required information at a certain moment is not necessarily obtained
because each module repeats its own cycle autonomously; if a module requires the
information at 7" from the other module, the requested module might not have the
information at 7.

To support such asynchronous inter-module interactions, Matsuyama et al.[MHW™00]
proposed a novel dynamic system architecture named the Dynamic Memory Architecture,
where parallel modules share what they call the Dynamic Memory. The dynamic memory
architecture maintains not only temporal histories of state variables such as camera pan-
tilt angles and target object locations but also their predicted values in the future. The
modules are implemented as parallel processes that dynamically read from and write into
the dynamic memory according to their own individual dynamics. The dynamic memory
supports asynchronous dynamic interactions (i.e., data exchanges between the modules)
without wasting time for synchronization. This no-wait asynchronous module interaction
capability greatly facilitates the implementation of real-time reactive systems such as a
moving object tracking system.

We, therefore, can solve the above two problems by employing the dynamic memory:

1. The dynamic memory mediates between all of the modules for the asynchronous
information exchanges. Each module writes/reads shared information to/from the
dynamic memory.

2. Reading the values from the dynamic memory enables the system to obtain infor-
mation at an arbitrary time.

Based on the above discussion, we define the organization of the dynamic vision system
with the dynamic memory as follows (Figure 4.4):

e The parallel perception and action modules read the image from the camera and
control the camera, respectively, according to their own individual dynamics.

e The system contains the dynamic memory, which records the information about the
system (e.g., the state of a camera action) and the scene (e.g., an object location).

e Fach module interacts with the other modules through the dynamic memory.

In this chapter, we propose an active vision system for real-time object tracking, where
perception and action modules are dynamically integrated with the dynamic memory.
While the basic contents of the information exchanged between the modules are the same
as those of the tracking system proposed in the last chapter, the modules exchange their
information through the dynamic memory as illustrated in Figure 4.4. The system controls
the camera to reactively adapt itself to dynamic variations in the scene by employing not
only the prediction-based control method but also flexible information exchange without
synchronization.

In what follows, we first introduce the general concept and functions of the dynamic
memory in Section 4.2. Section 4.3 proposes a real-time object tracking system with

78 Real-time Object Tracking with Dynamic Memory

Active camera
(FV-PTZ camera)

Control

Dynamic memory
Camera Pan .
/\ predicted
Camera L ime Camera
information) 1 information
Camera Tilt | —
Ed [ISPLERN
¢ Perception s ~—"1 time ; Action
v module ; CameraZoom ! . module !
“intrinsic-” Vet ‘intrinsic”
processing /_’\/JI’ processing
cycie 0 time cycie
. 1 \/
Object | OviectPan ! ~ Object
information /\\ b information
/:'/ time
Object Tilt !
U
1
T time
1
history ! predicted vale
now

Figure 4.4: Real-time object tracking system using the dynamic mem-
ory.

the dynamic memory. In Section 4.3.3, a practical implementation of the dynamic mem-
ory for object tracking is presented. In Section 4.3.4 and Section 4.3.5, we describe an
object detection method that copes with dynamic camera motions and the design of a
sophisticated prediction-based camera control method, respectively. A quantitative dy-
namic characteristic of our system is given to demonstrate its performance in Section 4.4.
Our experimental results demonstrate that the proposed dynamic control method greatly
improves the performance of the system in terms of stability and flexibility for object
tracking.

4.2 Dynamic Memory

In general, an intelligent system such as an AVA consists of multiple modules with different
functionalities and dynamics. Thus, a key issue to design and implement an intelligent
system rests in the functional and dynamic integrations of the modules. Here we focus
on the dynamic integration of the modules, since the functional decomposition of an AVA
is rather straightforward: visual perception, camera action, and network communication

4.2 Dynamic Memory 79

=NETWORK-=._
I .

'\.‘\\ ~s

A
"\ -

-t

Communication
7 N,
’ ‘“““u LLLLULLLLLTEL T

Action

Figure 4.5: Module organization of an AVA and information flows
among the modules.

modules.
To implement an AVA, we have to integrate three modules with different intrinsic
dynamics:

1. Visual Perception: video rate periodic cycle,
2. Camera Action: mechanical motions involving rather large inconstant delays, and

3. Network Communication: asynchronous message exchanges, where inconstant
delays are incurred depending on communication activities over the network.

Figure 4.5 illustrates information flows among these modules. The problem we study
here is how we can design and implement flexible dynamic information flows, i.e., dynamic
interactions among the modules.

4.2.1 Basic Operations

In the dynamic memory architecture, multiple parallel processes such as perception, ac-
tion, and communication modules, share the dynamic memory. Each module writes its
state variable such as pan-tilt angles of the camera and the target object location. This
information is shared among all the modules through the dynamic memory. Since the
shared information is written as a temporal history (i.e., time-series data) and shared
among the modules, the time information in all the modules have to been consistent with
each other. To guarantee the time consistency among the modules, one of the following
conditions is required:

e All the modules share a single clock.

e Each module has its own time: all of the clocks are set with each other, or the offset
between them are known.

80

Real-time Object Tracking with Dynamic Memory

value
interpolated
: predicted
B = X
N H H ,
H 7/
T . Pl ’
P LS A -7
R NG
to tl o i3 t4 1!:5 i:6 l t7] l I time
T, NOW T, Ts

Figure 4.6: Representation of a time varying variable in the dynamic
memory.

In our system, all the modules work in a single processor and share the same clock in the
processor.

The read/write operations from/to the dynamic memory are defined as follows (Figure
4.6):

Write operation:

When a process computes a value v of a variable at a certain moment ¢, it writes (v, t)
into the dynamic memory. Since such computation is done repeatedly according to
the dynamics of the process, a discrete temporal sequence of values is recorded
for each variable in the dynamic memory (a sequence of black dots in Figure 4.6).
Note that since the speed of the computation varies depending on input data, the
temporal interval between a pair of consecutive values becomes irregular.

Read operation:

Temporal interpolation: A reader process runs in parallel to the writer process and
tries to read from the dynamic memory the value of the variable at a certain moment
according to its own dynamics: for example, the value at 7} in Figure 4.6. When no
value is recorded at the specified moment, the dynamic memory interpolates it from
its neighboring recorded discrete values. With this function, the reader process can
read a value at any temporal moment along the continuous temporal axis.

Future prediction: A reader process may run fast and require data which are not
written yet by the writer process (for example, the value at T3 in Figure 4.6). In
such case, the dynamic memory predicts an expected value in the future based

4.3 Real-Time Object Tracking System using the Dynamic Memory 81

on those data so far recorded and returns it to the reader process. Note that as
illustrated in Figure 4.6, multiple values may be defined by the interpolation and
prediction functions, for example, at NOW and 75 in Figure 4.6. We have to define
the functions to avoid such multiple value generation.

With the above described functions, each process can get any data along the temporal
axis freely without waiting (i.e., wasting time) for synchronization with others. That is,
the dynamic memory integrates parallel processes into a unified system while decoupling
their dynamics; each module can run according to its own dynamics without being dis-
turbed by the others. This no-wait asynchronous module interaction capability greatly
facilitates the implementation of real-time reactive systems.

Since a variable in the dynamic memory represents a state of some dynamics of an
object (e.g. pan-tilt-zoom parameters of an active camera), the interpolation and predic-
tion functions associated with the variable should be designed to well model the dynamics
of the object. As will be shown later, therefore, off-line modeling and calibration of the
object dynamics should be done a priori to define the functions.

4.2.2 Comparison with Previous Works

While the system architecture consisting of multiple parallel processes with a common
shared memory looks similar to the ‘white-board architecture[SST86]’, the critical dif-
ference rests in that the dynamic memory maintains variables whose values change dy-
namically along the temporal axis spanning the period continuously from the past to the
future.

Little-Kam[LK93] proposed an idea of the smart buffer, where virtual values are syn-
thesized to dynamically coordinate parallel processes with different processing speeds.
Their idea, however, does not include variables with dynamically changing values or their
temporal interpolation and prediction.

Zhang—Mackworth[ZM95], on the other hand, proposed constraint nets, where vari-
ables with dynamically changing values were introduced. Their major interest, however,
was in designing dynamic systems and did not refer to the dynamic integration of multiple
parallel modules like the white-board system. Thus, the dynamic memory architecture
can be regarded as an advanced dynamic system architecture integrating the white-board,
the smart buffer, and the constraint nets.

4.3 Real-Time Object Tracking System using the Dy-
namic Memory

We design a real-time object tracking system based on the idea of dynamic vision. Basi-
cally, this system is an extension of the active background subtraction system proposed
in the last chapter, and the tasks of the system are the same as those defined there:

1. Detect an object that comes into the scene.

82 Real-time Object Tracking with Dynamic Memory

2. Track it by controlling the pan-tilt parameters.

3. Capture its images in as high resolution as possible by controlling the zoom param-
eter.

In our system, the camera control (i.e., tasks 2 and 3 above) is implemented as smooth
camera motions. This is a difference of the system behavior from the system proposed in
the last chapter.

4.3.1 System Organization

The system consists of an image processor (PC) with an active camera (FV-PTZ camera).
We employ SONY EVI-G20 as an active camera. The perception and action modules and
the dynamic memory are implemented by threads on a PC.

Figure 4.4 illustrates the system organization, where the pan-tilt angles of the camera
and target object location are dynamically exchanged between the perception and action
modules through the dynamic memory. The information flows between the modules are
summarized as follows:

Information Writer Reader
Pan-tilt angles and zooming factor Action module — Perception module
Object information Perception module — Action module

4.3.2 Basic Scheme of Real-time Active Background Subtrac-
tion

The basic scheme of active background subtraction is divided into two types of processes,
each of which is executed by the perception and action modules, as illustrated in Figure
4.7.

Perception module: Detect object regions in the observed image.

Action module: Control the camera rotation and the zooming factor to capture a sil-
houette of the target object at the image center.

Figure 4.8 illustrates the real-time active background subtraction implemented by the
dynamic interactions between the perception and action modules.

4.3.3 Implementation of the Dynamic Memory for Real-time
Object Tracking

Here, we present a practical implementation of the dynamic memory for our real-time
active background subtraction system.

4.3 Real-Time Object Tracking System using the Dynamic Memory

CameraAction

35
Action

Figure 4.7: Role assignment to the perception and action modules.

Camera Action

T

Perception module Action module
Appearance Plane

(Background Image Database)

Cameramotion
characteristic:
l Pan, Tilt and Zoom

Input Image Generated Image
Determining
Camera parameters

shifted images I

i Pan-Tilt-Zoom Pararﬁaers‘_

Anomalous Regions

|

Target information:
Pan-Tilt Parameter
Target region size

Figure 4.8: Object detection and tracking by a real-time active back-
ground subtraction: the perception and action modules dy-

namically interact to work together.

84 Real-time Object Tracking with Dynamic Memory

writing thevalue V(ti) writing thevalue V(ti+1) writing the value V(li+2)

INFO; | INFOi+1
! fit) ! firact) ! time

ti fi+1 i+2

Figure 4.9: Representation of the time-series information in the dy-
namic memory.

V(tn1) the newest value V(tn)
| INFO1 | INFO,,
! fr-1t) ! fnct) time
tn—l tn

Figure 4.10: Representation of the future information in the dynamic
memory.

4.3.3.1 Describing Time Varying Information

Based on the idea illustrated in Figure 4.6, the following descriptive method is employed in
the system. The information written into the dynamic memory is a set of temporal discrete
values. We represent this information as a set of functions, each of which is defined for
every interval between the consecutive values. The temporal information INFO;, which
is valid from ¢; to ¢;;1 (where i denotes the ith updating cycle), is represented by the
interpolation function f;(¢) (Figure 4.9):

INFOl : [tiati-i—l)
fi(t)

Let t, be the time when the newest value is written into the dynamic memory. To
implement future predictions in the dynamic memory, the prediction function f,(¢) that
is valid after ¢, is required (Figure 4.10):

INFO, : [t,, 0)
fu(®)

Since each module writes the newest value into the dynamic memory while working,
the information should be renewed. Suppose that a module has observed data about

4.3 Real-Time Object Tracking System using the Dynamic Memory 85

information INFO at ¢; (i = 1,---,n) and the new (n + 1)—th data is obtained at ¢, ;.
The module writes it into the dynamic memory to update the information maintained in
the dynamic memory as follows:

INFO; : [ti, ti41) INFO;, : [t), t;41)
fi(t) 9;(t)
(t=1,---,n—1) — (j=1,---,n)
INFO,, : [t,,) INFO, 11 : [tpy1,00)
fu(t) n+1(t),

where fi(t) (i=1,---,n—1) and g;(t) (j =1, --,n) denote interpolation functions, and
fn(t) and g,41(t) prediction functions.

4.3.3.2 Target Object Information

The information of the target object that is exchanged through the dynamic memory
should satisfy the following properties:

e The shared information has to be obtained from the object image observed by the
perception module.

e To write the information into the dynamic memory as time-series data, the infor-
mation has to be numerical values.

e The object information is utilized by the action module to control the camera for
object tracking? . The shared target object information should, therefore, be mean-
ingful for the action module to determine the next pan-tilt-zoom parameters.

In this system, the direction and the scale of the object are regarded as the object
information shared by the dynamic memory (Figure 4.11):

Object direction ((Fob;, ,Tob;,)): The direction is determined by the projection center
of the camera and the centroid of the detected object region in the observed image.
This information is required for controlling the pan-tilt angles towards the target
object.

Object scale ((Psobj, , Tsobj,)): The scale is determined by the projection center of the
camera and the rectangular window that includes the detected object region in the
observed image. This information is required for controlling the zoom parameter.
By representing the object size in the observed image as the angular values, the
represented values can be consistent even if the zoom parameter is changed.

2 For a multi-target tracking system, the perception module also requires the object information for
object identification. We will address this problem in the next chapter.

86 Real-time Object Tracking with Dynamic Memory

Rectangular window

Projection
center

— |
Object d

Image plane

Figure 4.11: Representation of the object information.

4.3.3.2.1 Target Motion Model and Motion Estimation and Prediction using
Kalman Filter

In the dynamic memory, the observed information is written as discrete values. Since
these values include errors, estimating a reliable value from them is important. We solve
this problem by the Kalman filter. The Kalman filter (1) estimates a true value at the
current time and (2) predicts a value in the future, from a set of measured values based
on the predefined state model.

Motion and measurement models of the target

To employ the Kalman filter for representing the object direction and scale, the state
equation of the target motion is required. We model the target motion during a processing
cycle of the perception module as follows:

Direction model: The direction of the object is modeled to be a constant angular ve-
locity motion around the projection center of the camera.

Scale model: The varying rate of the object scale is modeled to be a constant.

Since a processing cycle of the perception module is short enough, these assumptions
about the target motion are valid.

Let (Pobjn, Tobjn) and (Psobjn, TSObjn) denote the varying rates (i.e., differential values)
of the object direction and scale, respectively. If the system state is represented by

. . . . T
Ly = (Pobjna Tobjna PSobjna TSobjna Pobjna Tobjna PSobjna TSobjn)) (41)
the state equation of the target motion is represented as follows:

x,1 = Fzx, + Gw, (4.2)

4.3 Real-Time Object Tracking System using the Dynamic Memory 87

provided that

(I, At-IL (o, B T
F_<04 I4)7 G_<I4) w_(w17w27w37w4))

where I4: a 4 x4 unit matrix, O4: a 4 x4 zero matrix, At: the interval between consecutive
frames, and w; {i[i = 1,2,3,4}: white noise whose average and variance are 0 and o, ,

T
respectively. On the other hand, the measured value y,, = (Pébjn,Tébjn, Piopi. s Tgobjn) ,
which includes the error v, is represented by

y,=Hx, +v, (4.3)

provided that
H = (I, 04), v = (01,02,03,04)T,

where v; {ili = 1,2,3,4} denote white noise whose average and variance are 0 and oy,
respectively.

Estimation and prediction from measured values

If the motion and measurement models of the target are represented by equations
(4.2) and (4.3), the estimated value &, and the predicted value &, are computed by
the following equations:

z, = z,+K,(y,— Hz,), (4.4)
a_3n+1 - Fi’n, (4:5)
(4.6)

where K, denotes the Kalman gain:

K, = P, H' (I, +HPH") ',

Pn\n = /ﬁn|n—1 - KnHﬁnm—l;
ﬁn-i—l\n = Fﬁn\nFT + Q

where a 8 x 8 matrix @ is represented by

0, 0,
0000
Q = 0 22 0 0
00 o 9 C
v3
0 0 0 2w

Ovy

In the above discussion, we assume that a processing cycle of the perception module
(i.e., At) is constant. In general, however, At varies depending on the observed image.
We, therefore, regard At as a variable value.

88

Real-time Object Tracking with Dynamic Memory

Object information

» predicted value
P X ()

®

e Yo
X, !
‘estimeted value | newly measured value

tn-1 ta to t
now

OBJi-z:[ta-2,ts-1) OBJ-1:[ta-z,tn) OBJ:[ta,)
X, X, (®) X,

@ Modifying object trajectory

Object information

r modified predicted

object trajector
X...(0)) A Y
newly estimated value

tn-z tn tna t

OBJi-z:[tn-2,tr-1) OBJaz:[te-1,tn) OBJ:[ta,0) OBz [tnsz,00)
X, () X, () X () X, (1)

Figure 4.12: Updating the object motion trajectory.

4.3 Real-Time Object Tracking System using the Dynamic Memory 89

4.3.3.2.2 Describing Target Motion

We here show how the Kalman filter updates the information in the dynamic memory.
Let OBJ; denote the information about the target object at ¢ (¢t € [t;,t;11), where i
denotes the ith observation).

Suppose that observations at ¢; (i = 1,- - -, n) have been done. In the dynamic memory,
the target information modified at ¢, (i.e., OBJ,) is represented as follows:

OBJ, : [tn,0) (47
(Pobjna TobjnPSobjna TSobjna Pobjna Tobjna PSobjna TSobjn) - fcn+1 (t) .
! ! ! ! T :
(Pobjnﬂ,TobjnH,PSObjnH,TS()bjnH)) is detected
by the perception module, the dynamic memory rewrites the data (Figure 4.12). Let

Atpi1 = tyy1 — t,. Initially, the predicted value at t,,; is computed from equation
(4.6) :

If a new data at t,41 (ie., y,,, =

Tyi1(tnt1) = F(Atn1)Znta (tn). (4.8)

Then, the estimated value &, is obtained from equation (4.5):

Zpi1 = Tpp1(tnyr) + Knp (yn+1 —Hz, (tn-l-l)) . (4.9)

From equations (4.8) and (4.9), the information of the target object at and after ¢, is
updated as follows:

OBJ, : [tp,o0) = OBJ,: [tny tri1)
Lnt1 — Tn (t —t,) + T,

:EnJrl(t) =
tnr =t (4.10)

OBJyy1t [tns1,00)
Zpia(t) = F(t —thp1)@nga-

4.3.3.3 Camera Information

4.3.3.3.1 Camera Motion Model

Controlling the pan, tilt and zoom parameters of the camera can be classified into two
types, namely specifying the direction/focal-length and the velocity! . As mentioned at
the beginning of this section, we implement a smooth camera motion. For this motion,
specifying the velocity is appropriate because specifying the direction/focal-length forces
the camera to suspend its motion after controlling the camera parameters. We, therefore,
control the camera parameters by specifying their velocities.

The management of the camera motion history in the dynamic memory involves some
complications, because the action module controls the speed of each camera parameter
and, at the same time, measures the pan-tilt angles and the zoom of the camera.

3 In equation (4.7), ,11(t) denotes the predicted value at and after t,. If t = t,,, however, Z,1(t) is
equal to the estimated value at t,, (i.e.,). Consequently, €,11(t,) = Zp,-
1 SONY EVI-G20 accepts both the direction/focal-length and velocity specifications.

90 Real-time Object Tracking with Dynamic Memory

First of all, we conducted experiments to model the dynamics of the FV-PTZ camera
(EVI-G20) and found that it can be well described by ‘the first-order lag and dead time
model’ and ‘the first-order lag model’ in the pan-tilt angles and zoom controls, respectively.
The following represents the obtained dynamics of the FV-PTZ camera.

Pan-tilt angles

Suppose that the pan-tilt velocities at ¢ = 0 are (Pcamo, Tcamo) and the pan-tilt veloci-
ties’ control commands (Prom, Tc(_)m) are sent to the camera at the same time. Then, the
pan-tilt velocities (denoted by (Peam(t), Team(t))) are represented by

B (f) = Pc‘amo . . (0<t<T)

cam (Peom = Pramy) (1= exp (=557)) + Peamo (7 < 1) .

: Team, 0<t<T) (4.11)
Team(t) = (Tcom — Tcamo) (1 — exp (—t%)) + Tcamo (1<t

where 7 and 7' denote the dead time and the time constant, respectively. By integrat-
ing the above equations, the pan-tilt angles at ¢ (denoted by (Peam(t), Team(t))) can be
obtained:

4

Pcam0+tpcam0 (0§t<7’)
{ Pcamo + Tpcamo + (t - T) Pcom

L +T (exp (_t_TT) - 1) (Pcom - Pcamo) (T S t)

(Tca.mo + tTca.mo) (0 S t < T)

Tcam (t) = { Tcamo + 7_Tcamo + (t - T) Teom
| 7 (exp (=57) = 1) (Teom — Teamo) (T < 1)

Peam(t)

(4.12)

where (Peamgs Team,) denotes the pan-tilt angles at ¢ = 0.

The dead time 7(= 44[msec]) and the time constant 7'(= 63[msec]) were determined
by intensive experiments. Figure 4.13 illustrates a pan angle history; the pan velocity
control command (166°/sec) is sent to the camera when the pan angle is 20°. The solid
line and the dots denote the first-order lag and dead time function and the measured
values, respectively. Figure 4.13 shows that the angular dynamics of EVI-G20 is well
described as the first-order lag and dead time model.

Zoom

We represent the dynamics of the zooming factor as the history of the view angle.
Then, the dynamics of the zooming factor can be described as the first-order lag model.
The velocity and position of the view angle at ¢ (denoted by Zeam(t) and Zeam(t), respec-
tively) are represented as follows:

. . . ¢ .
Zeanl®) = (Zeom = Zeamn) (1= €50 (7)) + Zeams (4.13)

. t . .
anm(t) - anmo + (t) Zcom + T (exp <_f> - 1) (Zcom - anmo)) (414)

4.3 Real-Time Object Tracking System using the Dynamic Memory 91

pan angle (degree)
T T T

- T T
simulated camera position
measured camera position +

+ + +

.30 1 1 1 1 1 1
0 100000 200000 300000 400000 500000 600000 700000
time (usec)

Figure 4.13: Angular dynamics of the FV-PTZ camera.

where Zcom denotes the zoom velocity control command sent at ¢ = 0, and anmo and
Zcam, denote the velocity and the position of the view angle at t = 0, respectively. The
time constant 7'(= 30[msec]) was determined by intensive experiments.

4.3.3.3.2 Describing Camera Motion
Suppose that we have the following information about the camera motion in the dy-
namic memory (Figure 4.14 ° A):

CAM,,

—

tpn, 0)

Ay (t
t

(
(
(t
(t

aMmp (t

3

NS
o
=)

&
2
3

~

~— N e —

(4.15)

A~
&
=)

3

o3
&
2

B

N

where ¢, denotes the time when the nth camera control is done, and (Peam, (%), Team, (%)),

Zeam,, (t) and (Peam,, (t), Team,, (t)), Zeam, (t) denote the position and the velocity of pan-
tilt-zoom parameters, respectively. Equations (4.11) and (4.14) express that the camera

5 Although Figure 4.14 illustrates only the pan angle history, other parameters are also updated and
modified by the same method.

92 Real-time Object Tracking with Dynamic Memory

velocities converge in the specified control command (i.e., Pcom, Tcom and Zcom). That is,
the velocity error does not accumulate. The position errors, on the other hand, accumulate
while the camera parameters are controlled. To solve this problem, the dynamic memory
has to update the camera motion history while correcting the positions of the pan-tilt-
zoom parameters.

When the camera speed control command (Pcomn+17Tcomn+17Zcomn+1) is sent to the
camera at t,.1, CAM,, (equation (4.15)) is changed to equations (4.16) and (4.17) using
the camera dynamics in equations (4.11) ~ (4.14) (Figure 4.14 B):

CAMn . [tn, tn+1)

), (4.16)

CAMn-H : [tn+1,00)

(Pca«mn (t) (tn-i-} <t< tn—l—l + 7')
P (1) = % Pream, (tny1 + i) + _(t — tng1 —'7') Peom, 1
camy 1 +T (exp (—==22) = 1) (Peomny — Peam, (tns1 + 7))
. (tn+1 +7 < t)
(Tcamn (t) (tn-i-‘l <t< tn-i—l + 7')
T (1) = {0 Uiy #7) + U Tt) Toomars
+T (exp (=+) 1) (Tcomn+1 Team, (tns1 + 7'))
\ (tn+1 +7 S t)

anmn+1 (t) = anmn (tn-i—l) + (t - tn-l—l) Zcomn+1

+T (exp (_HTTH—I) - 1) (Zcomn+1 - anmn (tn-i-l)) (417)
(]:Dcamn (t) (tn+1 S < tn+1 + T)
= o Pca.mn (tn + 7_)
Pcamn+1 (t) N { + (Pcom:: - Pca,mn (tn—l—l + T)) (1 — €exp (_titnitliT))
\ (tn+1 +7 < t)
(Team, (£) (tnyr <t <tppr +7)
:) Team, (s + 7)
Teama (1) = 9 + Tmm:l = Team, (tnia +7)) (1= exp (—=252=))
(tns1 +7 < 1)

anmn+1(t) = (Zcomn+1 - anmn (tn+1)) (1 — €xXp (= tn“)) + anmn (tns1)

After sending the command, the action module reads the current pan-tilt angles (P,
T") and focal length (Z') at t'(> t,,41) from the camera. Then, some discrepancies (P, ;,
T Z) may be found between the predicted and observed pan-tilt angles (Figure

errp 419 errp41

4.3 Real-Time Object Tracking System using the Dynamic Memory

Pan 4
(pcumnu ’:rwmrhl)
camera measured new camera
command vaue command
: Peam, (1)
t: CAM,[ts, o) f t
1 Peam, (t)
' . tne
1 Peam, (1) now
@ updating camera trajectory
Pan A
Pcamn+l (t)
new camera measured new camera newly

command value command measured value

3 ‘ Pear, (1)
o - K
; CAM,, :[tn,tne1) ; CAM .1 : [tasz,00)
; Peam, (t) ! Peam,,; (t)
! Pean, (1) ‘ t Pean,.., (t)
now
@ modifying cameratrajectory
Pan 4 Pean,... (+ Epas (1-exp(- g)
new camera measured new camera measured
command Vvalue command value " Pea,., (1)
‘ g t
P CAM, [ta,tu) 3 CAM..,; [tn.: , 00)
l 'Pcamn ® ; F’camn,l ()+ Epn.: (1-exp(— ﬁ))—)
Pean, () ! Pean, (1)

Figure 4.14: Updating an modifying the camera motion history.

94 Real-time Object Tracking with Dynamic Memory

4.14 B):
Perrn+1 — Pl - Pcamn+1 (tl)
Terrnﬂ = T - Tcamn+1 (t,)-
Zerrn+1 — Z, - anmn+1 (t,)

To reduce these discrepancies and generate a smooth camera motion trajectory in the
dynamic memory, we modify CAM,,,; as follows (Figure 4.14 C):

CAMn+1 : [tn+laoo)

Pcamn+1() = amn+1(t) + Perrn+1 (1 eXp(_%))

Teamass (1) = Teampsr (1) + Torry s (1= exp(—525))

anmnﬂ() = ananrl(t) + Zerrn+1 (1 - eXp(_ﬁ)) ’ (4'18)
Pcamn+1 - Pca.mn+1

Tcamn+1 - Tcamn+1

anmn+1 - anmn+1

where a (= 1.25) and b (= 0.22) denote the time constants.

4.3.4 Perception Module: Dynamic Object Detection Method

The perception module repeats the following tasks:
1. Read the current pan-tilt-zoom parameters from the dynamic memory.

2. Generate the background and threshold images from the APS and threshold APS
images, respectively.

3. Obtain the subtraction image between the background and observed images, and
compare it with the threshold image for object detection.

4. Compute the centroid and the rectangular region of the detected object in the
observed image.

5. Write them into the dynamic memory.

To make this background subtraction work well, we have to align the synthesized
background image exactly with the observed image. To attain the accurate alignment, in
turn, the perception module has to obtain the current pan-tilt angles since the camera is
moving continuously. This is exactly the place where the dynamic memory plays a crucial
role; the pan-tilt angles are measured by the action module and recorded into the dynamic
memory, based on which the current pan-tilt angles are interpolated or predicted by the
dynamic memory to answer the read request from the perception module.

Note that even with the dynamic memory, pixel-wise exact alignment between the
background and observed images is hard to attain. The perception module compensates

4.3 Real-Time Object Tracking System using the Dynamic Memory 95

for such a small misalignment (the left column in Figure 4.8): several shifted versions
of the observed image are generated and their differences from the background image
are computed. The image with the least overall gray level difference is regarded as the
result of the background subtraction. The effectiveness and limitations of the comparison
between shifted images are described in Section 2.4.3.

Note also that since an image is captured during the camera motion, it is corrupted
with motion blurs. To cope with motion blurs, the perception module has to establish
object detection taking into account the following two factors:

e The sensitivity of the subtraction should be lowered around high contrast edges
in the observed and background images. The threshold image proposed in Section
3.2.2.1 is useful for suppressing any sensitive subtraction around edges.

e The image should be captured when the camera moves slow enough. To determine
the proper capturing timing, the perception module has to inquire of the dynamic
memory about not only the pan-tilt angles but also the camera speed.

With the above fine image alignment and sensitivity control, a silhouette of the object
can be stably extracted.

4.3.5 Action Module: Prediction-Based Camera Control Method
4.3.5.1 View Direction Control

The action module controls the view direction of the camera to capture the object image at
the image center. We first present the control method based on the PID control method.

PID method

Proportional-Integral-Derivative (PID, in short) control is a major control scheme.
The controller, which consists of three terms (namely, the proportion, integral, and deriva-
tive terms), examines any instantaneous error between the process value and the set point.
The proportional term causes a larger control action to be taken for a larger error. The
integral term adds to the control action if the error has persisted for some time and the
derivative term supplements the control action if the error is changing rapidly with time.

Practical view-direction controlling steps for object tracking based on the PID method
are as follows.

1. Let (Peam(tn), Team(tn)) be the camera pan-tilt angles read by the action module at
t,, where n denotes the nth control cycle.

2. Read from the dynamic memory the location of the target object at ¢,. Let
(Pobj(tn), Tonj(ts)) be the location.

3. Compute the displacement:

Pdis(tn) = Pobj (tn) - Pcam(tn)a
Tdis(tn) - To

96 Real-time Object Tracking with Dynamic Memory

Pan !

Figure 4.15: View direction control based on the PID method.

4. Determine the camera velocity control command (Vp(n),Vr(n)) by the following
equations and send it to the camera.

Vp(n) = K { sz(ttn) + (AC;)Q (Pais(tn) — Pais(tn-1)) + %ign:m Pdis(ti)}) o
v, _ g Tt oy LS o .
r(n) = gy + (At)Q(ais(tn) — Tais(tn1)) + Bi:%—:w ais(ti) ¢

where At =t, —t,_1 and K, «, 3 are the predefined constants.

Here again, the dynamic memory plays a crucial role in realizing stable physical camera
control. Firstly, whereas the control timing ¢, is determined according to the autonomous
dynamics of the action module, the target object location at the specified timing can
be obtained from the dynamic memory. Secondly, while the gains for the PID control
are determined by purely off-line stand-alone experiments without taking into account
the dynamics of the perception module, the same stable camera control can be realized
even after integrating the perception and action modules. This is because the dynamic
memory guarantees that the autonomous dynamics of a module is not disturbed even if
the module is integrated with other modules.

This method controls the pan-tilt angles of the camera as follows:

e If the displacement between the current positions of the target and the camera angle
(i.e., (Pgis(tn), Tais(tn))) is large, the high-speed control command is sent.

e As the displacement becomes smaller, the velocity gets further suppressed.

Although this control method realizes smooth camera motion, the time spent in controlling
the pan-tilt angles is not taken into account. That is, the target motion causes some

4.3 Real-Time Object Tracking System using the Dynamic Memory 97

Predicted value
Pobj(t,)

Pan

Object directi

A

Camera direction/

Current time

(New camera control command) (Next camera control command)

Figure 4.16: Prediction-based view direction control.

displacement between the directions of the target object and the camera view. This
disadvantage is fatal for real-time moving object tracking. Accordingly, the view-direction
control method that takes into account both the camera motion and the target motion is
required.

Prediction Based Control

Suppose the action module sends the camera control command at t,. Let 7 be the
constant latency for the camera to accept the camera control command from the action
module, and At be a processing cycle of the action module. We first consider At also to be
constant. Since the camera has the latency 7, the last command (Peam, , (£), Team,_, (t))
is actually valid until ¢, + 7, and the newest command changes the camera action from
t, + 7. The action module, therefore, determines the camera control command so that
the displacement between the target direction and the camera angle at t,(= t, + 7)
vanishes at t,(= t, + 7+ At), as illustrated in Figure 4.16. The object direction at ¢, (i.e.,
Povj(ts), Toj(ty)) and the view direction of the camera at ¢, (i.e., Peam(ta), Team(ts)) can
be read from the dynamic memory. From these parameters and (Peam, ., (t), Tcam,, (£)) in
equation (4.17), the following equation is obtained:

Pcamn (tb) — Pcamn (ta) + AZtpcomn + T (exp (_%) - 1) (Pcomn - Pcamn (ta))a

Tcamn (tb) - Tcamn (ta) + AtTcomn + T (exp (_%) — 1) (Tcomn o Tca,mn (ta)). (420)

98 Real-time Object Tracking with Dynamic Memory

To align the view angle of the camera with the object direction at t,

Pobj(tb) - Pcamn(tb)a

4.21
Tobj (tb) - Tcamn (tb)a ()
have to be satisfied. (Peom,,Ztom,) follows from equations (4.20) and (4.21) that
: Po ilty) — Pcam P ta
Pcomn — Pcamn (ta) + bj (b) n () v My () ,
At+T (exp (_T) 1) (1.22)
Tobj (tb) — Tcamn (ta) (ta .

Tcomn - Tcamn(ta) +

At—i—T(exp())

These control commands enable the system to capture the target object at the image
center without delay.

In the above discussion, At is considered to be constant. In general, however, At
varies in each processing cycle:

e The processing cycle of the action module is summarized as follows:

1. Read the values from the dynamic memory at ¢,.
2. Compute (Peom,, Teom,) at t,.

3. Send (Peom,; Teom,) to the camera at t,.

4

. Inquire the current camera motion of the camera to modify the camera trajec-
tory recorded in the dynamic memory at ¢,.

While the former three tasks can be finished immediately, the action module has
to wait the reply from the camera for task 4. The time spent in inquiring for the
camera motion varies depending on the states of the camera and network. The
action module, therefore, computes the average over the past m times and regards
it as At:

n

> (ti—tio1)

At = Znomt : (4.23)
m

Provided that an initial At is determined by intensive experiments in advance.

4.3.5.2 Zoom Control

To control the view direction towards the target object, the action module (1) estimates
the dynamics of the camera and the target object and (2) analyzes the observed image.
In these processes, many uncertain factors are involved:

e Target motion: Since the target object moves freely, its motion cannot be precisely
estimated. Moreover, as long as the target motion is modeled as the constant angular
velocity motion, this model just gives an approximation.

4.3 Real-Time Object Tracking System using the Dynamic Memory 99

e Camera motion: Whereas the camera dynamics is modeled a priori, its physical
motion can vary depending on its internal mechanical and electronic states.

e Image analysis: The computed position of the target object can fluctuate due to
noise and varying photographing conditions.

The action module controls the zoom under the existence of these uncertainties. That is,
when the degree of uncertainties is low, the action module zooms in to acquire high reso-
lution object images. When some unexpected events happen and the prediction deviates
largely from the observed data, on the other hand, the action module zooms out so as
not to lose track of the target object . In what follows, we describe such a zoom control
method.

All of the uncertainties mentioned above are reflected in the prediction error of the
target position, namely, the distance between the image center and the centroid of the
target region in the observed image. The action module records this prediction error to
learn the degree of uncertainties involved in the task. The action module then determines
the optimal zoom parameter based on the learned degree of uncertainties:

Criterion for zooming: From the recorded prediction errors, the uncertainty degree
at each observation is computed. The maximum uncertainty degree can then be
obtained. The action module estimates the zoom parameter that allows the camera
to capture a required silhouette of the target object even in the worst case. This
zoom parameter is considered to be optimal to realize both stable tracking and
high-resolution capturing.

To employ the above criterion, we first have to evaluate the uncertainty degree from
the prediction error. The prediction error in the observed image depends on the following
factors:

Target motion: Since we model the target motion as a simple constant angular velocity
motion, the difference between the model and the actual target motion incurs the
prediction error.

Interval between observations: The longer the observation interval becomes, the larger
the prediction error becomes.

Area size of the object: When the object is close to the camera and/or the action
module zooms in, the object is projected largely onto the observed image. In this
case, even a small movement of the object produces a big variation in the observed
image. This makes accurate prediction difficult.

Among these factors, the interval between observations and the area size of the object
region can be exactly obtained from the system clock and the detection result, respectively.
We normalize the prediction error by these two factors to evaluate the uncertainty degree.

Normalization by the interval between observations:

We consider the prediction error to be in proportion to the interval between obser-
vations. The prediction error is, therefore, divided by the interval to normalize the
uncertainty degree.

100

Real-time Object Tracking with Dynamic Memory

Object Object Object
Projection Variation Projection Variation
center Dl center i >

l Estimated _ l Estimated ¥y .

~1 t direction : I : direction

T~y : Prediction S : Prediction

\‘\.\ : error : \'\.\ : error

~. \~q N .J

Screen Screen Screen

(a) Variation of zooming (b) Variation of object position

Figure 4.17: Normalization of the estimation error due to the area size
of the object region.

Normalization by the area size of the object:

Figure 4.17 illustrates the relationship between the estimation error and its primary
factors (i.e., the zooming factor and the distance between the projection center and
the object in the scene). Each factor affects (1) the area size of the projected object
and (2) the estimation error as follows:

Zooming factor: The area size is linearly in proportion to the square of the focal
length, while the estimation error is proportional to the focal length.

Distance between the projection center and the object: The area size and
the estimation error are in inverse proportion to the square of the distance and
the distance, respectively.

The area size of the target object at ¢; (denoted by AREA(t;)) and the estimation
error at t; (denoted by POS,,,r(t;)) are then represented by

AREA(t) = Cores X %{f&) (4.24)
POSuror(ti) = Chos % % (4.25)

where Cyeq and Cp,s are coefficients, f(¢;) the focal length at ¢;, and DIS(t;) the
3D distance between the projection center and the object at £;. In our system, since
the perception module writes (1) the projected size of the detected object (i.e.,
(Psobis T'sobj)) and (2) the history of the view angle (i.e., Zeam) into the dynamic
memory, the action module can read these values at any time. From these values,
the rectangular window size of the detected object in the observed image at an
arbitrary time can be estimated. The action module regards it as AREA(t;).

4.3 Real-Time Object Tracking System using the Dynamic Memory 101

From equations (4.24) and (4.25), the following relationship is obtained between the
estimation error and the area size of the object:

POSepror(ti) o AREA(t). (4.26)

The prediction error is, therefore, divided by the area size to normalize the uncer-
tainty degree.

Based on the analysis of the prediction error described above, we now define the
instantaneous uncertainty degree, AUD(t;), at the ith observation time t; as follows:

PO Serror (tz)
T(t:;) x \JAREA(t;)

With the above definition of the uncertain degree, the action module determines the
optimal zoom factor by the following steps:

(4.27)

1. At the nth observation time t,, obtain the maximum possible uncertainty degree

AU Dypax = max{AUD(t,,)}. (4.28)

2. Determine the focal length f(¢,1) for the next observation so that the maximum

possible position error, POSZ2X (¢, 1), defined below, becomes less than the prefixed

threshold.
POSRY (thy1) = AUDpax X (tny1 — th)\VAREA(tp11), (4.29)
where
AREA(t,;,) = AR%‘:(;”) X f2(tns1).

We remark here again that (¢,.1 — t,) = At is determined by equation (4.23).

3. Compute the optimal view angle at t,,; (denoted by Z,,1) from the determined
optimal focal length.

4. Substitute Z, 1 for Zcam,,, (t) in equation (4.17). Then, determine the zoom control
command Zgop:

Zn+1 - anmn (tn) - anmn (tn)At
At+T (exp (—%) — 1) '

Zcomn - anmn (tn) + (430)

102 Real-time Object Tracking with Dynamic Memory

4.3.5.3 Camera Control Process

Here, we summarize the tasks of the action module. The action module repeats the
following steps:

1. Read the object direction and area size from the dynamic memory.
2. Determine the next camera control command by equations (4.22) and (4.30).

3. Write it into the dynamic memory. (Then, the dynamic memory updates the camera
motion history.)

4. Send it to the camera.
5. Inquire of the camera the current pan-tilt-zoom parameters.

6. Write the parameters obtained in step 5 into the dynamic memory. (Then, the
dynamic memory modifies the camera motion history.)

4.4 Experiments

We conducted experiments to verify the effectiveness of the proposed system for real-time
object tracking. Following are system resources.

Active camera: SONY EVI-G20.
PC: PentiumlIIl 600MHz x 2.

The perception and action modules and the dynamic memory were implemented by
threads on a PC, and run in parallel.

4.4.1 Suppressing Motion Blurs

We first examined the degree of motion blurs with various camera velocities. Figure 4.18
shows the experimental results:

e The images in the left column were captured while the pan angle was rotating at a
constant velocity.

e The images in the middle column were generated from the APP. To generate these
images, the camera angle was inquired when the image was captured.

e The images in the right column were subtraction images between the captured and
generated images.

Since the observed scene was stationary, no region appeared in a subtraction image if
motion blurs were not included in the captured image.

From the subtraction results, we can confirm that motion blurs were not caused unless
the rotational velocity exceeded 60°/sec. Accordingly, we defined the maximum rotational
velocity as 60°/sec.

4.4 Experiments 103

20° /sec

40° /sec

60°/sec

80° /sec

100° /sec

input image background image subtraction image

Figure 4.18: Motion blurs in the observed images: these images were
captured while the camera was rotating at different speeds.

104 Real-time Object Tracking with Dynamic Memory

4.4.2 Tracking Results

A computer-controlled mobile robot moved in the scene. The camera was placed about
2.0[m] above the floor. Figure 4.19 shows an example of observed image sequence (the
input and detection images). The size of each image is 320 x 240 [pixels]. The system
captured the images in about 0.1 [sec] intervals on average.

Figure 4.20 shows the read/write access timings from/to the dynamic memory by the
perception and action modules. Each vertical line denotes a read /write timing. The upper
graph is for the object location data, which was written by the perception module and
read by the action module. The lower one is for the pan-tilt camera position data, written
by the action module and read by the perception module. We can obtain the following
observations.

1. Both modules work asynchronously while keeping their own intrinsic dynamics.

2. The perception module runs almost twice as fast as the action module (about
100[msec/cycle]).

3. Irrespective of these mutually independent dynamics, smooth dynamic information
flows through the dynamic memory are realized without introducing any idle time
for synchronization.

Figure 4.21 illustrates object and camera motion trajectory data written into and read
from the dynamic memory, where

graph 1 (upper right) : pan-tilt camera positions measured from the camera,
graph 2 (upper left) : pan-tilt camera positions read from the dynamic memory,
graph 3 (lower left) : object locations estimated from observed images, and
graph 4 (lower right) : object locations read from the dynamic memory.

Each graph includes a pair of trajectories: a larger amplitude is about pan and a smaller
amplitude is about tilt. Note that the object locations as well as the camera positions are
described in terms of (pan, tilt).

We see the following observations.

1. Comparing graph 1 with graph 2, the data density of the latter is higher than that
of the former. This is because the perception module runs faster and hence reads
the pan-tilt camera position data more frequently. This also holds true for graph 3
and graph 4.

2. The camera control is well synchronized with the object motion. Figure 4.22 shows
the overlapped pan trajectories of graph 1 and graph 4.

4.4.3 Performance Evaluation
4.4.3.1 Effectiveness of Smooth Camera Motion

Here, we point out the effectiveness of smooth camera motion by the following compar-
ative study. Figure 4.23 shows observed images taken by the simple active background

4.4 Experiments 105

frame0 framel(frame30 frame4(frameb0

frame60 frame70 frame&0 frame90 framelO0 framellQ

framel20 framel30 framel4d0) framelb50 framel60 framel70

framel80 framel90 frame200 frame210 frame220 frame230

frame240 frame250 frame260 frame270 frame280 frame290

Figure 4.19: Example of observed image sequence taken by the pro-
posed system. Upper: input images, Lower: detection
images.

106 Real-time Object Tracking with Dynamic Memory

Action module

read ﬁ © op().0th)

| i

write ﬁ © OBJ

Perception module

Action module

write @ @CAM
CAM

read @ ®cp(t),Ci()

L L L L L L L L Perception module
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6 1.8 2.0(sec)

Figure 4.20: Access timing to the dynamic memory by the perception
and action modules. Upper object information, Lower:
camera information.

subtraction system without modular (perception and action) functions mentioned in the
last chapter. We call this system system A, and the system with the perception-action
modules and the dynamic memory (i.e., proposed system) system B. Similarly as with
the experiment by system B in Section 4.4.2, a computer-controlled mobile robot moved
in the scene. When each system worked, the robot moved along the same trajectory at
the same speed. Note that the frame intervals shown in Figure 4.19 and Figure 4.23 differ
from one another (system A: 2 frame intervals, system B: 10 frame intervals). Systems A
and B captured images in about 0.5 and 0.1 [sec] intervals on average.

The average and the variance of (1) the distance between the image center and the
centroid of the detected object region and (2) the area size of the detected object are
shown in Table 4.1. Table 4.1 indicates that the proposed system improves the stability
of tracking with active background subtraction.

In addition, the proposed system drastically shortens the capturing interval and con-
trols the camera smoothly. These advantages not only produce quantitative improvements
but also make it easy to understand the trajectory of the object motion. Figure 4.24 shows
observed images taken by systems A and B. As we can see, the observed images taken by
system B were captured while the view direction of the camera was smoothly changed.
System A, on the other hand, captured images intermittently. The intermittent observa-
tions caused difficulty in understanding the situation in the scene. In particular, when the
camera zoomed in, it was hard to follow the object motion because the observed image
included little information about the background scene.

4.4 Experiments

Camera

. 2. (Cp(t).CH(D))

107

‘ X ; 30
anglefdegree] | CAMera rajectry | 25 P x
%0 Cp(t) x 20
25 15 <
20 10 ﬂp x X
5 % 5 % 2]
X
" ‘ %& A o & XX
5 & , | 5)&(M xx
O'uuhu(X %(%):(
- ViE -
% .
X,
209 5 10 15 20
time[sec]
15 2
time[sec]|
J ®cp.cti
3. (Op',0t) || Dynamic memory | |
Estimated object position ’ . b
@opm.otty f
© o8 4. (0p().Ot() |
i Object trajectry
angle[degree] T g
30
25 Op(t) x
20 3
15 x
10 ax % N
: A
“3‘“,%‘();){x
N x X
-10 ek
-15
((Op(t) ,Ot(t)) -> OBJ 20 . m

. 20
time[sec]

Figure 4.21: Dynamic data exchanged between the perception and ac-

tion modules.

Large amplitude: pan, Small amplitude:

tilt. (O,(t), O(t)) and (C,(t), Ci(t)) in the figure denote
object location (Pob;j(t), Tonj(t)) and camera gaze direction
(Peam(t), Team(t)) in the text, respectively.

108 Real-time Object Tracking with Dynamic Memory

30

O o

2 X R
N e

15 Nal X

10 i Z 4
f X X
L 4 XA

*

10 F X

-15

-20

Figure 4.22: Overlapped pan trajectories of graph 1 (camera position
measured by the action module) and graph 4 (object po-
sition read by the action module).

Table 4.1: (1) Distance the image center and the centroid of the de-
tected object region, and (2) Area size of the detected ob-

ject.
(1) average | (1) variance || (2) average | (2) variance
System A || 44.0[pixel] | 6.7[pixel] 5083[pixel] | 145[pixel]
System B || 16.7[pixel] 1.5[pixel] 5825[pixel] | 108[pixel]

4.4.3.2 Target Motion Estimation and Prediction using Kalman Filter

In this experiment, w = (wy, we, w3, wy) in equation (4.2) and v = (vq, v2, v3, v4) in equation
(4.3) were determined so that (o7, /o5) = 107" (i =1, 3) and (0], /o;) = 107" (i = 2, 4).
Figure 4.25 illustrates the measured (solid line), predicted (broken line), and estimated
(dotted line) values of the target object direction. We can see that the estimation and
prediction using the Kalman filter worked well.

To verify the effectiveness of (1) smooth camera motion by employing the dynamic
memory and (2) prediction-based tracking, we conducted experiments with the following
three systems:

System 1: Simple active background subtraction system without modular functions.

System 2: Real-time active background subtraction system with the dynamic memory
using the PID control method.

System 3: Real-time active background subtraction system with the dynamic memory
using the prediction-based control method.

4.4 Experiments 109

frame(frame2

frame6 framel0

framel2 frameld framel6 framel8 frame20 frame22

%

x

frame24 frame26 frame28 frame30 frame32 frame34

=
= =

=

frame36 frame38 frame4(framed4?2 framed4 frame46

=[]

frame48 frameb0 frameb2 frameb4 frameb6 frameb8

Figure 4.23: Example of observed image sequence taken by the simple
active background subtraction system (system A). Upper:
input images, Lower: detection images.

110 Real-time Object Tracking with Dynamic Memory

k- B

» time
System A

» time
System B

Figure 4.24: Comparison between images taken by systems A and B.
Each sequence shows the images observed for the same
period (about one second).

Figure 4.26 illustrates the pan angle history of each system. In the figure, non-smooth
camera motion controlled by system 1 (small dotted line) incurs a large camera-control
delay; the average of the delay was 0.89[sec|. System 1 captured images in about 0.5[sec]
intervals on average. This interval was five-fold slower than that of the system with the
dynamic memory. For system 2 (broken line), the view direction of the camera followed
the object direction after a delay of 0.47[sec]. For system 3 (large dotted line), on the
other hand, the delay was shortened to 0.08[sec]. As we can see, the proposed system
(system 3) greatly improves the tracking ability.

4.5 Concluding Remarks

In this chapter, we proposed a real-time moving object tracking system with a dynamic
memory. Although the basic scheme for object detection and tracking is the same as that
of the active background subtraction method presented in the last chapter, the system
has increased flexibility and adaptability by the following properties:

e In the system, the perception and action modules run in parallel and work together
for object detection and tracking.

Perception: Capture the image and detect the object in the captured image.

Action: Control the camera parameters to track the target object while keeping
its silhouette in the image.

e These modules exchange their information with each other through the dynamic
memory. The dynamic memory allows the modules (1) to exchange the information
asynchronously without disturbing their own intrinsic dynamics and (2) to obtain
the available information at any time.

4.5 Concluding Remarks 111

pan angle [degree] tilt angle [degree]
24 18
pan:measured ———————— - tilt:measured
20 pan:estimated --============= . E 6 tilt:estimated ====--=====x=====
pan:predicted — — — — = tilt:predicted — — — — =

0 2 4 6 8

0 2 4 6 8

10 10
time [sec] time [sec]

(a) Pan angle (b) Tilt angle

Figure 4.25: Measured, predicted and estimated values of the target
object direction.

angle [degree]

28 T T T T
object:pan
24T camera(predict):pan 1irrrrnnnIIN T
camera(pid):pan — — — — K
20 7y, R
camera(simple):pan ---- -mmoooos
~
16 —_— A
y »
12 b
8 4
4 4
0 4
-4 E
-8 -
_12 1 1 1 1
0 2 4 6 8 10
time [sec]

Figure 4.26: Camera control results with the PID and prediction-based
methods.

112 Real-time Object Tracking with Dynamic Memory

e The camera parameters are controlled based on a sophisticated prediction-based
method that takes into account both the target and camera motion for efficient
tracking. This method enables the system to keep tracking the target object without
any delays.

These properties increase the reactiveness of the system as required for real-time process-
ing.

The practical effectiveness of our system has been demonstrated by several experi-
ments.

Note that in a CDV system, asynchronous interactions play a crucial role in realizing
the dynamic integration of the visual perception, action, and communication functions.
This is because message exchanges among AVAs are asynchronous in nature. That is,
such flexible behaviors are required to make good use of the CDV system’s functions. For
example,

e Since the computational resources of an AVA are limited, the observation of mean-
ingless images wastes the resources that could possibly be used for other processes
such as communication.

e Each AVA should adaptively determine its own dynamics in accordance with the
result of its image analysis and interactions with other AVAs.

Therefore, the realization of the dynamic coordinations between the functions of the AVA
has generality.

Chapter 5

Real-time Cooperative Multi-target
Tracking by Communicating Active
Vision Agents

5.1 Real-time Cooperative Multi-target Tracking

In this chapter, we propose a real-time cooperative tracking system that gazes at multiple
objects simultaneously. The system consists of Active Vision Agents (AVAs, in short),
where an AVA is a logical model of the active vision system that is capable for communi-
cating each other through network.

For real-time object tracking by multiple AVAs, we have solved

e how to design an active camera for dynamic object detection (chapter 2) and
e how to realize real-time object tracking with an active camera (chapters 3 and 4).

Here, we put our focus upon how to realize a real-time cooperation among AVAs.

In order to implement the real-time cooperation among AVAs, we propose a three-
layered interaction architecture. In each layer, parallel processes exchange different kinds
of object information for effective cooperation. To realize real-time information exchange
and processing, we employ the dynamic memory architecture. The dynamic interaction
in each layer allows the total system to track multiple moving objects under complicated
dynamic situations in the real world.

By employing multiple pan-tilt-zoom cameras, we aim at designing a system that
can not only simply track trajectories of target objects but also acquire their detailed
information. The detailed information of the object is required to apply the system to
face recognition and volume reconstruction methods and so on.

Experimental results demonstrate that the proposed real-time cooperation method
enables the system to (1) successfully acquire the dynamic object information and (2)
adaptively assign the appropriate role to each AVA.

113

114

Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

Camerat: Cameraz Camerau. Cameraz

Al S crarge gl |
N 'l tafgget /
3D view line

Obstacle

Position----»

+” Sl
Camera4 Cameraz Cameras Cameras

(b) Continuous wide-area observa-

a) 3D reconstructio . : i
(a) reconstruction tion, Adaptive role assignment

Figure 5.1: Advantages of target tracking by multiple cameras.

5.1.1 Advantages of Multi-camera Tracking System

In general, tracking target objects by multiple cameras allows the system to acquire the
following abilities:

3D reconstruction: If the external camera parameters (i.e., the 3D position of all cam-

eras) are calibrated, the 3D information of the object can be reconstructed from the
2D information of the object observed by multiple cameras.

In the case of Figure 5.1 (a), the 3D position of the object is reconstructed from
the object information detected by camera;, cameras, and camera, based on the
triangulation.

Continuous wide-area observation: By exchanging the object information between

cameras, the system can keep tracking the focused target object without interference
of obstacles and other moving objects.

In the case of Figure 5.1 (b), cameray cannot observe object; due to an obstacle.
Cameray can, however, gaze at object; by receiving the 3D position of object; from
another camera.

Adaptive Role assignment: By dynamically assigning the appropriate role to each

camera so that each target object is tracked by the camera that is suitable for
gazing at, the system can adapt itself to the object motion.

In the case of Figure 5.1 (b), camera, changes its target object from object; to
objecty because 1) cameray cannot observe object; and 2) only camera; tracks
objecty. Consequently, all objects are observed by multiple cameras, and the 3D
information of all the objects can be reconstructed.

5.1 Real-time Cooperative Multi-target Tracking 115

Open network

Autonomou
running

Asynchronized
capturing,
Overlapping
adjacent
visud fields

Active camera
(FV-PTZ camera)

Object

Figure 5.2: System organization.

The above abilities allows the system to track moving objects persistently in the real
world.

5.1.2 System Organization

Our system consists of a group of network-connected computers, each of which possesses
an active camera, as illustrated in Figure 5.2. A group of spatially distributed active
cameras enables continuous wide-area observation as well as detailed measurement of 3D
object information. We impose the following constraints about the camera configuration
on the system:

e Visual fields of cameras are overlapping with each other in order to keep tracking
a target object in the observation scene without a break. That is, in our system,
the area of the observation scene is determined by the number of cameras and their
visual fields.

e In addition, all the observation spaces can be observed by at least two cameras.
This is because every space has to be observed by multiple cameras to reconstruct
3D information of an object being there.

A pair of network-connected computer and an active camera is called an Active Vision
Agent (AVA). We employ an FV-PTZ camera as an active camera. By employing the
properties of the FV-PTZ camera, each AVA can detect and track the moving object
independently. We have proposed the dynamic object detection and tracking method
using the FV-PTZ camera in this thesis.

116 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

With the above architecture and functions, each AVA works autonomously while keep-
ing its own intrinsic dynamics and cooperates with other AVAs by exchanging the infor-
mation through the network. The network is not a special close network (e.g., high-speed
PC cluster) but an open network. Each AVA captures images asynchronously because
it works autonomously keeping its own dynamics. That is, the system is not in need of
any synchronization mechanism (e.g., sync-pulse generator and gen-lockable camera). In
order to allow each AVA to compare its observed information with that of another AVA as
time-series data, we suppose that the internal clocks of all the AVAs are synchronized. For
example, by comparing the time stamps of images captured by different AVAs with each
other, the system can identify images taken at the almost same time with one another.

5.1.3 Related Works

Our system is designed as an asynchronized distributed camera system, where each camera
corresponds to a single agent. It differs from other similar systems in the following points:

Image capturing timing: While images captured by different cameras are asynchro-
nized in our system, several other multi-camera systems synchronize all cameras
by employing a synchronization mechanism. Yonemoto—Arita—Taniguchi [YATO00]
proposed a fully synchronized multi-camera system, where all cameras are synchro-
nized by a common sync-generator. In this system, each camera is coupled to a
PC and the internal clocks of all the PCs are synchronized. Since each image in-
cludes a time stamp when it is captured, the system can identify images taken at
the same time by different cameras with one another. In the system with widely
distributed cameras, proposed by Kitahara-Ohta-Kanade[KOKO00], all cameras are
also synchronized by a sync-generator. In this system, each image obtains its time
stamp from a time-code generator shared by the entire system.

In the above synchronized multi-camera systems, each camera cannot capture im-
ages depending on its own internal state. However, for realizing a flexible multi-
camera system adaptable to various tasks, asynchronized image capturing are re-
quired as follows:

e Fach camera should observe the scene keeping its intrinsic dynamics to reac-
tively adapt itself to dynamic situations in the scene.

e Depending on a task given to each camera, its motion dynamics, and so on,
the internal states of all the cameras are different from each other. This makes
difficult for all the cameras to synchronize with each other.

In our system, therefore, all cameras are controlled independently and observe the
scene asynchronously.

Processing and controlling mechanism: Our system consists of multiple agents, each
of which corresponds to a computer with an active camera. Each agent analyzes
its observed image independently. For the entire system to work as a cooperative

5.1 Real-time Cooperative Multi-target Tracking 117

=
' S
g! Processor Scene Info. Hub

Imag%I l Commands

Processors
Command

e 0
Camera
Object Object
(a) Centralized processing system (b) Distributed processing system

Figure 5.3: Processing and controlling mechanism.

distributed system, all the agents exchange their analyzed information with each
other (Figure 5.3 (a)).

Sogo—Ishiguro—Trivedi[SITO00], on the other hand, proposed the centralized process-
ing tracking system (Figure 5.3 (a)). In this system, a single computer gathers all
the captured images through the network. This computer then analyzes them and
integrates the object information observed by each camera. This system has the
following two problems:

e Increasing the network-load and computational complexity: Since im-
ages captured by all cameras pass through the network, a huge network-load is
caused. Besides the network problem, a single computer has to cope with all
complicated situations in the real world by itself. This expands the computa-
tional complexity of the process that is conducted by a single processor.

e Complex design of the system behavior: We have to design a complex be-
havior of the entire system taking into account all combinations of predictable
situations. The complexity of the system increases dramatically by introducing
active cameras; each camera should be dynamically controlled depending on
object motions.

These problems result in difficulty in realizing a real-time flexible multi-camera
system. This is the reason why we adopt a distributed processing system.

Definition of an agent: In general, there are two kinds of agents:

Software agent: This is a virtual agent without any physical body in the real
world. Each agent corresponds to a logical data (e.g., the information of the
detected object) in the system.

118 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

Agencyl Agency2

’Agencyz/.objsct \L mq,ma:ior\ ’

D @D @D

Objecl information
Agencyl, ——— | —

[

Agentl Agent2

Og[r:et&gggﬂ ce Daected object mformauon De;\wmg‘; f
7 N~ ~/ Daected objecl m ormauon

% %% A A A IR v %%%% v

Image
Camer al Caner a2 CameraB Canera4 Cameral Camera2 Camera3 Camerad

Cameral Camera2 Camera3 Camerad
One-to-one
oorresponaenoe
Trackl ng
One-to-one One-to-one
mrrm@ corresponaence

g 8

Objecll Objech on{;cu Ob‘@mz Objectl Object2
‘\/ \/ (I

(a) Our proposed system (b) Nishio—Ohta[NO92] (c) Nakazawa[NakO01]

Figure 5.4: Definition of an agent.

Real-world agent: This is an agent with its own physical body (e.g., an active
camera and a mobile robot) that can be controlled by itself. There exists one-
to-one correspondence between an agent in the system and the body in the real
world. The agent can (1) interact with the real world by utilizing its physical
body and (2) be affected by events in the real world through its physical body.

We believe that an intelligent system has to possess its own body to mutually
interact with the real world. The concept of such a real-world agent is described in
[Mat98]. We, therefore, define an agent to correspond to each physical body in the
real world. That is, we call (1) the above real-world agent an agent simply and (2)
an agent without its body a software agent.

For real-time and reactive processing to cope with complicated dynamic situations
in the real world, every agent should be modular with the dynamic memory as
well as the real-time object tracking system in chapter 4. In multi-agent system,
a communication module is required for the message exchange among agents in
addition to perception and action modules. Therefore, the above two kinds of
agents consist of the following compositions:

Software agent: The perception and communication modules with the dynamic
memory.
Real-world agent: The perception, action and communication module with the

dynamic memory.

The difference between the compositions of two agents is the existence of the action
module that is required to control the physical body.

5.1 Real-time Cooperative Multi-target Tracking 119

Although several object tracking systems with multi-camera and multi-agent sys-
tems are reported, most of them employ only software agents. In these systems, each
software agent corresponds to the information of the detected object as follows:

Nishio—Ohta[NO92] (Figure 5.4 (b)): They defined an agent to correspond to
each object detected by the system. Each agent examines the object informa-
tion detected by all cameras and keeps tracking its target object.

Nakazawa[NakO01] (Figure 5.4 (c)): An agent is created for all objects detected
by each camera . A single camera can, therefore, correspond to multiple agents.
Each agent communicates with agents in other cameras and forms an agency
(i.e., a group of AVAs) with agents which track the same object in the scene.

In the above systems, all cameras are shared by software agents, each of which
manages the information of each detected object. The above definitions force each
software agent to examine the object information detected by all cameras for track-
ing its target. Besides this technological problem, the above definitions have an
essential limitation: multiple software agents may control a camera inconsistently
in tracking their target objects (i.e., controlling pan, tilt and zoom parameters), if
the system employs active cameras' . Since our objective is not only estimating
the trajectory of the target object but also acquiring its detailed information, each
camera has to control the zoom parameter to obtain a high-resolution object image.
This results in difficulty for a camera to gaze at multiple objects simultaneously.
Accordingly, the above essential limitation is fatal for realizing the system which we
aim at.

In our system, on the other hand, an agent (i.e., AVA) corresponds to a single
active camera (Figure 5.4 (a)). That is, each agent monopolizes its own camera. All
AVAs can, therefore, control their own cameras to gaze at the target object. As we
can see, our definition of the agent has the advantage in that it has the one-to-one
correspondence between the agent and the camera.

In our system also, however, the information of each target object should be man-
aged intensively in order to (1) compare the object information detected by cameras
and (2) record the information of each object severally. To realize this function, a
software agent, which has the one-to-one correspondence with a target object, gath-
ers the object information detected by cameras and manage the information of its
target object. In our system, AVAs that track the same object form a group called
an agency, and a software agent corresponding to each agency works as the entity
of the agency (the details of the agency and its software agent will be mentioned
later).

Object tracking has a large variety of categories and implies many problems. Although
we do not focus on the following problems, they are also major topics on object tracking.

! In [NO92] and [Nak01], they employed stationary cameras. This problem, therefore, did not become
apparent.

120 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

(a) Overlapped configuration (b) Isolated configuration

Figure 5.5: Camera configuration for object tracking.

Camera configuration planning: While we do not consider how to arrange the cam-
eras to effectively gaze at the target objects, there are many researches about the
effective camera configuration for realizing the given task. Cowan-Kovesi|CK88]
proposed an automatic camera placement method for object feature detection. In
this method, each camera is placed so that all surface points be in focus, all sur-
faces lie within the visual field of the camera, and no surface points be occluded.
Tarabanis—Tsai—Allen[TTA95] proposed the MVP sensor planning system. This
system determines the optimal settings of the camera and illumination by virtually
synthesizing desirable camera views based on geometric models of the environment,
optical models of the cameras ,and models of the task.

Tracking with isolated camera configuration: In our system, we impose the con-
straint about the camera configuration on the system: visual fields of cameras are
overlapping with each other in order to keep tracking a target object in the obser-
vation scene without a break (Figure 5.5 (a)).

On the other hand, several works on object tracking with isolated camera config-
uration (Figure 5.5 (b)) are reported. In this camera configuration, the system
has to reconstruct the paths taken by moving objects that are temporarily visible
from multiple non-overlapping cameras. Distributed Vehicle Monitoring Testbed
(DVMT)[LC83] is famous for target motion estimation in a wide-spread area. The
system integrates pieces of target motions observed by each distributed sensor for
estimating a global target motion. Wada-Tamura-Matsuyama[WTM96] proposed
a multi-agent system that solves a global object identification by estimating the op-
timal combination of local identification results obtained by each agent. Although
object identification in a wide area cannot be solved generally based on a com-
mon combinatorial optimization method, a spatiotemporal constraint about object
motion and path reduces the search space and allows the system to obtain the opti-

5.1 Real-time Cooperative Multi-target Tracking 121

AV A2, AVAIL . AV A2, rAVAL AV A2

Detect! M

":':':':':': I
Navigated! ¥ |cooperating--Cooperating!
IAVA4 AVA3] LAV A4 AVA3]

(a) Gaze navigation (b) Cooperative gazing (c) Adaptive tracking

Figure 5.6: Basic scheme for cooperative tracking. A mesh region de-
notes an agency, and AVAs within the same mesh region
belong to the same agency.

mal result. Kettnaker-Zabih[KZ99] presented a Bayesian formalization of this task,
where the optimal solution is the set of object paths with the highest posterior
probability given the observed data. They showed how to efficiently approximate
the maximum a posteriori solution by linear programming. While the former two
systems (i.e., [LC83] and [WTMO96]) are non-real-time systems, this system tracks
a target object in real-time.

5.1.4 Basic Scheme for Cooperative Tracking

In our system, many AVAs are embedded in the real world, and observe a wide area.
With these AVAs, we realize a multi-AVA system that cooperatively detects and tracks
multiple target objects. Followings are the tasks of the system:

1. Initially, each AVA independently searches for an object that comes into the obser-
vation scene.

2. When an AVA detects an object, the AVA examines whether or not the information
of the detected object is required to the given task. If the information is required,
the AVA regards the detected object as a target object.

3. If the AVA detects the target object, the AVA navigates the gaze of other AVAs
towards the target object as illustrated in Figure 5.6 (a).

4. An AVA, which is required to gaze at the target object by another AVA, decides
whether it accepts the navigation or continues its current role depending on the
situation.

122 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

5. AVAs, all of which gaze at the same object, keep tracking the focused target object
cooperatively as illustrated in Figure 5.6 (b). A group of AVAs that track the same
object is called an Agency. In our system, there exists the one-to-one correspondence
between an agency and a target object in the scene.

6. Depending on the target motion, each AVA dynamically changes its target object
as illustrated in Figure 5.6 (c).

7. When the target object gets out of the scene, the AVA decides whether it searches
for an object again or tracks another target object that is tracked by other AVAs
depending on the situation.

5.1.5 Issues in Real-time Cooperative Multi-target Tracking

To realize the above cooperative tracking, we have to solve the following problems:

Multi-target identification: To gaze at each target, the system has to discriminate
between multiple objects in the scene.

Real-time and reactive processing: To cope with the dynamics in the scene (e.g.,
object motion), the system has to execute the process in real time and deal with
the variations in the scene reactively.

Adaptive resource allocation: We have to implement a two-phased dynamic resource
(i.e., AVA) allocation:

1. To perform both object search and tracking simultaneously, the system has to
preserve AVAs that search for a new object even while tracking target objects.

2. For each target object to be tracked by the AVA that is suitable for gazing at,
the system has to adaptively assign AVAs to their target objects in accordance
with the target motion.

We solve these problems with real-time cooperative communication among AVAs and
agencies.

5.2 Task Specification

Tracking multiple objects includes a large variety of behaviors depending on the task
given to the system. This is because each applied system requires different kinds of
object information. We, therefore, design the system that is adaptable to various tasks
by specifying parameters.

First of all, the tracking system need to search for an object in the scene. This role
is called Search? . Once a target object is detected, the system then gazes at the target

2 Hereafter, slanted search denotes the role for searching a new object.

5.2 Task Specification 123

4 Tracking ATracking
T 1 Ll
L
’
|
i
Tet % - —--»
Ci
TP G "' """""""" , I
i Pi ' Ls
0 Sc Sp 1 Search 0 S Zach
(a) Current state, Task-constraint (b) Three types of the system states

Figure 5.7: System state graph (system state representation with
search and tracking).

object to obtain its information. This role is called Tracking® . In addition, the system
is required to selectively gaze at the object whose information is necessary for the given
task because the importance of each object information may be different from each other
depending on a given task.

In our system, we specify the task to the system by the following three parameters:

Task-constraint: This parameter represents the number of AVAs that execute search
and tracking.

Object-importance: This parameter specifies the priority of each object.

Goal-function: This parameter specifies the aptitude of an AVA for each task.

5.2.1 Task-constraint

The number of AVAs that execute search and tracking are adjusted in accordance with
the given task-constraint. An AVA that searches for a new (undetected) object is called
a Freelancer-AVA. A freelancer-AVA observes a wide area independently, and undertakes
search. AVAs that cooperatively track the same object form a group (i.e., agency). Each
agency corresponds to a specified object detected in the real world. An AVA belonging
to an agency is called a Member-AVA.

We can realize various capabilities of the system, in terms of the combination of
search and tracking as shown in Figure 5.7. We call this graph a System State Graph.

3 Hereafter, slanted tracking denotes the role for tracking a target object.

124 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

The horizontal and vertical axes indicate the rates of AVAs that perform search and
tracking, respectively. We call values of the horizontal and vertical axes Search-level and
Tracking-level.

Definition 1 (Search-level and Tracking-level)

Search-level — The number of AVAs searching an object (5.1)
careimieves = The total number of AVAs ’

) _ The number of AVAs tracking target objects
Tracking-level = The total number of AVAs (52)

A domain of each value is, therefore, determined as follows:

0 < Search-level < 1 (5.
0 < Tracking-level < 1 (5.4)
0 < (Search-level 4+ Tracking-level) < 1 (5.5)

That is, a combination of search-level and tracking-level has to be within a triangle de-
termined by the horizontal and vertical axes and the line L in Figure 5.7.

We define the task-constraint and the current state of the system on the system state
graph.

Tt = W

Definition 2 (Current state P(Sp,Tp)) This parameter (P in Figure 5.7 (a)) repre-
sents the search-level (Sp) and the tracking-level (Tp) at the present time. The range of
the current state P is on the line L in Figure 5.7 (a). That is, (Sp + Tp) is always 1.

Definition 3 (Task-constraint C(S¢,T¢)) This parameter (C in Figure 5.7 (a)) rep-
resents the minimum search-level (Sc) and tracking-level (T), which the system has to
keep while working. The task-constraint is given by users as a pair of constants (i.e.,
Sc and T¢) depending on the task of the system. The system has to, therefore, adjust
the current state so that its search-level and tracking-level are not less than those of the
task-constraint.

Followings are the three states of the system determined by the relations between the
task-constraint and the current state.

Deficiency of search-level: Tc < Tp and S¢ > Sp. Namely, the current state P is on
Ly in Figure 5.7 (b).

Task satisfaction: T < Tp and S¢ < Sp. Namely, the current state P is on Ly in
Figure 5.7 (b).

Deficiency of tracking-level: T > Tp and S¢ < Sp. Namely, the current state P is
on Lz in Figure 5.7 (b).

If the current state of the system does not satisfy the task-constraint, each AVA dynam-
ically changes its own role between search and tracking to adjust the search-level and the
tracking level to the task-constraint.

Thus, the system can realize a gradual variation of its behavior to adapt itself to
versatile tasks by representing its behavior with numerical parameters.

5.2 Task Specification 125

Search-Value of Freelancer—AVAl)

Search-Value of Freelancer-AVA:)

Search-Value

Search-Value of Freelancer—AVANa
Tracking-Value of Member-AVA1)

System-Value

Tracking-Value of Mmeber-AVA2)

Agencyi1-Value

Tracking-Value of Mmeber-AVArvu)

Tracking-Value of Member-AVAL)

Tracking-Value]

Tracking-Value of Mmeber-AVA2)

Agency2-Value

Tracking-Value of Mmeber-AVAmz)

Tracking-Value of Member-AVAL)

Tracking-Value of Mmeber-AVA2)

Agencyn-Value

Tracking-Value of Mmeber-AVAMN)

Figure 5.8: Hierarchy of the goal-function.

5.2.2 Object-importance

In our system, object-importance is given to each object category that can be distinguished
by the system.

Definition 4 (Object-importance /p) Let Ip denote the object-importance of the tar-
get object of agencyp. The range of the object-importance is 0 < Ip < 1.

The number of the member-AVAs in agencyp (denoted by Mp) is determined by the
object-importance of the target object:

Ip

Mp = (The total number of the AVAs) x 5 (5.6)
A

S = > I, (5.7)
i=1

where A is the total number of the existing agencies. That is, the number of the member-
AVAs is proportional to the object-importance of the target object.

5.2.3 Goal-function

In our system, each AVA has to decide its own role according to the given task-constraint
and object-importance. These two parameters give the system the restriction about the
numbers of AVAs that execute each role (i.e., search and tracking of each target object).
Each AVA can, however, freely change its role under this restriction. The AVA changes

126 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

its role taking into account what we call a goal-function. Each AVA decides its role to
increase the value of the goal-function under the restriction of the task-constraint and
object-importance. The value of the goal-function is determined by the roles of all the
AVAs in the system. That is, the value of the goal-function varies depending on (1)
whether each AVA is searching for an object or tracking a target object and (2) which
object each AVA is tracking.

The goal-function of our tracking system has a hierarchical structure shown in Figure
5.8.

e System-value: The goal-function of the entire system. This function is the sum
of the following search-value and tracking-value.

— Search-value: The goal-function of search. This function is the sum of all
the search-values of freelancer-AVAs.

x Search-values of freelancer-AVAs, .. yr: The goal-function of each
freelancer-AVA. The value of this function is determined by the search
ability of the freelancer-AVA.

— Tracking-value: The goal-function of tracking. This function is the sum of
all the agency-values.

* Agencies; .. y-values: The goal-function of the agency that tracks each
target object. Each value is the sum of all the tracking-value of member-
AVAs belonging to this agency.

- Tracking-values of member-AVAs; ..;: The goal-function of
each member-AVA. The value of this function is determined by the
tracking ability of the member-AVA.

That is, the value of the goal-function for the entire system is the total sum of the
search-values of the freelancer-AVAs and the tracking-values of the member-AVAs. This
goal-function can be designed to be adapt itself to the task given by users?® .

5.2.4 Summary of the task specification

Here, we summarize the dynamic role assignment of AVAs based on the task specification.
The task-constraint determines the number of freelancer-AVAs and member-AVAs, each
of which performs search and tracking, respectively. Next, the number of member-AVAs
belonging to each agency is determined by the object-importance of each target object.

These two parameters give the system the restriction about the numbers of AVAs that
execute each role (i.e., search and tracking of each target object). Under this restriction,
each AVA changes its role to increase the value of the goal-function. To give the system
the proper goal-function, each AVA can work in accordance with dynamic situations in
the real world (i.e., object motions) depending on the given task.

4 We give an example in Section 5.5.1.3.

5.3 Dynamic Interaction for Cooperative Tracking 127

Task specification

Task-constraint ~ Object-importance
Goal-function

[0 [0 LA

Member-AVAs of agency: Objects

Member-AVAs of agency Object:

Tracking

A\ 4

\[] Member-AVAs of agencys Objects

Freelancer-AVAs

All AVAs

Figure 5.9: Dynamic role assignment of AVAs based on the task speci-
fication.

5.3 Dynamic Interaction for Cooperative Tracking

In our system, multiple processes cooperatively work by dynamically interacting with
each other. As a result, the system as a whole works as a tracking system. By composing
the system as a group of multiple processes, we can represent the complex behavior of
the total system through the interactions between processes. Designing the total system
can be, therefore, reduced to designing each process. Furthermore, the states and those
transitions of the system increase enormously by combining with each other. We believe
that this property allows the system to cope with complicated dynamic situations in the
real world.

5.3.1 Layers in the System

For the system to engage in multi-target tracking, object identification is significant. We,
therefore, classify the system into three layers (namely, intra-AVA | intra-agency and inter-
agency layers) depending on the types of object information employed for identification.
Each layer corresponds to the elements in the system as follows (Figure 5.10):

Intra-AVA layer (the lowest layer): An AVA.
Intra-agency layer (the middle layer): An agency.

Inter-agency layer (the highest layer): The total system.

128 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

Freelancer-AVAs Inter-Agency Layer
()

b , . n/ T
(A Object Informatio _— »
Freel ancerAVA 1 Agencyz Agmcyl \‘
/7 / / i)
= L2 Agency Informatio ! ‘
FreelancerAVA = = gency !

Agency3

e
.

Intra-Agency Layer'

(N
- (A,

. MemberAVA2 \Ob]ectlnformanon//' MemberAVAl

\

. ,,"Intra-AVA Layer /

) .) AVA "l)
Act|on Module

i Communication
. f‘amera Data /Object Data- Module

1

2
*Perception Datel ¢ i
Perception Module

Dynamic Memory

Figure 5.10: Three layers in the system (lowest

intra-AVA, middle:
intra-agency and highest: inter-agency layers)

In each layer, object identification according to the type of exchanged information is

established. Depending on whether or not object identification is successful, a dynamic
interaction protocol for cooperative object tracking is activated

In what follows, we address the interactions in each layer

5.3.2 Intra-AVA Layer: Interaction between Modules within an
AVA

In the intra-AVA layer, perception, action and communication modules interact with each

other through the dynamic memory. That is, an AVA consists of a group of three modules

and a dynamic memory. The interactions among modules materialize the functions of the
AVA.

5.3 Dynamic Interaction for Cooperative Tracking 129

5.3.2.1 Perception Module

Followings are the tasks of the perception module:
1. Capture an image.
2. Detect anomalous regions in the captured image.

3. Estimate the number of the detected objects, and obtain the information of each
object.

4. Find out its own target object from the detected objects.

While the above tasks 1 and 2 are similar to the tasks of the single-target tracking system
proposed in chapter 4, the multi-target tracking system has to establish object identifi-
cation (the above tasks 3 and 4). Note that a freelancer-AVA performs only the above
tasks 1 and 2 because it should observe a wide area without gazing at a specific object.
A member-AVA, on the other hand, has to establish object identification to keep tracking
its target object, namely the above tasks 3 and 4. In what follows, actual problems for
realizing the tasks 3 and 4 are described.

After the perception module detects anomalous regions in the observed image by the
background subtraction® , it then obtains the following information:

The number of the detected objects: Since there might be multiple objects in the
observed image, the perception module has to discriminate between the observed
objects.

The information of each object: To represent the object information, the object di-
rection (i.e., the 3D view line from the projection center of the camera to the centroid
of the detected object region in the observed image) and the size of the object region
(i.e., the pixel number included in the detected object region) are computed. With
this information, object identification and camera control are implemented.

To discriminate between the observed objects, the adjoining relations between the
detected anomalous pixels are examined. The result of the background subtraction is
recorded in the image that is called a Detection Image. Let D(x,y) be a pixel value at
the image coordinates (z,y) in the detection image:

e If D(z,y) = 1, the pixel (z,y) is considered to be the anomalous region.
e If D(z,y) =0, the pixel (z,y) is considered to be the background region.

If D(z,y) =1 and D(n) = 1, where n denotes the 8-neighbor pixels of (z,y) (i.e., n €
{("E o lay - 1)7 (l',y - 1)7 (1‘+ lay - 1)7 (IL’ - lay)a (IL'—|— lay)a (IL’ - 17y+]-)7 (.’L',y+]-)7
(zx+1,y+1)}), D(z,y) and D(n) are considered to be the same object region. Figure
5.11 illustrates the object discrimination based on the adjoining relations.

5 The object detection method by the perception module are mentioned in chapter 4.

130 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

1tpixé]
-~

Objects Po=1

Figure 5.11: Object discrimination based on the adjoining relations be-
tween the detected anomalous regions (pixels).

However, since the result of the background subtraction includes image processing
errors, the examination for each pixel incurs a misunderstanding about the adjoining
relations. To increase the robustness for object discrimination, we decrease the resolution
of the detection image as illustrated in Figure 5.12:

1. C(i,j) is a group of L x L pixels: C(i,j) consists of {(z,y)| x = (L x i)+ 1, -,
LX(i+1),y=(Lxj)+1, e Lx(+1)}

2. Let R(i,7) be a rate of pixels, whose pixel values are 1, in C(i,5): R(i,j) =
Np(i,j)/(L x L), where Np(i,j) denotes the number of pixels, whose pixel val-
ues are 1, in C'(i, 7).

3. If R(i,7) is larger than a predefined threshold, the pixel value at (i,7) in the coarse
detection image is 1 (i.e., D(i,7) = 1 in the coarse detection image).

4. Otherwise, D(i,j) = 0 in the coarse detection image.

The object discrimination algorithm mentioned above is applied to the coarse detection
image.

Based on the result of the object discrimination in the coarse detection image, the
centroid and size of each detected object are obtained in the original detection image.
First, each object region in the coarse detection image is superimposed on the original
object detection image, and the superimposed region is regarded as the object region in
the original detection image (Figure 5.13). The centroid and size of detected object, are
denoted by (2, y4) and ARE AP, respectively. Next, the pan-tilt angles of object, at the

5.3 Dynamic Interaction for Cooperative Tracking

L[pixel]

GxL)pixel] @+
‘ pixel]

D(xy) =0

D(xy) =1

R(, j) < Threshold

Original Detection Image

L[pixel]

(B L)[p‘ixei] 1tpixé|] 1
- '

(i x L)[Pixf'}—’

>

131

1[pixel]

Coarse Detection Image

T

jlpixe]

<—i[pixel

1[pixel]

R(i, j) > Threshold

> — D(ij) = 1

Original Detection Image Coarse Detection Image

Figure 5.12: Coarsening the detection image.

image capturing time ¢ (denoted by (Ph,;(t), To;(t))) is represented by

o

(30) = (7m0)+ (emid)). o

where (Peam(t), Team (t)) and f(¢) denote the pan-tilt angles and focal length of the camera
at t. That is, (Py;(t), Tt,;(t)) denotes the 3D view direction from the projection center
to object, at t. Hereafter, we call this 3D view direction a 3D view line LP(t). The 3D
view line LP(¢) and the region size AREAP(t) are regarded as the information of object,
at t.

When the above object information is obtained at ¢ + 1, the perception module
compares the 3D view lines of objects; . y,,, detected at ¢ + 1 (denoted by L'(t +
1),---, LN+1(t 4+ 1)) with those of objects; ...y, detected at t for object identification.
Let (1) LP(t + 1), where p € {1,---, Nyy1}, have the shortest angle between L?(t), where
g € {1l,---,N;}, and (2) the angle between LP(t+1) and L9(t) be shorter than a threshold.
The perception module then identifies LP(¢ + 1) with L7(¢).

Next, this module compares the 3D view line of its target at ¢ (denoted by L(t))
with L'(t 4+ 1),---, LN+ (£ +1). Let (1) L*(t + 1) have the shortest angle between L(t),

132 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

Coarse Detection Image Original Detection Image

_. Object region

Object region

Figure 5.13: Superimposing the detected object region.

where z € {1,---, N;41}, and (2) the angle between L(t) and L*(t + 1) be shorter than
a threshold. The perception module considers object, corresponding to L*(t + 1) as the
target object at t+1. Consequently, L(t+1) = L*(t+1) and AREA(t+1) = AREA*(t+1).

If the interval between ¢ and ¢ + 1 is small enough and the angle between 3D view
lines of multiple objects is large enough, the above identification method is useful. In
general, however, this assumption does not always hold. To increase the reliability of
object identification, the perception module reads the 3D view line of the target object
at t+ 1 from the dynamic memory (future prediction), and compares it with the 3D view
lines detected at ¢ + 1. This procedure makes identification reliable.

The perception module writes the information of all the detected objects at t+1 (i.e.,
(L*(t+1), -+, LN (t+1) and AREA(t+1), -+, AREAY (t+1)) into the dynamic memory.
Note that the information of the non-target objects are also recorded as time-series data
in the dynamic memory. This is because object identification by the perception module
might be corrected by the agency: when the member-AVA tracks a non-target object due
to failing object identification by itself, the agency informs the member-AVA of the target
information by sending the 3D position of the target object (denoted by P(¢))® . In this
case, the target information in the dynamic memory is modified so that the detected 3D
view line L, (t), where y € {1,---, N}, identified with ﬁ(t + 1) is regarded as the target
information L(t). Therefore, the information of all the detected objects has to be recorded
in the dynamic memory.

6 The details of the process for (1) correcting the target information in the AVA and (2) detecting
the wrong object identification by the agency will be mentioned in Section 5.3.2.2 and Section 5.3.3.6,
respectively.

5.3 Dynamic Interaction for Cooperative Tracking 133

5.3.2.2 Action Module

The action module in the freelancer-AVA moves its camera along the predefined trajectory
to search for an object.

In the member-AVA, on the other hand, the action module controls the camera to gaze
at the target object according to (1) the 3D view line and the area size of the target (i.e.,
L(t+1) and AREA(t + 1)) detected by the perception module or (2) the 3D position of
the target (i.e., P(t+1)) received by the communication module. In each processing cycle,
the action module first read P(t + 1) from the dynamic memory. If P(t + 1) is valid” ,
the action module controls the camera based on P(t + 1), otherwise based on L(t + 1)
and AREA(t +1). When the action module controls the camera based on L(t+1) and
ARFEA(t+ 1), the camera is controlled by the prediction-based tracking method with the
dynamic memory proposed in chapter 4. When the view direction is controlled based on

~

P(t+ 1), on the other hand, the following rules are employed:

1. Object identification: Let the 3D view line determined by P(t + 1) and the
projection center be L'(t + 1). The action module compares L'(t + 1) with the
object information L(t + 1), - -+, LV (¢ + 1) detected by the perception module for
object identification. Depending on the result of object identification, the target
information is modified as follows:

Case A: If L¥(t+1) has the enough small angle between L'(t), where y € {1,---, N},
L¥(t+1) is considered to be the target information at ¢ 4+ 1 (successful identi-
fication).

Case B: If all the 3D view lines L'(t 4+ 1), -+, LN (¢ + 1) are distant from L'(t),
the target is considered to be lost at ¢ + 1 (unsuccessful identification).

2. Camera control: Based on the result of object identification, the action module
controls the camera as follows:

Case A: If object identification is successful, the pan-tilt-zoom parameters are con-
trolled by the prediction-based tracking method.

Case B: If object identification is unsuccessful, the pan-tilt angles are changed
towards LY(t + 1). To search for the target object, the zoom parameter is
controlled so that the view angle of the camera becomes the widest.

5.3.2.3 Communication Module

If necessary, the communication module transmits the object information detected by the
perception module (i.e., L*(t +1),--+, LN (t 4+ 1)) to agencies. This module also receives
the information of the target object (i.e., P(t + 1)) from agencies.

Object information sent from an AVA is listed in Table 5.1. This information is
transmitted through the network as a message. Depending on the role of the AVA, this

message is transmitted in the different ways:

T If the interval between ¢ + 1 and the current time is shorter than the predefined threshold, }A’(t +1)
is considered to be valid.

134 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

Table 5.1: Object information sent from an AVA to agencies.

‘ Entry H Information ‘
AVA information AVA-ID ID of an AVA

External parameters || External camera parameters (3D
position and view direction)

Number The number of detected objects

Time The time when an AVA observed
Detected information | Object; | View line 3D view line from a camera to
{1,---,N} object; (L)

Target flag || If an AVA is tracking objecty, the
value is 1, otherwise 0.

Objecty | View line 3D view line from a camera to
objecty (L")

Target flag || If an AVA is tracking objecty, the
value is 1, otherwise 0.

o If the AVA works as a freelancer-AVA, the message is broadcasted. While this
message is accepted by all agencies, all AVAs ignore it.

e If the AVA works as a member-AVA, the message is sent only to its agency.

An agency extracts the necessary information from this message and establish object
identification between its own target object and the object information included in the
received message.

5.3.2.4 Dynamic Memory: Interaction between the Modules

To cooperatively work as an AVA, perception, action and communication modules need
to dynamically exchange the time-series information maintained by each module. Each
module provides the following information:

Perception: The 3D view lines of the detected objects.
Action: The camera parameters (i.e., pan, tilt and zoom).
Communication: The received information of the target object.

Table 5.2 shows the reader and writer of the information exchanged between the modules.

This information exchange is realized through the dynamic memory. The contents of
the dynamic memory in the intra-AVA layer are shown in Table 5.3. The functions of the
dynamic memory and the dynamic interactions between modules are identical to those of
the single-target tracking system proposed in chapter 4. With the dynamic memory, the

135

5.3 Dynamic Interaction for Cooperative Tracking

Table 5.2: Information exchanged in the intra-AVA layer.

Reader
Perception | Action | Communication
Perception The 3D view | The 3D view
lines of the de- | lines of the de-
tected objects tected objects
Writer Action Camera parameters o)
Communication | The corrected in- | The 3D posi-
formation about | tion of the tar-
the target object get object

Table 5.3: Entries of the dynamic memory in the intra-AVA layer.

Entry

Information

AVA information

AVA-ID

ID of an AVA

External parameters

External camera parameters (3D
position and view direction)

Role Current role of an AVA (i.e., free-
lancer or member)
Camera information | Pan Pan positions are recorded as time-
series data (Peam(t)).
Tilt Tilt positions are recorded as time-
series data (Team(?))-
Zoom Zoom positions are recorded as

time-series data (Zeam(t))-

Target information

3D position

3D positions of the target object are

~

recorded as time-series data (P(t)).

Detected information
{1,---,N}

Number

The number of detected objects

Object; | View line

3D view line from a camera to
object; is recorder as time-series

data (L'(t)).

Target flag

If an AVA is tracking object;, the
value is 1, otherwise 0.

Objecty | View line

3D view line from a camera to
objecty is recorded as time-series
data (LM (t)).

Target flag

If an AVA is tracking objecty, the
value is 1, otherwise 0.

136 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

3D Position
1
L1 (t1)

(a) Spatial object identification (b) Temporal object identification

Figure 5.14: Object identification established in the intra-agency layer.

modules can exchange their information asynchronously at an arbitrary time. Therefore,
each module can work autonomously without damaging the reactiveness required for a
real-time system.

5.3.3 Intra-agency Layer: Interaction between AVAs

The intra-agency layer consists of member-AVAs belonging to the same agency simulta-
neously. In this layer, the member-AVAs in the same agency exchange the information
of the detected objects for object identification. Two kinds of object identification are
required in this layer.

5.3.3.1 Spatial Object Identification

When the member-AVAs; ... 5, of the agency capture the images, the agency has to es-
tablish object identification between the 3D view lines detected by each member-AVA
{Li(t)]i =1, N}, -, {LY(tar)]i = 1,+-+, Nas}, where {L¢ (t,)]i = 1,+-+, Ny} de-
notes the 3D view lines detected by member-AVA,, at t,, (Figure 5.14 (a)). These 3D
view lines are compared between AVAs, and the 3D distance between each view line is
computed. If the 3D distance between the view lines is less than a threshold, these view
lines are considered to be the information of the same object. In addition, an intersection
of the identified 3D view lines is regarded as the 3D position of the object.
In an example shown in Figure 5.14 (a),

5.3 Dynamic Interaction for Cooperative Tracking 137

e member-AVA; detected two objects at ¢; (the 3D view lines are denoted by L} (¢;),
L% (tl)a and

e member-AVA, detected two objects at t» (the 3D view lines are denoted by Li(t2),
L% (tZ)a and

e member-AVAj; detected one objects at t3 (the 3D view line is denoted by L3).

These 3D view lines are compared between the AVAs. ‘Li(t), Li(t2) and Li(¢3)" and
‘L3(t1) and L3(t,)” are identified with each other, respectively. Based on these correspon-
dences, the system computes the intersections of the 3D view lines that were identified
with each other, and then regards these intersections as the 3D positions of the detected
objects.

Note that this spatial identification method is effective only if the interval between
ti,---,ta is short enough.

5.3.3.2 Temporal Object Identification

To gaze at the target object continuously, the agency compares the information of the
target object at ¢ with the information of the objects observed at ¢ + 1 after spatial
object identification (Figure 5.14 (b)). Depending on the types of the observed object
information, temporal object identification includes the following four cases:

e When spatial object identification at ¢ + 1 has reconstructed the 3D positions of
detected objects (denoted by {P;(t+1)]i =1,---, N}), the information of the target
object at ¢ is compared with {P;(t + 1)[i = 1,---, N}. Note that {P;(t + 1)|i =
1,---, N} are reconstructed from the 3D view lines observed by each member-AVA
at the time closest to ¢ + 1:

Case 1. When the 3D position of the target object at t (i.e., P(t)) is compared
with {P;(t + 1)|s = 1,---,N}: Let (1) P.(t + 1) have the shortest distance
between P(t), where z € {1,---, N}, and (2) the distance between P(t) and
P.(t + 1) be shorter than a threshold. The agency then regards P.(¢ + 1) as

the 3D position of the target object at ¢ + 1.

If this identification fails, namely none of {P;(t+1)[i = 1,---, N} are identified
with P(t), the following case 3 is applied.

Case 2. When the 3D view line of the target object at t (i.e., L(t)) is compared
with {P;(t + 1)]i = 1,---,N}: Let (1) P.(t + 1) have the shortest distance
between L(t), where z € {1,---, N}, and (2) the distance between L(t) and
P.(t + 1) be shorter than a threshold. The agency then regards P.(¢t + 1) as
the 3D position of the target object at ¢ + 1.

If this identification fails, namely none of {P;(t+1)[i = 1,---, N} are identified
with P(t), the following case 4 is applied.

In these cases, P(t 4+ 1) = P,(t +1).

138 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

e When spatial object identification at ¢ + 1 has not reconstructed 3D position of
any detected object, namely none of 3D view lines detected by member-AVAs are
identified with each other, the information of the target object at ¢ is compared
with the 3D view lines of the objects, each of which is observed by each member-
AVA, ..y at the time closest to ¢t + 1 (denoted by {L!(t;)]i = 1,---, Ny}, ---,
{Liy(tar)li =1+, Ny}):

Case 3. When the 3D position of the target object at ¢ (i.e., P(t)) is compared with
{Li(ty)i =1, Ny}, -+, {Li(tar)]i = 1, -+, Nas}: Let (1) LY(t,) have the
shortest distance between P(t), where z € {1,---,N,} and y € {1,---, M},
and (2) the distance between P(t) and L¥(t,) be shorter than a threshold. The
agency then regards LY(t,) as the 3D view line of the target object at ¢+ 1. In
addition,]3(75) is projected onto L¥(t,), and this projected 3D point is regarded
as the 3D position at ¢ + 1.

Case 4. When the 3D view line of the target object at ¢ (i.e., L(£)) is compared with
{Li(t)|i=1,-- Ny}, -, {Li,(ta)|i = 1,---, Nas}: Let (1) L(t) be observed
by member-AVA,,, and (2) LY(t,) be identified with L(t) by the perception
module of member-AVA,. The agency then regards LY(t,) as the 3D view line
of the target object at ¢ + 1.

~

In these cases, L(t + 1) = L¥(t + 1).

In an example shown in Figure 5.14 (b), the system estimated the 3D positions of two
objects at t + 1 (denoted by P;(t+ 1) and Py(t + 1)) by spatial object identification. The
system, then, compares these 3D positions with the 3D position of the target object at
t (denoted by P(t)), namely this situation is the above case 1. As a result, P;(t 4 1) is
identified with P(t).

Note that this temporal identification method is effective only if the interval between
t and t 4+ 1 is short enough.

5.3.3.3 Virtual Synchronization for Spatial Object Identification

Since AVAs capture images autonomously, the member-AVAs in the same agency observe
the 3D view lines of the objects ({L¢, (t)|i = 1,- -+, Ny, }) at different times (i.e., t,,, # t,).
Furthermore, the message delay via network makes the interval between t,, and ¢, larger.
The result of object identification is, therefore, unreliable if these asynchronized object
information from each camera is compared with each other. The unreliable identification
results in difficulty in a continuous observation of the target object.

Other distributed systems that consist of autonomous cameras coped with this problem
as follows: In [Nak01] and [KMSO00], the newest information gathered from each camera is
considered to be observed at the same time. In [Ste99], each object information includes
its time stamp (Let ¢; denote the time stamp of information;). The system regards the
information observed at ¢; and t;, where |t; — t;| is small enough, as the simultaneous
information. These approximate methods break down under complicated situations and
network congestion.

5.3 Dynamic Interaction for Cooperative Tracking 139

View direction 1 Memberi
Sequence of Estimated Val uel__l(T)_ | k \ ‘/-
View lines M\‘.‘" 1 - 1 m b
: LUK 1.
Observed Intrepolation H 1 o /“ L1 (ts e
by Member 1 ~time |1 'y\‘ \I dentifiy!
® Estimated Value gl |rtu\a| Y= o H O >
O Real Value Estimation ||y o(tl)'/ O(t) (ts)
- Virtual ' TSN
View direction |Synchronization : Rilkg
Sequence of Estimated Val UGL_2(T)\’._,O__—
View lines 4 A
Observed R_ o A Y .
by Member 2| A > time i: D SR I
T

(a)Readout the value from the dynamic memory (b)Spatial object identification

Figure 5.15: Virtual synchronization for spatial object identification
among member-AVAs in the same agency.

To solve this problem, we put the dynamic memory in the intra-agency layer as we
do in the intra-AVA layer (Figure 5.10). By employing the dynamic memory, a 3D view
line at an arbitrary time can be estimated from asynchronous discrete time-series data
recorded in the dynamic memory. We can, therefore, solve this problem to estimate a 3D
view line observed by each camera at the same time. We call this procedure a Virtual
Synchronization. Since each agency works while keeping its intrinsic dynamics, it can
establish object identification at an arbitrary time by reading 3D view lines detected by
all the member-AVAs from the dynamic memory.

Figure 5.15 (a) shows an example of the virtual synchronization with the dynamic
memory. In this example, the object information (i.e., the 3D view line) detected by
member-AVA; and member-AVA, (indicated by white points in the figure) is written in the
dynamic memory shared by the member-AVAs. To establish spatial object identification
at T, the agency can obtain the 3D view lines detected by both member AVAs at T
(denoted by Li(T) and Ly(T), both of which are indicated by black points in the figure)
by estimating the values from the dynamic memory. The agency can, therefore, establish
spatial object identification between the 3D view lines observed at the same time.

In our system, spatial object identification is practically realized as follows. When an
agency is formed (mentioned in Section 5.3.3.5), an Agency Manager is generated at the
same time. An agency manager is an autonomous software agent® independent of AVAs,
and performs the following tasks as a delegate of an agency.

8 In our system, the agency manager is implemented by a UNIX process on a PC.

140 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

Table 5.4: Entries of the dynamic memory in the intra-agency layer.

Entry

Information ‘

Target information

3D position

3D positions of the target ob-
ject are recorded as time-series

~

data (P(t)).

3D view line

3D view lines of the target ob-
ject are recorded as time-series

~

data (L(t)).

Object-importance

The object-importance of the
target object

Member information
{1, -, M}

Number

The number of member-AVAs
at the present time.

member-AVA; | AVA-ID ID of member-AVA,
External External camera parameters of
parameters| AVA;’s camera

member-AVA,, | AVA-ID ID of member-AVA ,,
External External camera parameters of
parameters|| AVA,,’s camera,

Detected information
{1,---, M}

Detected Information of

member-AVA;

Detected informa-
tion (shown in Table 5.1) sent
from member-AVA, is recorded
as time-series data.

Detected Information of

member-AVA ,,

Detected information sent from
member-AVA;,; is recorded as
time-series data.

e Management of the dynamic memory in each agency. The contents of the dynamic
memory in the intra-agency layer are shown in Table 5.4.

e Object identification. This task is performed by the perception module in the agency

manager.

e Communication with other agencies and AVAs.
communication module in the agency manager.

This task is performed by the

That is, the agency is a conceptual group, and the agency manager is an entity of the
agency. All the information of the target object is managed by each agency manager.
There exists one-to-one correspondence between the target object (and its information)

5.3 Dynamic Interaction for Cooperative Tracking 141

and the agency (and its agency manager). To manage the information of the target object
with each agency intensively, the system handle the object information as follows:

e All the member-AVAs send the information of the detected objects to its agency
manager.

e Even if the agency disappears once because the target object cannot be observed,
its recorded information will be managed by the agency that tracks the same target
object when it is detected again (mentioned later).

e In the proposed system, the system detects only the position and direction as the
information of the detected objects. If multi-modal information (e.g., appearance,
sound and so on) is observed, all of them are managed intensively by the agency
manager and written into its dynamic memory.

Member-AVA,, sends the 3D view lines of the detected objects (i.e., {L! (t,,)|i =
1,--+,Npn}) to the agency manager in the same agency. The agency manager then
writes the received object information into its dynamic memory. When spatial ob-
ject identification is required, the agency manager compares the object information ob-
served by member-AVAs; ... p;, which are obtained by the virtual synchronization (i.e.,
{Li(T)|i =1,---, N}, {Ly(T)|i = 1,---, Nag}). If the distance between L (T) and
Lg(T) is small enough, the agency manager regards the ith detected result of AVA, and
jth detected result of AVA, as the 3D view lines both of which go towards the same
object (denoted by object,) in the scene. The intersection of Li(T') and L/(T) (denoted
by P,(T)) is regarded as the 3D position of object, at T.

Object information sent from the member-AVA to the agency is listed in Table 5.1.
For object identification in the intra-agency layer, only several parts of the detected
information {1,---, N} are utilized. The other information is, however, required to other
purposes:

e The target flag is referred by the agency manager to confirm whether or not the
member-AVA successfully tracks the target object of the agency (mentioned later
(in Section 5.3.3.6)).

e The AVA information is employed for the interaction in the inter-agency layer (men-
tioned later (in Section 5.3.4)).

Figure 5.15 (b) shows an example of spatial object identification with the virtual
synchronization. In this example, AVA;, AVA, and AVAj3 capture the images at t;, %,
and t3, and detect the 3D view lines Ly (1), La(t2) and Ls(t3), respectively. The agency
manager synchronizes these 3D view lines at t3, and then acquires L;(t3), Lo(t3) and
Ls(t3). By comparing these values synchronized virtually, the agency manager can realize
reliable spatial object identification.

142 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

EMVIemberl
1 :
+ s
Reconstructed ValueP (T) Lit+D) %
Position EstimatedValueE(T)\o
S
Al S IR
Sequence of ° | Virtual sync—..-*
positions 5 R 1
Intrepolation :
@ Estimated Value Virtual
O Red Value Synchronization

(a)Readout the value from the dynamic memory (b)Temporal object identification

Figure 5.16: Virtual synchronization for temporal object identification.

5.3.3.4 Virtual Synchronization for Temporal Object Identification

For temporal object identification, the agency manager has to compare the 3D position
of the target object at ¢ (i.e., P(t)) with the 3D positions of the detected objects; ...y
at t +1 (ie, {P(t+1)[i =1,---,N}). The result of object identification is, however,
unreliable because the object information obtained at different times is compared with
each other.

This problem can be also solved with the dynamic memory in each agency. That
is, an agency manager records the 3D position of the target object (i.e., P(t)) into the
dynamic memory as time-series data. The agency manager can, therefore, estimate the
3D position of the target at ¢ + 1 (denoted by P(t + 1)), and compare P(t + 1) with
{P(t +1)]i = 1,---,N}. Then, the detected result P,(t 4+ 1) which has the shortest
distance between P(t + 1) is considered to be the 3D position of the target at t + 1.
Consequently, P(t+1) = P,(t+1). Thus, temporal object identification becomes reliable.

Figure 5.16 shows an example of temporal object identification with the virtual syn-
chronization. By interpolating the reconstructed 3D positions of the target object, the
agency manager can estimates the target position at 7' (Figure 5.16 (a)). In Figure 5.16
(b), the 3D position P(t+1) is reconstructed at t+ 1. The agency manager then estimates
the 3D position of the target object at t + 1 (i.e., P(t + 1)), and compares P(t + 1) with
P(t+1).

As mentioned above, the information exchange in the intra-agency layer through the
dynamic memory allows the system to stabilize both spatial and temporal object iden-
tification. Note that all object identification in the intra-agency layer, namely object

5.3 Dynamic Interaction for Cooperative Tracking 143

S - I (N = I (S i -

Freelancer\. ‘s Fredlancer \ P \ 4
» » »
Identification Failure I dentification Success
3D view line Mi"essege

(ID Request)

Member

(2-8)

Figure 5.17: Agency formation.

identification between an agency and a member-AVA /freelancer-AVA, is established by
the agency (agency manager).

Depending on whether or not spatiotemporal object identification is successful, the
dynamic interactions for a generation and maintenance of an agency are activated. These
dynamic interactions are defined by the following three cooperative-tracking protocols:

Agency Formation: This protocol defines

e a new agency generation by a freelancer-AVA and

e a participation of a freelancer-AVA in an agency.
Agency Maintenance: This protocol defines

e a secession of a member-AVA from an agency and

e an elimination of an agency.

Agency Spawning: This protocol defines a new agency generation from an existing
agency.

5.3.3.5 Agency Formation Protocol

Initially, each AVA independently searches for an object. When a freelancer-AVA finds a
new object, it requests from the existing agencies object identification between the newly
detected object and the target object of each agency® (Figure 5.17 (1)). Depending on
whether or not the result of object identification is successful, the freelancer-AVA works
as follows:

9 The details of a communication between the freelancer-AVA and the agency will be mentioned in
Section 5.3.5.

144 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

Case A: No agency established a successful identification:

The freelancer-AVA that finds the new object starts a new agency manager. The
agency that tracks the newly detected object is then formed. The freelancer-AVA
joins into this agency (Figure 5.17 (2-a)).

Case B: An agency established a successful identification:

The freelancer-AVA joins into the agency that has made successful identification if
requested by the agency (Figure 5.17 (2-b)).

Depending on the relationship between the current state of the system and the task-
constraint, the agency formation is rejected even if the freelancer-AVA finds an object: if
there are not enough freelancer-AVAs for search (i.e., in the case of deficiency of search-
level), the number of freelancer-AVAs must not decrease. Then, the freelancer-AVA and
agency works as follows:

Case A: The freelancer-AVA cannot become a member-AVA, and a new agency is not
generated.

Case B: The agency manager, which established a successful identification, examines the
goal-functions of the freelancer-AVA and its member-AVAs to determine (1) whether
or not include the freelancer-AVA in the agency instead of the current member-AVA
and (2) if the freelancer-AVA joins into the agency, which member-AVA should be
released.

Since all the information about the same object should be managed together, a newly
generated agency manager (1) reads the object information obtained in the past and (2)
compares its own target information with the read information for object identification.
If this identification is successful, the agency manager considers the read information
as the information of the own target object and records it into the dynamic memory.
For this purpose, the agency manager need to record its own target information when
the agency disappears (the details of the disappearance of the agency are mentioned in
Section 5.3.3.6).

5.3.3.6 Agency Maintenance Protocol

After an agency is generated, the agency manager continues spatial and temporal object
identification for cooperative tracking (Figure 5.18 (1)). If temporal object identification
between the target objects of the agency and member-AVA,, fails'® | the agency manager
reports the 3D position of the target object to member-AVA,,,. This information navigates
the gaze of member-AVA,, towards the target object (Figure 5.18 (2)). Nevertheless, if the
failure of identification continues for a long time, the agency manager puts member-AVA,,
out of the agency (Figure 5.18 (3)).

10 The member-AVA sends the information of all detected objects to the agency. The agency, however,
can find the target information of this member-AVA by checking the target flag (shown in Table 5.1).

5.3 Dynamic Interaction for Cooperative Tracking 145

‘ .ikMemberm /_D Member m /_D D~\ /_D

k) A Invisble 4

ot 3D view line

' it P Obsade
* (Detected result) 3D object position | | 3 acle

SN (Gaze navigation) ... ldentification Failure
‘ Message

72T

3

Figure 5.18: Agency maintenance.

If all the member-AVAs are unable to observe the target object, the agency manager
eliminates the agency. All the member-AVAs, then, return to freelancer-AVAs.

In addition, depending on the relationship between the current state of the system and
the task-constraint, the agency manager adjusts the number of member-AVAs. If there
are not enough freelancer-AVAs (i.e., in the case of deficiency of search-level), the agency
manager has to release its member-AVA to increase freelancer-AVAs.

The agency manager records its object information when the agency is eliminated!! .
As mentioned above, in order to unify the information of the same object, this recorded
object information is read by a newly generated agency.

5.3.3.7 Agency Spawning Protocol

The agency manager can distinguish its own target object from other objects detected
by member-AVA,, (Figure 5.19 (1)). If the agency manager finds the 3D view line of
the newly detected object (denoted by L,), it requires other agencies to compare L,, with
their own target objects for object identification. Then, the results of object identification
are returned from other agency managers. If none of identification is successful (namely,
it seems that there is not an agency that tracks the newly detected object in the system),
the agency manager orders member-AVA,, to generate a new agency (Figure 5.19 (2)).
As a result, member-AVA,, generates an agency for tracking L,, and joins it (Figure 5.19
(3))-

An agency generation by the agency spawning is also restrained if the search-level of
the current state is less than that of the task-constraint.

1 In our system, the object information is written into the disk drive.

146 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

ember /_D

X"~ Observed Object Info.

(1) 2) 3)
Figure 5.19: Agency spawning.

5.3.4 Inter-agency Layer: Interaction between Agencies

The inter-agency layer consists of all existing agencies. The fundamental task of an agency
is to keep tracking its own target object. In order to keep tracking the target object in the
complicated wide area, agencies need to exchange their member-AVAs with each other
in accordance with the target motions. To realize such a dynamic reconstruction of the
agency, the following two kinds of information are exchanged between agencies.

e Information of the target object.
e Information of the member-AVAs.

We call this information Agency Information. The contents of the agency information are
listed in Table 5.5.

In our system, the agency reports its agency information not only to other agencies
but also to all freelancer-AVAs through broadcast messages. The freelancer-AVA also
broadcasts the information of the detected objects to all agencies. The freelancer-AVA
has to exchange the object information between agencies in order to achieve the following
functions:

e Maintain a consistency of one-to-one correspondence between the agency and the
target object. That is, if there is not the agency that is tracking the object detected
by a freelancer-AVA, the system can generate a new agency. The system should not,
however, generate a new agency if there is an agency that is tracking this object.

e Investigate the current state of the system. If a message from a freelancer-AVA is
newly received, the search-level of the system increases. Similarly, if a message from
an agency is newly received, the tracking-level of the system increases based on the
number of the member-AVAs belonging the agency.

5.3 Dynamic Interaction for Cooperative Tracking 147

Table 5.5: Agency information.

‘ Entry H Information ‘
Target information | 3D information 3D position of the target object
P or 3D view line of the target
object L
Object-importance The object-importance of the
target object
Time The time when the target is
observed
Member information | Number The number of member-AVAs

{1,...,]\/[}

member-AVA; | AVA-ID ID of member-AVA;
External External camera parameters of
parameters| AVA;’s camera

member-AVA,; | AVA-ID ID of member-AVA ,,
External External camera parameters of
parameters| AVA,,’s camera,

We will give a full account of the interaction between the agencies and the freelancer-AVAs
in Section 5.3.5.

5.3.4.1 Virtual Synchronization for Object Identification between Agencies

An agency that has received the agency information from another agency (agency;) com-
pares the 3D position of its own target with that of agency;’s target. This object identi-
fication is not reliable if these 3D positions are observed at different times. This problem
can be solved with the virtual synchronization in the same way as temporal object iden-
tification in the intra-agency layer. With the 3D positions of the target object recorded
as time-series data in the dynamic memory, the agency manager can synchronize the 3D
position of its own target with the received 3D position of agency;’s target. This virtual
synchronization of the 3D positions realizes reliable object identification between agencies.

Depending on whether or not the result of object identification between agencies is
successful, the dynamic interactions in the inter-agency layer defined by the following two
cooperative-tracking protocols are performed:

Agency Unification: This protocol defines a merge of agencies, both of which track the
same object.

Agency Restructuring: This protocol defines a reformation of the member-AVAs be-
tween agencies.

148 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

Figure 5.20: Agency unification.

5.3.4.2 Agency Unification Protocol

The Agency Unification protocol is executed when the result of object identification be-
tween agencies is successful. With this protocol, the agencies that are tracking the same
object are merged into one.

Followings are actual examples of situations that cause the agency unification.

e When the agency considers multi-objects in the scene as a single object because
of the failure in object identification. For example, this situation is caused when
different objects become close enough to be identified as the same object. In this
case, the agencies that make successful identification merge together temporally to
keep one-to-one correspondence between the agency and the detected target object.

e When a single object is first regarded as multiple objects because of the failure of
object identification, and then multiple agencies are formed for the same object by
mistake. This error is recovered by the subsequent observation. That is, multiple
agencies that are made due to the mistake merge together when object identification
between these agencies is successful.

Figure 5.20 shows an example of the agency unification. Agency manager 4, which has
made successful object identification with the target object of agencyp, sends the message
to agency managerg. This message asks agencyp to join agency, (Figure 5.20 (1)). In
order to order the member-AVAs of agencyp to transfer to agency,, agency managerp
sends messages to its member-AVAs after it receives the unification-request message from
agency 4 (Figure 5.20 (2)). Agency managerp then eliminates itself. Thus, two agencies
merge together (Figure 5.20 (3)).

5.3 Dynamic Interaction for Cooperative Tracking 149

Figure 5.21: Agency restructuring.

5.3.4.3 Agency Restructuring Protocol

The Agency Restructuring protocol is executed when the result of object identification
between agencies is unsuccessful. The agency manager performs the agency restructuring
taking into account the following factors:

e The number of the member-AVAs is determined by the object-importance of the
target object.

e Under the restriction about the number, each agency is attended by the AVAs which
are suitable for gazing at the target object.

Followings are actual examples of the situations that cause the agency restructuring.

Due to object motion: Depending on the 3D position of the target object, the AVAs
that are competent enough to gaze at the target object are determined.

Due to new agency generation: When a new agency is generated, this agency re-
quires member-AVAs enough to track the target object. This agency, therefore,
requests AVAs from other agencies.

We have various factors in determining the aptitude of each AVA for tracking (e.g. the
3D distance between the camera and the target, visibility from the camera), namely the
criterion for the agency restructuring. Users can settle down this criterion depending on
the task of the system as the goal-function.

Figure 5.21 shows an example of the agency restructuring.

1. If agency managerp makes unsuccessful object identification between agencyc, it
examines (1) the number of the member-AVAs between agencyc and agencyp and
(2) the tracking ability of each member-AVA. Based on this examination, agency

150 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

managerp decides whether or not to request a member-AVA from agencyq. If it
requests, it sends the AVA-request message to agencyc (Figure 5.21 (1)).

2. When agency managerc is requested to transfer its member-AVA to agencyp, agency
managerc examines the aptitude of own member-AVAs for tracking the target ob-
ject of each agency. Agency managers determines the member-AVA that is more
suitable for tracking targetp rather than targeto, where targets and targetp indi-
cate the target object of agencyc and agencyp, respectively. If agency managerq
considers member-AVA, to be suitable for tracking targetp, agency managerq or-
ders member-AVA, to transfer to agencyp (“Change agency message” in Figure 5.21
(2)). Member-AVA, then informs agencyp that it joins into agencyc (“Join agency
message” in Figure 5.21, 2.).

3. Member-AVA, then starts working as a member of agencyp (Figure 5.21 (3)).

5.3.4.4 Exclusive Interaction in Inter-agency Layer

A member-AVA transfers between agencies as a result of the dynamic interaction in the
inter-agency layer. Although this is necessary for continuous tracking, the state of the
system is temporally unstable during the reformation of the agency.

The following examples show the actual problems that occur during the dynamic
interaction between agencies:

Agency Unification: If two agencies decide to join into one side at the same time, both
agencies may fail in the agency unification because the agency of the destination
has disappeared.

Agency Restructuring: If multiple agencies exchange their member-AVAs at the same
time, there is some possibility that AVAs will swing between agencies due to a
radical reformation of agencies.

To solve these problems, each agency performs a dynamic interaction in the inter-
agency layer only with a single agency simultaneously. In addition, each inter-agency
cooperative-tracking protocol is executed depending on the following conditions.

Agency Unification: Agencyp that has made successful object identification with agencyg
requires agencyg to join into agencyp.
When agency is requested to join into agencyp, it decides whether or not to accept
the request according to its own state as follows:
e If agency(is not concerned with any inter-agency interaction, agencyq accepts
the request.

e If agencyg has requested the agency unification with agencyp, agencyg com-
pares the times when each agency sent the message to one side. Agencyg
accepts the request only if agencyp sent the message earlier than agencyy,.

o If agencyq is interacting with another agency, agencyg rejects the request.

5.4 Completeness and Soundness of the System 151

Agency Restructuring: Agencyp that has made unsuccessful object identification with
another agency can require a member-AVA only if agency p is not executing any other
inter-agency interaction with other agencies.

When the agency is requested a member-AVA, it decides whether or not to accept
the request according to its own condition as follows:

e If the agency is not executing any inter-agency interaction, it determines whether
or not to release its member-AVA. Depending on the determination, the agency
sends the message of acceptance or rejection in reply.

e [f the agency is interacting with another agency, it rejects the request.

5.3.5 Communication with the Freelancer-AVA

A freelancer-AVA communicates only with agencies. The freelancer-AVA sends the infor-
mation of the detected objects to the agencies by the broadcast message. The contents
of this message are listed in Table 5.1.

The agency that has received the object information from the freelancer-AVA estab-
lishes spatial object identification between its target information and the received object
information. Then, the agency sends the result of identification to the freelancer-AVA
in reply. The freelancer-AVA that has received this reply performs the agency formation
depending on the received issue.

On the other hand, the agency broadcasts the agency information. The freelancer-
AVA, that has received the agency information, refers to the target information included
in the received message. This freelancer-AVA decides the next role depending on the
condition of the current state of the system and the task-constraint as follows:

(Search-level of the current state) > (Search-level of the task-constraint)

The freelancer-AVA can start tracking the target object. If this freelancer-AVA
starts tracking the target object, it points its gaze towards the 3D position of the
target object that the agency sends.

(Search-level of the current state) < (Search-level of the task-constraint)

The freelancer-AVA should continue to search for a new object.

5.4 Completeness and Soundness of the System

5.4.1 Completeness for Persistent Tracking

In general, it is hard to guarantee that the system can always track all target objects under
every situation in the real world. The possibility of tracking depends on various factors
(e.g., the number of cameras and target objects, mechanical limitations of the camera,
the speed of the target object, and so on). Here, we mention the relations between the
numbers of cameras and target objects, and show the upper limitation of the target objects
to be tracked simultaneously in the proposed system.

152 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

To track a target object, an agency is generated. We define an agency as a represen-
tation of a target object in the system. Because of this definition, the maximum number
of target objects to be tracked is equal to the maximum number of agencies. An agency
is generated by an AVA that detects a target object in the scene, and the agency has to
be attended by at least one member-AVA for tracking its target object. The maximum
number of agencies, therefore, is the total number of AVAs in the system. In this case,
each agency has only one member-AVA.

In the proposed system, however, an agency reconstructs 3D information of its target
object from 2D information of the object observed by multiple member-AVAs. The 3D
information of the target object greatly assists the agency to persistently keep tracking
the target object as follows!'? :

e The reconstructed 3D position of the target object is useful for object identification
not only among AVAs but also among agencies.

e Even if a member-AVA cannot observe its target object because of being disturbed
by obstacles or other moving objects, it can gaze at the target object by being
received the 3D position of the target object.

e Comparing the 3D positions of the target objects with those of the cameras allows
the system to determine which AVA is appropriate for gazing at each target object.

That is, each agency should have at least two member-AVAs for reliable object tracking.

Based on the above discussion, we summarize the relations between the tracking ability
of the system and the numbers of the target objects and AVAs (denoted by n; and n,,
respectively) as follows:

Case 1: ny < [%]: The system can stably track all the target objects while obtaining

their 3D information.

Case 2: [%¢] < ny < n,: Although the system can track all the target objects, (n,—[% 1)

or more target objects are tracked by only one AVA.

Case 3: n, < ng: (ny —ng) or more objects cannot be tracked by the system simultane-
ously.

Note that [n] denotes the maximum integer that is not more than n.

This limitation about the number of target objects results because (1) the agency
receives the information of objects only from its member-AVAs and (2) the agency has
to be attended by at least one member-AVA. To avoid this problem, we can modify the
system as follows:

3D reconstruction method: If the agency receives the object information from AVAs
except for its member-AVAs as well, it can possibly reconstruct the 3D information
of the target object even when it has a single member-AVA. That is, this information

12 In addition, to apply the proposed system to various vision systems (e.g., navigation and motion
capturing systems), the 3D information of the target object has to be reconstructed.

5.4 Completeness and Soundness of the System 153

exchange allows the agency to stably track the target object even in [%] < n; < n,
(the above case 2). In this case, however, member-AVAs have to send the informa-
tion of the detected objects not only to their own agency manager but also to other
agency managers that require the object information. This increases a network-load.
In particular, if each member-AVA broadcasts the object information to report it
to all agencies, a huge network-load is produced. To avoid a breakdown of the sys-
tem due to increasing the network-load, each member-AVA should examine which

agency requires the information, and send it based on the result of the examination.

Definition of an agency: If the agency can exist without any member-AVA, the system
can track the target objects even in the case of n, < n; (the above case 3). To obtain
the information of the target object, the agency without the member-AVA has to
gather the object information from non-member-AVAs. We have to, therefore, solve
the problem about increasing the network-load mentioned above. In addition, this
definition has an essential problem: since the vacuous agency cannot control any
camera, it is not guaranteed that this agency (1) keeps tracking the target object
and (2) acquires its meaningful image.

In addition, here again note that we aim at designing a system that can not only
track trajectories of target objects but also acquire their detailed information. If
the system is required only to track the trajectory of the target object, each AVA
can survey a wide area and observe multiple objects simultaneously by adjusting
the zooming factor of its camera at the wide view angle. To acquire the detailed
information of the object, however, each AVA should control the pan, tilt and zoom
parameters of its camera to keep obtaining the high-resolution image of the target
object. In this case, it is hard for each AVA to keep observing multiple objects si-
multaneously. Accordingly, each agency has to be attended by at least one member-
AVA in order to acquire the detailed information of its target object continuously
by controlling the gaze of its member-AVA.

Thus, to avoid several problems mentioned above, we design the system so that (1) the
agency reconstructs the 3D information of its target object only from the information
received from its member-AVAs and (2) each agency has at least one member-AVA.

5.4.2 Necessity and Sufficiency of Cooperative-tracking Proto-
cols

In the proposed system, all events happened in the real world are characterized by the
results of object identification. Therefore, by verifying the types of cooperative-tracking
protocols executed depending on the result of each object identification, we can confirm
the necessity and sufficiency of cooperative-tracking protocols for multi-target tracking.
All the cooperative-tracking protocols are activated by the agency depending on
whether or not the result of object identification is successful. Object identification is
established when the agency received the message including the information of the ob-
jects from the freelancer-AVA, member-AVA and other agencies. Table 5.6 shows the

154 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

Table 5.6: Cooperative-tracking protocols activated by the agency de-
pending on the result of object identification.

Received object information Result of object identification
Success ‘ Failure

3D view lines of detected objects || Agency Formation Agency Formation
from freelancer-AVA
3D view line of the target object || Agency Maintenance Agency Maintenance,
from member-AVA Agency Spawning
3D view lines of non-target ob- || Agency Maintenance Agency Spawning
jects from member-AVA
3D point of the target object || Agency Unification Agency Restructuring
from agency

types of the cooperative-tracking protocols that are activated according to the relations
between the type of the received object information and the result of object identification.

As we can see, the cooperative-tracking protocols are designed just enough in accor-
dance with the situations in the real-world.

5.4.3 Soundness of Communicating with Other Processes

In each layer, multiple parallel processes dynamically exchange their information with
each other for cooperation. This dynamic interaction has to be realized without causing
deadlock.

Intra-AVA layer: The perception, action and communication modules exchange their
information through the dynamic memory in the intra-AVA layer. The dynamic
memory enables the modules to asynchronously obtain the information of another
process at an arbitrary time.

Intra-agency layer: Similarly, each agency has its own dynamic memory managed by
the agency manager. All member-AVAs send their observed information to the
agency manager. The agency manager continues spatiotemporal object identifica-
tion while keeping its own intrinsic dynamics. In addition, several information is
reported from the agency manager to its member-AVAs by the message transmis-
sion. The member-AVA accepts only the message from its agency manager not to
be affected inconsistently by multiple agencies: for example, message delays incur
the invalid communication between the agency and the member-AVA belonging to
another agency.

Inter-agency layer: The information exchange in this layer is implemented by a direct
communication using the message transmission. To avoid a conflict of different

5.4 Completeness and Soundness of the System 155

interactions between agencies, (1) each agency performs an inter-agency cooperative-
tracking protocol only with one agency simultaneously and (2) a timeout processing
for the inter-agency interaction is adopted to cope with message delays, dynamic
agency generation and elimination, and other unpredictable factors.

Thus, the dynamic interaction in each layer can be reactively realized without incon-
sistency and deadlock.

5.4.4 Soundness of State Transitions of the System

Here, we show that each module, AVA and agency can continue to work persistently
without causing deadlock. To confirm this, we summarize (1) the functions of all the
cooperative-tracking protocols and (2) the transitions of the system state caused by these
protocols.

5.4.4.1 State Transitions of the Modules

Perception module: Starting at initial, a perception module repeats the following steps
(Figure 5.22 (a)):

1. Capture: Capture an image (at tp).

2. Read (Camera para): Read the pan-tilt-zoom parameters at t, from the dy-
namic memory.

3. Detect: Detect object regions in the captured image.

4. Read (Object info): Read the histories of the object information detected in
the past from the dynamic memory.

5. ID: Identify the newly detected object information with the histories of the
object information.

6. Write (Object info): Write the result of object identification into the dynamic
memory.

Action module: Starting at initial, an action module works at each state as follows
(Figure 5.22 (b)):

e Read (Role): Read the current role (i.e, freelancer-AVA or member-AVA) from
the dynamic memory:
— If the current state is a freelancer-AVA, the state changes to Search.
— If the current state is a member-AVA| the state changes to Read (3DP).

e Search: Determine the next camera parameters based on the predefined tra-
jectory. The state changes to Camera Control.

e Read (3DV): Read the 3D view lines of the detected objects from the dynamic
memory. The state changes to Read (3DP).

156 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

(a) State transition network of the perception module

| Seacrh |

€
Read (Role) [Camera Control |
Member
£
vl [Track (Predi &

- Write(Target)

| Track (Non-predict) |

Failre

(b) State transition network of the action module

£ Buffer check]

IGenerate Agency Formation/E:
Spawning

(c) State transition network of the communication module

Figure 5.22: State transition networks of the modules. Each box and
arrow indicate a state and state transition, respectively.
A meshed box shows that the module accesses the dy-
namic memory at this state. Each arrow has a condition
for activation, provided that an automatic state transition
(denoted by €) occurs immediately.

5.4 Completeness and Soundness of the System 157

e Read (3DP): Read the 3D position of the target object from the dynamic
memory. Depending on whether or not the information of the 3D position is
valid, the state changes as follows:

— If the information is valid, the state changes to ID.
— If the information is invalid, the state changes to Track (Predict).

e [D: Identify the 3D position of the target object with the 3D view lines of the
detected objects:

— If identification is successful, the state changes to Write (Target).
— If identification is unsuccessful, the state changes to Track (Non-predict).

e Write (Target): Write the information of the newly identified target object into
the dynamic memory. The state changes to Track (Predict).

e Track (Predict): Determine the next camera parameters by the prediction-
based control method. The state changes to Camera Control.

e Track (Non-predict): Determine the next camera parameters to gaze at the 3D
position of the target object. The state changes to Camera Control.

e Camera Control: Control the camera parameters. The state changes to Read
(Role).

Communication module: All messages sent to the AVA are stored in the message
buffer managed by the communication module. Starting at initial, a communication
module works at each state as follows (Figure 5.22 (c)):

e Read (Role): Read the current role from the dynamic memory:

— If the current role is a freelancer-AVA, the state changes to Check (Task).
— If the current role is a member-AVA, the state changes to Read (3DV).
e Check (Task): Compare the task-constraint and the current state of the system.

The result of the comparison is valid until the state is changed to Check (Task)
again.

e Read (3DV): Read the 3D view lines of the detected objects from the dynamic
memory. Depending on whether or not there exists the newest 3D view lines
that has not been sent to the agency manager, the state changes as follows:

— If the newest information has been detected, the state changes to Send
(3DV).

— If the newest information has not been detected, the state changes to
Receive (Buffer check).

e Send (3DV): Depending on the current role of the AVA, the communication
module works as follows:

— Send the newest 3D view lines to the agency manager if the AVA is a
member-AVA.

— Broadcast the newest 3D view lines, if the AVA is a freelancer-AVA.

158

Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

The state changes to Receive (Buffer check).

Receive (Buffer check): Read the message buffer: all the messages are put into
the message buffer, and the communication module read them in the order of

FIFO:

— If there exists a message in the buffer, the state changes to Check (Valid-

ity).

— Otherwise, the state changes to Read (3DV).
Check (Validity): Examine whether or not the read message is valid'® | the
state changes as follows:

— If the message is valid, the state changes to Check (Type).

— If the message is invalid, the state changes to Receive (Buffer check).

Check (Type): Depending on the type of the message, the state changes as
follows:

— If the message is the 3D position of the target object, the state changes to
Write (3DP).
— Otherwise, the state changes to Write (Role).

Write (3DP): Write the received 3D position of the target object into the
dynamic memory. The state changes to Read (Role).

Write (Role): Write the new role if the received message makes the AVA change
its state. Depending on the type of the received message and the result of the
comparison in Check (Task), the state changes as follows:

— If the message requests the AVA to generate the new agency (i.e., the
agency formation and agency spawning protocols) and the task-constraint
allows the system to increase member-AVAs, the state changes to Generate
Agency.

— Otherwise, the state changes to Read (Role).

e Generate Agency: Generate an agency. The state changes to Read (Role).

As mentioned above, all the modules can work while keeping their own intrinsic dynamics.
In addition, since the information exchange between the modules is implemented through
the dynamic memory, all the modules can work continuously without conflicting with
another module when they exchange the information.

5.4.4.2 State Transition of the AVA

Figure 5.23 (a) shows the state transition model of the AVA. All the state transitions
of the AVA are caused by the cooperative-tracking protocols mentioned in Section 5.3,
provided that the state transitions indicated by arrows with € occur automatically and
immediately.

13 For example, a freelancer-AVA neglects the object information depending on the current state of the
system. A member-AVA neglects all messages from other agencies.

5.4 Completeness and Soundness of the System 159

1. Starting at initial, an AVA works as a freelancer-AVA at Freelancer.

2. If the AVA at Freelancer finds an object, it requests the existing agencies to identify
the detected object with their own target objects. Depending on the result of object
identification, the AVA changes its state as follows:

e Agency Formation: If this AVA cannot start tracking the object due to
the relations between the task-constraint and the current state of the system,
its state stays at Freelancer regardless of the result of object identification.

e Agency Formation (IDp Success), Agency Formation (IDp Failure):
If this AVA can start tracking the object, its state is changed to Member or
Member(Generate Agency) depending on the result of object identification. Its
state is immediately changed to Member after it generates an agency manager
even if the state has been changed to Member(Generate Agency). This AVA,
then, starts working as a member-AVA at Member.

3. If the AVA receives the message that induces the state transition from its agency
manager when the AVA works as a member-AVA | its state is changed depending on
the kind of the executed cooperative-tracking protocol as follows:

e Agency Unification, Agency Restructuring: The state is returned
to Member via Member(Change Agency). This AVA then transfers to another
agency.

e Agency Spawning: The state is returned to Member via Member(Generate
Agency). A new agency is generated at Member(Generate Agency), and this
AVA belongs to the new agency.

e Agency Maintenance (ID), Failure): This AVA exits from the agency,
and then works as a freelancer-AVA again. The state is changed to Freelancer.

e Agency Maintenance (ID); Success): The AVA stays in the current agency,
and its state remains at Member.

Note that although the states Freelancer and Member have the reiterative state transitions
(AgencyFormation and Agency Maintenance (ID); Success), respectively), the
state of the AVA changes constantly in the lower level as follows:

e Even if the AVA continues to be a freelancer-AVA, its camera parameters are con-
trolled to search for an object. That is, its internal state always keeps changing in
the action level.

e The member-AVA fixes its camera parameters when the target object stands. The
AVA, however, keeps observing the target object, and all the observation results
are written into the dynamic memory in the AVA. The internal state of the AVA,
therefore, keeps changing by updating the contents of the dynamic memory.

Based on the above discussion, it is confirmed that each AVA work continuously with-
out falling into the steady condition.

160 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

]
[Member (Change Agency) [Member (Generate Agency)
o . [Agency(Decrease Member)
Agency Unification Agency Formation
Agency Restructuring (ID- Failure) Agency Restructuring
€ g) Agency Maintenance €
Agency Formation (|gM F;}/lure) _
A E i Q Agency Restructuring
(Igso&cg/mg;rmalon Agency Unification| Agency
[Meber Agency Formation (Increase
@ Agency Maintenance € Member
Agen (1D Success)
Maintenance Agency Maintenance € s Agency Unification
(1D Success) Y Agency Maintenance
(10w Failure) -m (Igm F‘;B'/Iure)
Agency Spawning Agency(Disappear)

(a) State transition network of the AVA (b) State transition network of the agency

Figure 5.23: State transition networks of the AVA and agency. Each
box and arrow indicate a state and state transition, re-
spectively. A cooperative-tracking protocol with each ar-
row causes a state transition. Protocols shown by bold
and italic fonts are caused by object identification and a
message that reports the result of object identification es-
tablished by another agency, respectively. An automatic
state transition (denoted by €) occurs immediately. IDg
and ID,; denote object identification of the agency with
the freelancer-AVA and member-AVA, respectively.

5.4.4.3 State Transition of the Agency

Figure 5.23 (b) shows the state transition model of the agency. All the state transitions of
the agency are caused by the cooperative-tracking protocols, provided that the automatic
state transition €, in the same with that of the AVA.

1. Just after an agency is generated (at initial), it starts working at Agency.

2. The agency receives the following two kinds of messages from AVAs and other agen-
cies:

Object information: When the agency receives the object information, it estab-
lishes object identification between its target object and the received object
information. Each cooperative-tracking protocol executed by this object iden-
tification is shown by a bold font in Figure 5.23 (b).

Result of object identification: The result of object identification between agen-
cies, which is established by another agency, is replied. This message is sent
based on two kinds of cooperative-tracking protocols (i.e., the agency unifi-
cation and agency restructuring). Each result of these cooperative-tracking
protocols is shown by a italic bold font in Figure 5.23 (b).

5.4 Completeness and Soundness of the System 161

Depending on the result of object identification, the state of the agency is changed
as follows:

e Agency Formation, Agency Maintenance (ID;; Success): The agency
waits the next message. Its state stays at Agency.

e Agency Restructuring, Agency Maintenance (ID), Failure): If the
agency is requested to release and give its member-AVA from another agency
(i.e., Agency Restructuring) or object identification with its member-AVA
fails for a long time (i.e., Agency M aintenance (ID,; Failure)), the num-
ber of its member-AVAs decreases. The state of the agency changes to Agency
(Decrease Member) and returns to Agency.

e Agency Restructuring, Agency Unification: If the agency requests the
member-AVA from another agency, its state changes to Agency (Increase Mem-
ber) and returns to Agency.

e Agency Maintenance (ID,, Failure), Agency Unification: Because the
agency does not have any member-AVA, the state of the agency moves to
Agency (Disappear). The agency then eliminates itself.

Although the state transition network of the agency has the reiterative state transition
as well as that of the AVA, the internal state of the agency also keeps changing: since
the agency receives the information of the detected objects from its member-AVAs, the
target information managed by the agency is always updated.

To realize the above state transition of the agency, the perception and communication
modules in the agency manager (of agency,) works as follows. Figure 5.24 shows their
state transition models.

Perception module: Starting st initial, the state changes as follows:

e Read (Object info): Read the object information received from freelancer-AVAs
and agencies, which object identification has not been established with its own
target information. The state changes to Select ID-type.

e Select ID-type: Select the type of object identification that will be established
next:

— If spatiotemporal object identification among the 3D view lines detected
by different member-AVAs is selected, the state changes to Read (Virtual
Syncyy).

— If object identification between its own target information and the ob-
ject information received from the freelancer-AVA or the other agency is
selected, the state changes to Read (Virtual syncr).

e Read (Virtual syncy): Read (1) the 3D view lines detected by the member-
AVAs and (2) the 3D information of its target object, each of which is observed
at the same time (7)) with the virtual synchronization. If the 3D position of
its target object at Tj; in the dynamic memory is valid, the 3D position is

162

Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

3DPsand Target (3DP)

. L& ITD7 (3DVs and 3DV)}

£ MO (3DPs and 3DP)]

+—=£ [TD7 (3DPs and 3DV) - 22 20 (T;V)
S
+—£ [TD7 (30Vs and 30P)

3DVsand Target (3DP)

3DVsand Target (3DV)
Member

Sdlect |D-type]

Freelancer or Agency

{Freelancer and 3DV} or
{Agency (3DV) and 3DV

{Freelancer and 3DP} or
{Agency (3DV) and 3DP}

Agency (3DP) and 3DV

[TDr (3DP) }

€ Agency (3DP) and 3DP

0 =

| Decrease member

€ | Delete m&s&a@e|

. . 1 or mor
Dissatisfy

€ Invalid message
[Broadcast (30P) }—-—[Check (Task - Receive (Buffer check) ———— Check (Valldiy) |
ITimeIeft = All check| |Nomessage [Noresult message
Disappear
€

Y

q
€ -
0‘—| Send §R§ect]

Reject | Accept
9 oo AVA request
Select member

¢- PV EReck (1D Reply) |

b T"Sond (Accept) | [Send (Changg)]

Result

Unify request

ID reply

Freelancer
Check (Sender Check (IDF
ID request Aﬁggﬂ%er Member Failure Success
Check (IDA)

NoNT

Object information

Complete

I_Send (SJCCGSS) Exchange
Send (Release
€

|Send (Join request)|

€

Success me R Find NT
allure
¢+ [Cancel spawning] \ ¢ mpossiblel Agency spawning] [Send (Failure) |
¢+ Send (Generate request)| Success Posle R I
' b & [Send (ID request
JTime out | Agency unification |) (et
¢ Send (ID reply)| g| Failure Agency maintenance
| I *
€ 1 &nd (Uﬂlfy reques‘:) I Failuré| Success
_ { Agency restructuring |
Impossible 129
Possible @m
= [Send (AVA request) | €

Figure 5.24: State transition network of the perception and communi-

cation modules in the agency manager (Upper: percep-
tion, Lower: communication). Each box and arrow indi-
cate a state and state transition, respectively. A meshed
box shows that the module accesses the dynamic memory
at this state. Each arrow has a condition for activation,
provided that an automatic state transition (denoted by
€) occurs immediately.

5.4 Completeness and Soundness of the System 163

regarded as the target information (denoted by]3) Otherwise, the 3D view
line of the target object is regarded as the target information (denoted by L).
The state changes to IDg.

e [Dg: Establish spatial object identification among the 3D view lines detected by
the member-AVAs (denoted by L ...;). Depending on (1) whether or not spatial
object identification reconstructs the 3D positions of the objects (denoted by
P, ..,) and (2) the type of its target information read at Read (Virtual syncyy),
the state changes as follows:

— If (1) spatial object identification reconstructs P, ..., and (2) P is read, the
state changes to IDy (3DPs and 3DP).

— If (1) spatial object identification reconstructs P;....,, and (2) L is read, the
state changes to IDy (3DPs and 3DV).

— If (1) spatial object identification cannot reconstruct any 3D positions and
(2) P is read, the state changes to IDy (3DVs and 3DP).

- If (1) spatial object identification cannot reconstruct any 3D positions and
(2) L is read, the state changes to IDr (3DVs and 3DV).

e ID; (3DPs and 3DP): Select the 3D position closest to P from Pj..,. The
state changes to Write (ID result).

e ID; (3DPs and 3DV): Select the 3D position closest to L from Pj..,. The
state changes to Write (ID result).

e ID; (3DVs and 3DP): Select the 3D view line closest to P from L, .. ,. The
state changes to Write (ID result).

e ID; (3DVs and 3DV): Select the 3D view line closest to L from L;..,. The
state changes to Write (ID result).

e Read (Virtual syncy): Read the 3D information of its target object, which is
virtually synchronized with the object information received from the freelancer-
AVA or the other agency. Suppose all the object information is synchronized
at Tr. If the 3D position of its target object at T in the dynamic memory
is valid, the 3D position is regarded as the target information (denoted by
P). Otherwise, the 3D view line of the target object is regarded as the target
information (denoted by L).

— If (1) the received information is the 3D position and (2) P is read, the
state changes to IDp (3DP).

— If (1) the received information is the 3D position and (2) L is read, the
state changes to IDp (3DV).

— If (1) the received information is the 3D view line and (2) P is read, the
state changes to IDy (3DP).

— If (1) the received information is the 3D view line and (2) L is read, the
state changes to IDy (3DV).

e IDp (3DP): Compare P with the received 3D position for object identification.

164 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

IDp (3DV): Compare L with the received 3D position for object identification.
IDy (3DP): Compare P with the received 3D view line for object identification.
IDy (3DV): Compare L with the received 3D view line for object identification.

Write (ID result): Write the result of object identification into the dynamic
memory.

Communication module: All messages sent to the agency manager are stored in the
message buffer managed by the communication module. Starting st initial, the state
changes as follows:

e Broadcast (3DP): Broadcast the 3D position of its own target object. The
state changes to Check (Task).

e Check (Task): Compare the task-constraint and the current state of the system.
The result of the comparison is valid until the state is changed to Check (Task)
again. Depending on the result of the comparison, the state changes as follows:

— If the task-constraint is satisfied, the state changes to Receive (Buffer
check).

— If the task-constraint is dissatisfied, the state changes to Decrease member.
e Decrease member: Release a member-AVA that is determined based on the
goal-function. Depending on the number of the member-AVAs, the state
changes as follows:
— If agency 4 has no member-AVAs, the state changes to Disappear.
— Otherwise, the state changes to Receive (Buffer check).
e Receive (Buffer check): Read the message buffer:
— If there is not any messages in the buffer, the state changes to Read (ID
result).
— If there is a message in the buffer, the state changes to Check (Validity).
— If all the messages in the buffer are read, the state changes to Check (Type).

Note that all the messages in the buffer are read, they are not deleted from the
buffer.

e Check (Validity): Depending on whether or not the read message is valid'*
the state changes as follows:
— If the message is invalid, the state changes to Delete message.
— If the message includes object information, the state changes to Write
(Object info).
— If the message reports the result of the cooperative tracking protocol acti-
vated by another agency, the state changes to Receive (Buffer check).

14 For example, an agency manager neglects the message about inter-agency cooperative-tracking pro-
tocol depending on the result of the comparison between the task-constraint and the current state of the
system.

5.4 Completeness and Soundness of the System 165

e Delete message: Delete the invalid message from the buffer. The state changes
to Receive (Buffer check).

e Write (Object info): Write the object information into the dynamic memory,
and delete it from the buffer. The state changes to Receive (Buffer check).

e Read (ID result): Read all the results of object identification from the dynamic
memory, and select the one which has the biggest priority:

— If there is not any results in the dynamic memory, the state changes to
Receive (Buffer check).

— If the identification result is selected, the communication module deletes
it from the dynamic memory. The state changes to Check (Sender).

e Check (Sender): Depending on the type of the identification result, the state
changes as follows:

— If object identification is established with the object information detected
by a freelancer-AVA (freelancery), the state changes to Check (IDp).

— If object identification among the object information detected by member-
AVAs is established, the state changes to Check (IDyy).

— If object identification is established with the object information detected
by another agency (agency,), the state changes to Check (ID,).

e Check (IDp): Depending on the result of identification, the state changes as
follows:
— If identification is successful, the state changes to Send (Success).
— If identification is unsuccessful, the state changes to Send (Failure).
e Send (Success): Report the successful result of object identification to freelancer-

AVA;. Depending on the current state of the system, the state changes as
follows:

— If the current state satisfies the task-constraint, the state changes to Send
(Join request).

— If the current state does not satisfy the task-constraint, the communication
module examines the goal-function whether or not it should exchange the
roles of its member-AVA and freelancer-AVA,. If it should exchange, the
state changes to Send (Release).

— Otherwise, the state changes to Check (Wait time).

e Send (Join request): Request freelancer-AVA; to join agencys. The state
changes to Check (Wait time).

e Send (Release): Order the selected member-AVA to exit from agency,. The
state changes to Send (Join request).

e Send (Failure): Report the unsuccessful result of object identification to freelancer-
AVA;. The state changes to Check (Wait time).

e Check (IDy;):

166 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

— If there exists a newly detected non-target object in the object information
detected by the member-AVAs, the state changes to Agency spawning.

— Otherwise, the state changes to Agency maintenance.

e Agency spawning: Depending on the number of the member-AVAs, the state
changes as follows:

— If (1) agency 4 has multiple member-AVAs or (2) the object importance of
the newly detected object is larger than that of its target object, the state
changes to Send (ID request).

— Otherwise, the state changes to Agency maintenance.

e Send (ID request): Request other agencies to identify the newly detected object
with their target objects. The state changes to Agency maintenance.

e Agency maintenance: Depending on the result of object identification between
the 3D view lines of the target object detected by the member-AVAs and the
3D position of its own target object, the state changes as follows:

— If identification is successful, the state changes to Check (Wait time).
— If identification with member-AVA,, is unsuccessful, the state changes to
Send (3DP).

e Send (3DP): Send the 3D position of the target object to member-AVA,,. The
state changes to Check (Wait time).
e Check (ID4): Depending on the result of object identification with agency,,
the state changes as follows:
— If identification is successful, the state changes to Agency unification.
— If identification is unsuccessful, the state changes to Agency restructuring.

e Agency unification: The state changes to Send (Unify request).

e Send (Unify request): Request agency, to join into agency 4. The state changes
to Check (Wait time).

e Agency restructuring: Examine the object-importance of the target object, the
number of the member-AVAs, and the goal-function of each agency. Depending
on the result of the examination, the communication module works as follows:

— If agency s does not have enough member-AVAs or agency, has the AVA
that is suitable for gazing at the target object of agency 4, the state changes
to Send (AVA request).

— Otherwise, the state changes to Check (Wait time).

e Send (AVA request): Request a member-AVA from agency,. The state changes
to Check (Wait time).

e Check (Type): Select the message in the buffer, which has the biggest prior-
ity, and delete it from the buffer. Suppose the selected message is sent from
agency,. Depending on the type of the selected message, the state changes as
follows:

5.4 Completeness and Soundness of the System 167

— If the message requests agency, to merge into agency, (i.e., the agency
restructuring protocol), the state changes to Send (Change).

— If the message requests agency 4 to give the member-AVA to agencyy (i.e.,
the agency restructuring protocol), the state changes to Select member.

— If the message requests object identification between the target object of
agency 4 and the object information included in the selected message (i.e.,
the agency spawning protocol), the state changes to ID.

— If the message includes the reply of object identification (i.e., the agency
spawning protocol), the state changes to Check (Reply).

e Select member: Examine the object-importance of the target object, the num-
ber of the member-AVAs, and the goal-function of each agency. Depending on
the result of the examination, the communication module works as follows:

— If agency, should transfer its member-AVA to agency,, the communica-
tion module selects the member-AVA that transfers to agency,. The state
changes to Send (Accept).

— Otherwise, the state changes to Send (Reject).

e Send (Accept): Report the acceptance of the request to agencyy, and order the
selected member-AVA to transfer to agencysy.

e Send (Reject): Report the rejection of the request to agencysy.

e Send (Change): Order all the member-AVAs to transfer to agency,. The state
changes to Disappear.

e ID: Identify the received object information with its target information by the
virtual synchronization. The state changes to Send (ID reply).

e Send (ID reply): Send the result of object identification to agency,. The state
changes to Check (Wait time).

e Check (ID reply): Depending on the received result of object identification,
the state changes as follows:

— If all the existing agencies establishes unsuccessful object identification,
the state changes to Send (Generate request).

— If the received message reports the successful result of object identification,
the state changes to Cancel spawning.

— Otherwise, the state changes to Check (Wait time).
e Send (Generate request): Request the member-AVA, which has detected the

newly detected object, to generate a new agency, and release this member-AVA
from the agency. The state changes to Check (Wait time).

e Cancel spawning: Finish waiting the replies of object identification from other
agencies, namely the agency spawning.

e Check (Wait time):

168 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

[OA<T
\ unstable /

Agency Maintenance
A : The number of agencies Agency Restructuring
T: The number of target objects

Figure 5.25: State transition network of the system. Each circle and
arrow indicate a state and state transition, respectively.
Varying situations in the scene are shown by an italic font.
The results of cooperative-tracking protocols are shown by
a bold font.

— If (1) the communication module has requested object identification from
other agencies at T, based on the agency spawning protocol, (2) the agency
spawning has not finished, and (3) the difference between the current time
and ¢, is larger than the threshold, the state changes to Send (Generate
request).

— Otherwise, the state changes to Broadcast (3DP).

e Disappear: Eliminate itself.

5.4.4.4 State Transition of the System

Finally, we show the state transition network of the total system. Changing behaviors of
each AVA and agency brings the state transition of the system. With various cooperative-
tracking protocols, the system can track multiple target objects. The system dynamically
changes its state while tracking. Figure 5.25 shows the state transition of the system.

When (1) the situation in the real world changes (namely, the number of the target
objects in the scene changes) and (2) a wrong cooperative-tracking protocol is activated,
the system returns to the stable state by properly executing the cooperative-tracking
protocol as follows:

1. When the situation in the real world changes.

5.5 Experiments 169

When the number of objects increases: If a freelancer-AVA finds a new ob-
ject, the agency formation is executed. If a member-AVA finds a new object,
on the other hand, the agency spawning is executed.

When the number of objects decreases: Since temporal object identification
in the intra-agency layer is unsuccessful, the agency maintenance is executed.
Then, the agency that has tracked the disappeared object is eliminated.

2. When the system has executed a cooperative-tracking protocol by mistake.

Due to the wrong agency formation and agency spawning: Then, multiple
agencies track a single object simultaneously. In this case, the agency unifica-
tion corrects the system state.

Due to the wrong agency unification: Then, only a single agency tracks mul-
tiple objects. In this case, the agency formation or agency spawning restores
the system to the stable state.

That is, the system keeps working with repeating stable and unstable conditions.

5.5 Experiments

We conducted several experiments to verify the effectiveness of cooperative tracking with
the proposed system.

5.5.1 Specifications of the System
5.5.1.1 System Organization

In our experiments, we employed ten AVAs. Each AVA consists of a network-connected
PC with an active camera.

PC: PentiumlIIl 600MHz x 2 and 256MB memories with Linux operating system.

Active camera: FV-PTZ camera (SONY EVI-G20). The camera parameters can be
controlled via RS-232C.

Network: 100M-base Ethernet.

The perception, action and communication modules are implemented by threads on a PC.
The dynamic memory is also implemented by a thread on the same PC. The communi-
cation module exchanges information by UDP messages. In addition, the internal clocks
of all the PCs are synchronized by Network Time Protocol (NTP)[Mil91]. With these
resources, the perception module can capture images and detect objects in the observed
image at about 0.1[sec] intervals on average.

170

6(m)

Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

AVA2 AVALD AvAs

O AVAs &
_____ °
¢

o
AVAg L2

ENETH 2(m)

AVAs 4 | AVA7
N Y &
AVA1 AVAs AVA4
5(m)

(a) Top view

e

L8]
P == ==-========, -
150cm - ! vl
1 | S,
’/// i ,'z ‘//
. } ,~/600cm
v
I . ,z
________________________ V_¥
""""" 500cnT =<7

(b) Camera settings

Figure 5.26: Experimental environment.

5.5.1.2 Calibrating External Camera Parameters

We conducted experiments in the environment illustrated in Figure 5.26. Camerag and
camerayg are placed about 1.5[m] above the floor. All other cameras are placed about
2.5[m] above the floor (Figure 5.26 (b)).
position and view direction of each camera) were calibrated. We acquired the external
camera parameters of all the cameras based on a homography between image planes of
cameras. In the experimental environment illustrated in Figure 5.26, the flat floor can
be observed from every camera. Therefore, the projection between an image plane and
the floor can be represented by a homography. By utilizing this property, the external

camera parameters are acquired as follows:

The external camera parameters (i.e., the 3D

1. From the homography matrices H; and H,, each of which is determined by the
floor and the image planes of two cameras, we can obtain a collineation matrix

M = H,H,'

The matrix M can be estimated by giving four corresponding

points projected from the floor onto the two image planes.

By decomposing the matrix M, we can obtain relative rotation R and translation
T matrices between two cameras, as well as the surface normal vector of the floor

—

n.

T) between ‘camera; and cameray’, - -

. If we have m cameras, the above relative external camera parameters (i.e., R and
-, ‘camera,, 1 and camera,,” are estimated.

5.5 Experiments 171

4. By integrating all the relative external camera parameters, we can acquire the ex-
ternal camera parameters of all the cameras.

5.5.1.3 Designing Goal-function

The goal-function is examined by the agency manager (1) when the agency releases its
member-AVA to satisfy the task-constraint (i.e., Decrease member in Figure 5.24), (2)
when object identification with a freelancer-AVA is successful (i.e., Send (Success) in
Figure 5.24), (3) when the agency restructuring protocol is activated (i.e., Agency re-
structuring and Select member in Figure 5.24), and (4) when the agency is required a
member-AVA from another agency (i.e., Select member in Figure 5.24).

In our experiments, we designed the goal-function as follows:

Search-value of freelancer-AVA: Let W; denote the area size of the floor that is
visible from AVA ;. In this experiment, W, is computed from the external parameters
of cameras (i.e., the 3D position and view direction of the camera). The value of
this function (denoted by Vs,) is determined as follows:

ng = Qg X Wf, (59)

where oy is a constant that is determined so that Vs, 1s well-balanced with the
tracking-value.

Tracking-value of member-AVA,,: Let D} denote the 3D distance between the cam-
era of AVA,, and the target object of agency,, and A?, denote the angle between
the central direction of AVA,,,’s view angle and the direction from the camera to the
target object. The value of this function (denoted by Vzn) is determined as follows:

1 1
VTm D X 1 (5 0)

5.5.2 Performance Evaluation

We conducted experiments with the systems with/without the virtual synchronization.
In order to verify the effectiveness of the virtual synchronization against not only the
asynchronized observations but also the network delay and the lost packet, we broadcasted
vain packets over the network to adjust the network load.

The system tracked two computer-controlled mobile robots. Both the robots repeated
a straight-line motion at a speed of 50[cm/sec] in the observation scene. L1 and L2 in
Figure 5.26 (a) show the trajectories of the robots.

Figure 5.27 (a) shows variations of network conditions when the packet size of the
vain broadcast messages is changed. The error of spatial identification in Figure 5.27
(b) denotes the average distance between the reconstructed 3D position and the 3D view
lines detected by member-AVAs. The error of temporal identification in Figure 5.27 (c)
denotes the average distance between the 3D positions of the target, each of which are
reconstructed at t and ¢ + 1 (i.e., P(¢) and P(¢ +1)). Since temporal identification was

172 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

rate of packet lost(%) spatial error (cm) temporal error (cm)

message delay (msec) 25 : : : : 50 ‘ ‘ ‘ ‘
10 ‘ ‘d | ‘ ‘ — 00 with virtual synch. ; with virtual synch.

ol Message aelay |90 |without virtual synch.s without virtual Synch s

g| rate of packet lost g0 % 40

7| 170 ;

ol leo 8t 30

5 iso | e
al { | 40 10fwe 20

3 Fodso |0

2L J20 5 100 e

1. .':: 10 N/ /
0 BPPPTIT PRPTIL ‘~') 0 0

0 320 640 960 1280 1600 1920 O 320 640 960 1280 1600 1920 O 320 640 960 1280 1600 1920

size of message(kbytes/sec) size of message(kbytes/sec) size of message(kbytes/sec)

(a) (b) (c)

Figure 5.27: Performance evaluation of the virtual synchronization: (a)
Delay of the message (solid line) and Rate of lost packet
(dotted line), (b) Error in spatial object identification, (c)
Error in temporal object identification. The horizontal
axis indicates the total size of the vain broadcast messages
per second.

established at 0.1[sec] intervals in this experiment, the robot moved for 5[cm| between
each temporal identification.

As we can see, the virtual synchronization helps both spatial and temporal object
identification, especially in the case of the bad network conditions.

5.5.3 Verifying Cooperative-tracking Protocols

Next, we experimented to verify the effectiveness of the cooperative-tracking protocols.
Our experimental results demonstrated flexible and reliable multi-target tracking by co-
operation among AVAs.

In order to verify the effectiveness of the task representation with the task-constraint
and object-importance, we made two experiments in the same environment. In each
experiment, we gave the following parameters as the task representation.

Experiment 1

Task-constraint: Search-level was 0.1. Tracking-level was 0.9.

Object-importance: Values for all objects is 1.0.

5.5 Experiments 173

Experiment 2

Task-constraint: Search-level was 0.3. Tracking-level was 0.7.
Object-importance: Values for object; and object, were 1.0 and 0.5, respectively!® .
In both experiments, the system tracked two people. Object; first came into the
observation space from the location ‘X’ (shown in Figure 5.26 (a)). Next, objecty came
into the observation space. Both objects, then, moved freely in the observation space.

At first, we show the result of the first experiment.

Figure 5.28 shows the partial image sequences observed by each AVA. The size of each
image is 320 x 240 [pixel]. The images on the same row were taken by the same AVA.
Figure 5.28 shows images taken by AVA,, AVA,, AVA5, AVA;, AVAg, AVAy and AVA,
as examples. The images on the same column were taken at almost the same time. The
enclosed regions within the red and blue lines in the images indicate the detected regions
of object; and objecty, respectively.

Figure 5.29 shows the role of each AVA and the formation of each agency. The image in
Figure 5.29 indicates the situation at the time when the observed image (in Figure 5.28)
on the same column was captured. A green circle indicates a freelancer-AVA. Circles
of other colors indicate member-AVAs. A square indicates a target object tracked by an
agency. The color of the object is the same with that of member-AVAs which was tracking
each target object. A line from the camera to the target object indicates correspondence
between the agency and the target object. ‘X’ shown in Figure 5.29 indicates location X
in Figure 5.26 (a).

In this experiment, the system worked as follows:

a: First of all, each AVA was searching for an object independently (Figure 5.29 (a)).

b: AVAj first detected object; (Figure 5.28, 5-b), and then agency; was formed (Figure
5.29 (b)).

c: All the AVAs, except for AVA5, were tracking object; as the member-AVAs of agency; .
AVA; was searching for a new object as the freelancer-AVA (Figure 5.28, 5-c).

d: Next, AVA5 detected a new object (Figure 5.28, 5-d). AVAj5 then regarded this object
as the target (objects), and generated agency, (Figure 5.29 (d)).

e: In this experiment, the object-importance of both object; and object, were equal to
each other. As a result of the agency restructuring, therefore, the number of the
member-AVAs in agencys became equal to that in agency; (Figure 5.29 (e)).

f: Since object; came close to objects, no AVA could divide these objects by the back-
ground subtraction (Figure 5.28, 2-f, 4-f, 5-f, 7-f, 8-f, 9-f). Then, the newest target
information (i.e., the 3D position) of both agency; and agencys became identical,

15 In this experiment, the system gave 1.0 and 0.5 as the object-importance to the object that was
detected first and second, respectively

174 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

AVA4 4-a

AVAH]Z]_O-& 10-b

Figure 5.28: Experiment 1: Partial image sequences observed by AVAs.

W/%%%%%%%

AVA4

(a)

> tlme

Figure 5.29: Experiment 1: Transitions of AVA roles and agency for-
mations.

5.5 Experiments

AVA:2

&

AVA10 []
[JAVAs

6(m)

Trajecto'r‘); ‘of- Object2

&

AVA1L

0

AVAs

S

AVA4

5(m)
(a) Target motion trajectories recon-
structed by agencies

Member of

175

[number]
T
Freelancers =————————
Members of Agency1 s
Members of Agency2 -------
10 £ 4 1
5 N
£ am L
S T §: B .
st [3F i H
6| H B '
H H '
z H '
z = '
AL NN - U - FEREI]
Y 362 ¥ S]
B3I z3t 3 ¥ ST
4r '-'f"f‘ r_":‘_ 1||l:.‘- F‘F—.";_'-:
' ' H
Detect ! Y] ' : .
Z| Objects !) ' ! H Ol')Jectl Exit
E , Detect Object2) . :
2r [. ' : 7
5 Do /\ /\ N
H 1 H i El]
= T =
s v o i
0 3 . L R . N EWA
0 g% 10 154 20 30 40 48”50

60
[sec]

(b) The number of AVAs that work for each role
(‘search’ and ‘tracking of each object’)

Agencyz |AVA2

AVA4 i

Member of |
Agency1

Freelancer

EIOH

b

Wiy,

16

(c) Histories of AVAS’ roles

Figure 5.30: Experiment 1: Experimental results.

[sec]

and object identification between two agencies was successful. As a result, two agen-

(f))-

cies merged together by the agency unification, and became agency; (Figure 5.29

: After two objects were apart from each other, some AVAs could detected object; and

objecty severally (Figure 5.28, 2-g, 5-g, 7-g, 9-g). Then, the agency that tracked
a newly detected object was generated. At this time, the information of objects
obtained in the past was read. The newly generated agency compared its target
information with the read object information (i.e., the past trajectory of objects)
for temporal object identification. Since this object identification was successful,
the newly detected object was regarded as objecty (Figure 5.29 (g)).

h: Object; came to location X again (Figure 5.29 (h)), and would disappear.

176 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

i: After agency; dissolved, all the AVAs except for AVA, was tracking objecty as the
member-AVAs of agencys (Figure 5.29 (i)).

Figure 5.30 (a) shows the trajectories of the target objects, which are reconstructed by
the agencies. In this figure, the reconstructed 3D positions are projected onto the floor.
When the agency spawning for objecty caused, tracking of object, was started at location
P.

Figure 5.30 (b) shows the histories of the number of (1) the freelancer-AVAs, (2)
the member-AVAs tracking object; and (3) the member-AVAs tracking objects. The
horizontal and vertical axes indicate the time and the number of AVAs undertaking each
role, respectively. This graph shows the system states at 1[sec| intervals. Figure 5.30 (c)
shows the histories of the AVA’s roles. The horizontal and vertical axes indicate the time
and the AVA’s role. Bumps in Figure 5.30 (b) and (c) indicate the temporal states of
the system while each AVA was changing its role depending on the target motions. From
these results, we can see that the system as a whole worked to cope with the dynamic
situations in the scene by dynamically changing the role of each AVA.

Note that each member-AVA did not always gaze at the target object of its agency as
we can see in Figure 5.28. That is, just after the AVA transferred to the new agency, it still
observes the target object of the former agency because it has not finished changing its
gazing direction towards the new target object. For example, AVA, and AVA, belonged
to agency; at (h) in Figure 5.29. They had to, therefore, gaze at object;. Both of them,
however, observed objecto. This is because it was immediately after AVA, and AVA,
transferred from agencys to agency;. Figure 5.31 shows images observed by AVA, before
and after (h) in Figure 5.29. 4-H in Figure 5.31 is the same image with 4-h in Figure
5.28. When AVA, captured 4-A, AVA, was ordered to transfer to agency;. We can see
that AVA, was changing its gazing direction towards objectl.

Next, we show the result of the second experiment. In this experiment, we verified
the efficacy of the task representation.

Figure 5.32 shows the partial image sequences observed by each AVA. The arrangement
of images is the same as that of the first experiment. Figure 5.28 shows images taken
by AVA;, AVA, and AVAg as examples. Figure 5.33 shows the role of each AVA and the
formation of each agency.

Figure 5.34 (a) shows the trajectories of the target objects, which are reconstructed by
the agencies. Figure 5.34 (b) shows the histories of the number of (1) the freelancer-AVAs,
(2) the member-AVAs tracking object; and (3) the member-AVAs tracking objects. This
graph shows the system states at 1[sec| intervals. The system detected object; and objects
at 7 seconds and 28 seconds, respectively. The system kept tracking both objects. Figure
5.34 (c) shows the histories of the AVA’s roles. The horizontal and vertical axes indicate
the time and the AVA’s role. Since two objects had the different object-importances, the
numbers of the member-AVAs in agency; and agencyy were different from each other.

As we can see, the dynamic interactions among AVAs and agencies enable the system
to persistently track multiple objects taking into account the given task.

5.5 Experiments 177

4-H 4-1
> time

Figure 5.31: Experiment 1: AVA, was changing its gazing direction to
detect the new target object (i.e., object; enclosed with red
line). These images were taken at about 0.1 [sec| intervals
on average.

» time

Figure 5.32: Experiment 2: Partial image sequences observed by AVAs.
These images were taken at about 1[sec] intervals.

SEES 2

» time

Figure 5.33: Experiment 2: Transitions of AVA roles and agency for-
mations.

178 Real-time Cooperative Multi-target Tracking by Communicating Active Vision Agents

[number]
—

- .

| | Freelancers ————
| | Members of Agency1 mmminn

AVA2 AVA1 H AVA3 | |

10 | Members of Agency2 —-—-—--
% QAVAG Q

Trajectory of Objecti~ _¢+*

-'.' A
AVAs } ' 6
6(m) | W 3 ‘ B
AVAs | 4 .- AVA7

.,. -Trajectory of Object2

& ﬁ % 2T Detect Object2 } i

|
\
|
|
|
H

AVA1L AVAs AVA4 E JDetect Object1 ”’

]
7

l
B - D i, . .
5(m) 0 /10 20 \zée,o 40 50 [se?:o]
(a) Target motion trajectories recon- (b) The number of AVAs that work for each role
structed by agencies (‘search’ and ‘tracking of each object’)
Member of e — - _ —
Agencyz [AVA2 HEL ! [i ———
AVAe 1t : '| 1 'I : ', !
AVAg - - - === P oo '.
Member of T ; -
Agency1 '_II_II_II_II_II_II_II_II_II_II_II_II_II_II_II_IIIIIIII_I|I|I|IIIIIIIIII_II_II_II_IIII _I |___EI_I-_:___
AVAz miimimn ; £ E
Freelancer e [P | 111 -:"-: IIIIIIIIF ' ;III
27 28 29 31 [sec]

(c) Histories of AVAS’ roles

Figure 5.34: Experimental results 2: Experimental results.

5.6 Concluding Remarks

This chapter proposed a real-time multi-target tracking by employing the concept of CDV.
Our system has the following properties.

e Multiple parallel processes dynamically interact with each other, which results in
the system that works as a whole for cooperative tracking.

e The system is classified into three layers to efficiently establish various types of
object identification.

Intra-AVA layer: Perception, action and communication modules work together
as a single AVA by dynamically interacting with each other.

5.6 Concluding Remarks 179

Intra-agency layer: AVAs in the same agency exchange object information to
track the target object.

Inter-agency layer: In order to adaptively restructure agencies taking into ac-
count target motions, the agencies exchange the agency information with each
other.

e Employing the dynamic memory architecture realizes the dynamic interactions in
each layer without synchronization. The system is endowed with a high reactiveness.

These properties allow the system to be adaptable to complicated dynamic situations in
the real world.

Experimental results demonstrated the practical effectiveness of our system.

While we proposed the three-layered interaction architecture for real-time cooperative
tracking, we consider the three-layered architecture to be adaptable to other coopera-
tive systems with autonomous agents. Followings are justifications of each layer for its
existence.

Intra-AVA layer: To perform versatile and complex behaviors, an intelligent autonomous
agent should consist of several functional modules required for the task

Intra-agency layer: Agents, all of which aim at the same purpose, should form an
agency to cooperatively work together. The agency should be personified as a del-
egate of a corporate group in order to work without contradictions between agents.

Inter-agency layer: For agencies to cooperatively work by negotiations, they should
interact with each other.

Chapter 6

Incremental Observable-area
Modeling for Cooperative Tracking

6.1 Sharing Information for Cooperative Tracking

For multi-agent systems, the knowledge of partners’ abilities is required to realize coop-
erative action among the agents whatever task is defined. In particular, for cooperative
object tracking, every agent should know the area in the scene that is observable by each
agent. Fach agent should then decide its target object and gazing direction taking into
account the adaptive role assignment among all the agents.

In this chapter, in order to augment our cooperative tracking system with multiple
AVAs, we put our focus upon the sharing knowledge of all the AVAs’ abilities (i.e., observ-
able area in the scene) for the efficient cooperative object tracking and scene observation.
Our system incrementally acquires the observable-area information of each AVA, and en-
ables the AVAs to dynamically and appropriately change their roles by taking into account
all the AVAs’ observable areas.

6.1.1 Adaptive Role Assignment

In our cooperative tracking system, all member-AVAs can keep tracking a focused tar-
get object without being disturbed by obstacles or other moving objects through the
compulsory gaze navigation by the agency (i.e., the agency maintenance protocol in the
intra-agency layer). They continue to obey the gaze navigation even if they cannot observe
the target object due to obstacles. The AVA that cannot observe the target object, how-
ever, should change its role for increasing the efficiency of the total system. For example,
the following functions can be considered for such an AVA (Figure 6.1):

1. AVA; predicts the position where the target object will appear within its observable
area, then changes its gazing direction to ambush the target object (Figure 6.1, 1.).

2. AVA, gazes the area where none of other AVAs observes to find another object
(Figure 6.1, 2.).

181

182 Incremental Observable-area Modeling for Cooperative Tracking

AVA2 Agency
! ™ Another agency
x AN 3.Tracking AVA
) - : another object
1.Mot|_o !

o (pred|ct|on
3amte Obstacle ‘)

L — ! 2.Searching for ™.

K Current ;- anew object ~--x, Another

target object B - target object

Figure 6.1: Dynamic role assignment to AVA.

3. If AVA; can observe the target object of another agency, it joins this agency (Figure
6.1, 3.).

Our system realizes the dynamic role assignment by the following cooperative tracking
protocols:

e Agency maintenance: When a member-AVA loses track of the target object, the
agency navigates the gaze of the member-AVA towards the target object. Never-
theless, if the member-AVA has not detected the target object for a long time, the
agency releases it. In this case, the AVA is assigned to search for a new object.

e Agency restructuring: The agencies exchange their member-AVAs to cope with the
target motions.

To implement these protocols, the target information of each AVA is employed.

Shared information 1 (Target information): (1) The target object of each AVA. (2)
3D position of each target object.

In our system, this information is dynamically exchanged between agencies. The target
information, however, is not enough to effectively realize the above functions 1, 2 and
3 because the system does not take into account the visible/invisible information of the
target object in the scene.

The above problem is caused by lack of the information about the 3D geometric
configurations of the scene. That is, the system cannot know whether the target object
is interfered by obstacles or object detection fails due to processing errors, when the
target object is not detected in the observed image. To solve this problem we expand our
cooperative tracking system to identify each AVA’s visible/invisible area in the scene and
employs this information for the adaptive role assignment. In the proposed system, the
system gathers the visible/invisible area information of all AVAs during tracking. This
information is shared by AVAs and agencies.

Shared information 2 (Observable-area information): The information about the
observable area of each AVA.

6.2 Observable-area Model 183

By referring the observable-area information, (1) an agency can dynamically assign the
appropriate role to each member-AVA and (2) a freelancer-AVA can search its observable
area for an object. These properties allow the system to realize the functions 1, 2 and 3
mentioned above for increasing the efficiency of the total system.

In the proposed system, the above shared information 1 and 2 is taken into account
simultaneously. Hence, the system cooperatively tracks multiple objects with referring
the geometric configurations between each target object and the environment of the ob-
servation scene.

In what follows, we first describe (1) how to acquire the visible/invisible information of
each AVA and (2) how to manage the acquired information in Section 6.2. We then present
communication protocols for cooperative tracking with the observable-area information in
Section 6.3. Finally, experimental results demonstrate the effectiveness of the cooperation
among the AVAs with the help of the proposed observable-area information in Section
6.4.

6.2 Observable-area Model

6.2.1 Observable-area Model for Adaptive Role Assignment

In the proposed system, an agency refers both the visible/invisible area information and
the trajectory of the target object in order to examine whether or not each AVA can
observe the target object. Based on the result of this examination, each AVA is assigned
to appropriate role.

To realize efficient cooperative tracking by the total system, an appropriate role of each
AVA should be determined by considering the visible/invisible information of all the AVAs
comprehensively. The system, therefore, manage the visible/invisible area information of
all the AVAs collectively as a scene model. We call this scene model an Observable-area
Model.

6.2.2 Data Structure of the Observable-area Model

We adopt the octree representation[AV89] for the data structure of the observable-area
model (Figure 6.2).

Octree representation: An octree is a tree data structure. Starting with an upright
cubical region of space, the octree space is recursively decomposed into eight cubes
called octants if the label in each octant should be different. The information of
each 3D area (e.g., visible/invisible information) is shown by the label in the each
octant.

We have the following advantages in employing the octree representation as a visi-
ble/invisible area model:

184 Incremental Observable-area Modeling for Cooperative Tracking

* Observable-areamodel (a)

] visiblearea
D Invisiblearea

1
/

X) " Observation space .
Display recursive subdivided cubes.
(b)

84 A
t 4
4 .
- 4
4
4 ~
4 L
81 2
8|8 | y
| 5 —
4 /
4

Figure 6.2: Data structure of the observable-area model.

e The octree representation allows us to reduce the amount of data, since the visi-
ble/invisible area usually masses in the scene: while a large octant is generated for
widely spread visible/invisible area, many small octants are generated if the space
are tangled with visible and invisible areas.

e Easiness of resizing cubes in the octree allows us to localize the resolution of the
observable-area model. That is, we can adjust the resolution depending on the
distance from the camera, the edge of each obstacle, and so on.

Figure 6.2 illustrates an example of the observable-area model. Depending on the
geometric configuration between the camera and obstacles, visible and invisible areas of
the camera are determined. In Figure 6.2 (a), white and gray regions indicate the visible
and invisible areas of the camera, respectively. In Figure 6.2 (b), each octant in the
visible/invisible area is shown. It is confirmed that each cube is divided into octants. Let
a cubical region corresponding to the entire scene be a square 1 on a side. The number
in each octant denote the reciprocal of its side’s length.

6.2 Observable-area Model 185

In the proposed model, the above observable-area information is generated for each
camera, and all the information is managed as the observable-are model in the scene: Each
cube in the octree model includes visible/invisible information for each camera. This is
a difference between the proposed model and common scene models that directly include
the information of a scene.

In each cube in the octree model, the following three kinds of the visible/invisible
labels are attached to each AVA:

UNDEFINE The system has not identified whether or not the AVA can observe the
area.

VISIBLE The AVA can observe the area.
INVISIBLE The AVA cannot observe the area.

The visible/invisible labels in octants of each cube are examined when the system deter-
mines whether or not each cube is decomposed into octants.

6.2.3 Generating Visible/Invisible Information

In the cooperative tracking system proposed in the last chapter, object identification and
3D position reconstruction are realized by incorporating 3D view lines detected by each
AVA. In the system with the observable-area model, however, the agency computes the
intersection of the visual cones, each of which is determined by the projection center of a
camera and the detected region in the observed image. If the intersection exists among
the visual cones, all the detected regions corresponding to the visual cones are considered
as the same object. Moreover, the 3D position of the object can be obtained, since the
computed intersection corresponds to the volume of the object. We call this volume
reconstruction method a Volume Intersection Method.

Since the volume intersection method needs the visual cones observed by AVAs, each
AVA have to inform its agency manager of the observed visual cones. Each AVA sends an
agency the detected object region in the observed image instead of the information about
the visual cones themselves. The agency can estimate the visual cones from the received
information of the detected object regions and the external parameters of the camera! .

In object identification and 3D reconstruction with the volume intersection method, if
the image observed by AVA,, is actually used for the volume reconstruction, the system
can then identify the area where the detected object exists to be visible from AVA,,.
Otherwise, the area is identified to be invisible from AVA,. In an example illustrated in
Figure 6.3, while the volume of the object is reconstructed from the detected results of
AVA,, AVA, and AVAj3, AVA, does not detect the same object in its observed image. In
this case, the reconstructed object region is considered to be visible from AVA;, AVA,
and AVAj;.

! The external camera parameters are included in a message from an AVA to an agency (see Table
5.1).

186 Incremental Observable-area Modeling for Cooperative Tracking

AV As(identi

Object position
(Centroid of Volume) Reconstructed volume
Image plane

Detected object region

Projection center

VAi(identified,visible)

Figure 6.3: Volume and position reconstruction of the object and gen-
erating the visible/invisible area information by the volume
intersection method.

The agency can incrementally generate the visible/invisible information while the ob-
ject is being tracked by member-AVAs. The proposed system, therefore, changes its
behavior during tracking as follows:

1. The system first keeps tracking target objects without any information about the
scene.

2. During tracking, the system updates the observable-area model.

3. By employing the acquired observable-area model, the system assigns an appropriate
role to each AVA.

With this scheme, the system can increase its tracking efficiency as the observable-area
model progresses.

6.2.4 Updating Observable-area Model based on Visible/Invisible
Information

After new visible/invisible information is obtained as mentioned in Section 6.2.3, all the
visible/invisible labels in the new information are respectively compared with those in
the observable-area model to update the observable-area model. If the label in the new

6.2 Observable-area Model 187

:Observable-area model:;

. » Observed image
‘Vlsble area
4

» Detected region

— Visible area

/|

Reconstructed volume
v

1 F Nicial
........ I "Visual cone,
— - \Z

Figure 6.4: Visible area propagation (Left: Volume is reconstructed,
Right: Volume is not reconstructed).

information is different from that in the cube whose position corresponds to the new
information in the observable-area model, this cube is decomposed into octants. This
decomposition is executed as long as the following two conditions are both satisfied.

1. The label in the new information is different from that in the observable-area model.

2. The following inequality is true:

distance - CONST,
focallength odepth

where distance is the length from the camera to the area, focallength is the focal
length of the camera and depth is the depth of the octree. CONST, denotes a
constant that determines the minimum size of the cube in the octree.

Since the resolution of the reconstructed volume depends on focallength and distance,
the number of decomposition is defined by the above inequality.
After the decomposition, each cube is given the visible/invisible label. If all the labels
of the octants are the same, these octants are unified to decrease the amount of the cubes.
Furthermore, the visible information is propagated to facilitate generating the observable-
area model. Two cases exist for the propagation of the visible area (Figure 6.4).

Case A (Figure 6.4, left): The volume of the object has been reconstructed. In this
case, each cube in the observable-area model, which corresponds to the area where
the reconstructed volume exists, is identified to be visible. We can then identify the
area between the object and the camera to be also visible from this camera if it can
observe the object. The cubes between the object and the camera are, therefore,
updated as the visible area.

188 Incremental Observable-area Modeling for Cooperative Tracking

Objects %

»

AVA1 |

[k

No detected region

(a) (b)

Figure 6.5: Updating the visible/invisible area information.

Case B (Figure 6.4, right): The volume of the object has not been reconstructed. In
this case, the whole area included in the visual cone is updated as the temporary
visible area except the area that has been already identified to be visible or invisible.
Due to this function, there is a possibility of falsely attaching the temporary visible
label to the area that is not yet estimated but actually invisible. To correct the
observable-area model by the subsequent observation, the temporary visible label is
updated when the area is identified as visible or invisible.

In the above case B, wrong VISIBLE labels might be possibly attached to the areas
that are (1) invisible from the camera and (2) beyond the object position. This results
in regarding the invisible area as the visible area by mistake. To correct this misun-
derstanding by the subsequent observations, the system has to rewrite the label in the
observable-area model. We give INVISIBLE higher priority than VISIBLE when the
observable-area model is updated. Therefore, if the labels in the observable-area model
and the newest visible/invisible information are VISIBLE and INVISIBLE, respectively,
VISIBLE in the observable-area model is updated in INVISIBLE.

Updating VISIBLE in INVISIBLE is required when the system corrects the visi-
ble/invisible information obtained by the volume intersection method, too. In an example
illustrated in Figure 6.5 (a), AVA; cannot observe objecty because of being disturbed by
the obstacle. However, the system considers the volume area of object, to be visible
from AVA; by mistake, since (1) the visual cone of AVA; includes the volume area of
objecty and (2) the volume area of objects is reconstructed by intersecting the visual
cones of AVA, and AVAj3. This misunderstanding is corrected by the subsequent obser-
vation illustrated in Figure 6.5 (b). When object; moves away, AVA; cannot detect any
object in the observed image. The system then considers the volume area of objects to
be INVISIBLE from AVA; and update the observable-area model based on the newest
visible/invisible information. Thus, updating the visible/invisible label allows the system
to compensate for limitations of obtaining visible/invisible information with the volume
intersection method.

6.2 Observable-area Model 189

Based on the above discussion, to the three kinds of labels, the following order of
priority is applied in case of substituting the label for the cube.

INVISIBLE > VISIBLE > UNDEFINE

For example, VISIBLE and UNDEFINE labels are not recorded in the cube that has
been identified as INVISIBLE. In the proposed model, the observable-area model starts
from a single cube whose label is UNDEFINE, and the system divides it into octants and
attaches visible/invisible labels in accordance with this priority.

6.2.5 Managing the Observable-area Model

The observable-area model should be referred by each agency to assign appropriate roles
to member-AVAs. Since the observable-area model is made from the visible/invisible
information generated by the agency, the agency manager can obtain the model by itself.
Accordingly, the agency manager can refer the model immediately without increasing the
network load.

However, the following problems result in difficulty in severally managing the observable-
area model obtained by each agency:

e Since the agency manager is dynamically generated and eliminated, it cannot con-
tinue to manage the observable-area model. When the agency disappear, it should
entrust the observable-area model obtained by itself to other agencies.

e To determine a role of each AVA by considering the visible/invisible information of
all AVAs, all agencies have to exchange the observable-area models of their member-
AVAs with each other.

Thus, these problems cause repeated network congestion. In the proposed system, there-
fore, the agency delegates the following tasks to a model-management module, Observable-
area Model Manager.

e Keeping and updating the observable-area model.
e Planning the appropriate roles of AVAs by referring the observable-area model.

The system has a single observable-area model manager, and the manager receives all
the information from every agency at each frame to have the observable-area model as
illustrated in Figure 6.6.

By leaving the management of the observable-area model in the charge of the observable-
area model manager,

e increasing a network-load can be avoided, and

e each agency can reactively cope with object motions for tracking because it is re-
leased from managing the observable-area model.

The performance of the system is, therefore, improved.

190 Incremental Observable-area Modeling for Cooperative Tracking

(N\
(]) ___—, | Observable-area model
AVA Y | Transmission” controller
)‘(7 o 7‘2] / AVAsz
AVA2
A N
Invisible area |2 Zil 5 y
- / Member-AVA2 y |
. AVA\Q Pl 7|
Visible area +— ‘ \ Member-AVA1
Current object position Mmﬁ“\‘ -
Ject p '%/1 //y
——— Z
(| Current visible/invisible|)
information X

\—— Agency manager |——/

Figure 6.6: Managing the observable-area model.

6.3 Cooperative Tracking with the Observable-area
Model

This section addresses communication protocols for (1) updating the observable-area
model and (2) the role assignment to each AVA. Figure 6.7 illustrates the information
exchange between the agency manager and the observable-area model manager.

6.3.1 Information flow from the AVA /Agency to the Observable-
area Model Manager

At each frame, the agency manager transmits the following three messages to the observable-
area model manager:

e CURRENT ROLE : For the observable-area model manager to plan the appropri-
ate role for each AVA, the information about the current role of each AVA is required.
The agency manager, therefore, reports its member-AVAs to the observable-area
model manager.

e OBJECT POSITION : The transmitted 3D position of the object allows the
observable-area model manager to keep the object’s motion trajectory.

e VISIBLE/INVISIBLE MAP : The transmitted visible/invisible information for
each AVA allows the observable-area model manager to update the observable-area
model.

6.3 Cooperative Tracking with the Observable-area Model 191

Observable-area model
manager

* VISIBLE/INVISIBLE MAP
® OBJECT POSITION

®* CURRENT ROLE / ¢ASSIGNMENT

New role
I View direction

o i e e

Object information

Cavad ' Gavad

Figure 6.7: Message flows between an agency manager and the
observable-area model manager. Each arrow indicates a
message flow.

Similarly, the freelancer-AVA sends the observable-area model manager the CUR-
RENT ROLE message, which informs that this AVA is working as the freelancer-AVA.

Note that, in our cooperative tracking system, both the agency and the freelancer-AVA
broadcast messages including the CURRENT ROLE and OBJECT POSITION informa-
tion as mentioned in Section 5.3.5. The observable-area model manager can obtain these
information by receiving the broadcasted messages. All of the above three messages can
be transmitted to the observable-area model by sending the VISIBLE/INVISIBLE MAP
message in surplus.

6.3.2 Information flow from the Observable-area Model Man-
ager to the AVA /Agency

The observable-area model manager decides the role assignment to each AVA every after
updating of the observable-area model based on the information sent from the agency and
the freelancer-AVA. If the observable-area model manager finds a new appropriate role
assignment, the following message is transmitted to the agency manager or the freelancer-
AVA:

e ASSIGNMENT : (1) The ID of the AVA that is assigned a new role? and (2) the
details of the new role, are included in the message. Some actual examples of the
new roles are shown in Figure 6.1).

2 This information is required only if the ASSIGNMENT message is sent to the agency manager.

192 Incremental Observable-area Modeling for Cooperative Tracking

| \
AVA
1% Trajectory of___\ éAVAZ
obj ect2 \

W
|
5m v
VY
Trgjectory of .Z
obje7t1 :
1
1
AVA? X 'QAVAs
| Obstacle i |
om

Figure 6.8: Experimental environment.

If the agency receives the ASSIGNMENT message and approve the effectiveness of the
role assignment, the agency assigns the new role to the AVA. Since only the agency is
allowed to order its member-AVAs, the system can avoid sending the different roles to a
member-AVA simultaneously.

If the freelancer-AVA receives the ASSIGNMENT message, on the other hand, it
judges the effectiveness of the role assignment by itself and decides whether or not it
starts the assigned role.

Note that the observable-area model manager never order but propose a new role.
Following are the reasons:

e Since each AVA and agency are an autonomous agent and group, respectively, they
should determine their behaviors by themselves.

e While each AVA and agency determine their roles depending on the information
managed by themselves, the observable-area model manager receives the required
information from them through the network and assign a new role with referring
the received information. This results in difficulty in reactive planning by the
observable-area model manager.

6.4 Experiments

We experimented to verify the effectiveness of the proposed observable-area model for
cooperative tracking. Our experimental results demonstrated the improvement in coop-
eration of AVAs while tracking.

We conducted our experiments in the environment shown in Figure 6.8. System or-
ganization is the same with that of the cooperative tracking system shown in chapter 5
except the number of AVAs; here we employed four AVAs.

6.4 Experiments 193

In this environment, object 1 came into the observation space, and stayed for a while
at the location X after moving along the trajectory. Note that AVAj3 could not observe
object 1 when it was at the location X. Next, object 2 moved along the trajectory and
stopped at the location Y. After that, object 1 started moving again.

The following three tracking systems were employed for comparative study:

System 1: Tracking system without cooperative action, namely each AVA track a target
object independently without forming an agency.

System 2: Cooperative tracking system without the observable-area model.
System 3: Cooperative tracking system with the observable-area model.

Both objects moved along the almost same trajectories severally when each system worked.
For cooperative tracking systems 2 and 3, we gave the following parameters to the systems
as the task specification:

Task specification:

Task-constraint: The tracking-level and search-level were 1.0 and 0.0, respectively.

Object-importance: Values for object 1 and object 2 were 1.0 and 0.1, respec-
tively.

Interval for releasing a member-AVA: If a member-AVA cannot detect its target ob-
ject for 10[sec|, the agency releases it based on the agency maintenance protocol.

6.4.1 Tracking Results

Figure 6.9, 6.10 and 6.11 show examples of image sequences observed by AVA, and AVAj;.
Figure 6.9, 6.10 and 6.11 are captured by systems 1, 2 and 3, respectively. The size of
each image is 320 x 240 [pixel]. The enclosed regions with the white and black lines in
the images indicate the detected regions of object 1 and object 2, respectively.

Without cooperative actions (system 1), each AVA first searched for an object inde-
pendently (al, a2 and b1, b2). When the AVAs found object 1, they regarded it as the
target object and started tracking it independently (a3, a4 and b3, b4). When object 1
was obscured by the obstacle (b5, b6), AVA3 started searching for an object immediately
(b7, b8). Then, AVAj detected object 2 and kept tracking it (b9 ~ bl4). Since AVAj;
could not notice that object 1 came into the observable are of AVAj3 again, it continued to
gaze at object 2. Moreover, AVA, also changed its target object to object 2 when object
1 and object 2 became close (all, al2), because their projected regions in the observed
image overlapped each other and then AVA, considered object 2 to be its target object.

Without the observable-area model (system 2), after searching (cl, ¢2 and d1, d2),
all the AVAs detected object 1 and regarded it as the target object, and then began
to cooperatively track object 1 (c¢3, c4 and d3, d4). However, AVA3 kept gazing at the
direction of the 3D position of object 1 transmitted from the agency manager, though
AVAj3 could not observe it due to the obstacle (d5 ~ d13). This is because the agency did

194 Incremental Observable-area Modeling for Cooperative Tracking

(ald)
AVA, AVA;

Figure 6.9: Partial images observed by system 1.

6.4 Experiments 195

a1

AVA2 AVA3

Figure 6.10: Partial images observed by system 2.

196 Incremental Observable-area Modeling for Cooperative Tracking

awiL

AVA, AVA;

Figure 6.11: Partial images observed by system 3.

6.4 Experiments 197

(a) Top View (b) Side View

Figure 6.12: Acquired observable-area model: this data shows only the
visible/invisible area information of AVA3. Black and gray
regions indicate the visible and invisible areas, respec-
tively.

not release AVAj for 10[sec] (i.e., the interval for releasing a member-AVA based on the
agency maintenance protocol). Therefore, AVA3 could not obtain the efficient information
about the target objects from the observed images. The other AVAs, on the other hand,
kept tracking object 1 (¢5 ~ c14). Note that AVA, kept gazing at object 1 that was
regarded as the target object even if object 2 was also detected in the observed image
(ell, el12). This is because

e temporal object identification established by the agency assists each member-AVA
to identify the target object, and

e since the object-importance of object 1 is much larger than that of object 2, the
agency tracking object 1 did not release its member-AVAs, and the new agency was
not generated.

With the observable-area model (system 3), each AVA first searched for an object
independently (el, e2 and f1, f2) and then cooperatively tracked object 1 while belonging
the agency; (e3, e4 and 3, f4) (similar to the cooperative tracking without the observable-
area model). AVAj started, however, searching for another object ({7, f8) immediately
after AVA3 could not detect object 1 (f5, f6). This reactive role assignment could be
realized by the assistance of the observable-area model manager. AVAj then detected
object 2 at the location Z and generated agency, for tracking object 2. AVAj3 then started
tracking object 2 independently (f9 ~ f12). After that, when object 1 started walking and
became close to the area where AVAj3 could observe, the observable-area model manager

198 Incremental Observable-area Modeling for Cooperative Tracking

eval(f)

5000

‘Systeml’ —
‘System2’ s
4s00 ‘System3’ —

4000

3500

3000

2500

5

2
U ¥ LR G
SLEE LT TPy

A S ,

L
100 120 125 140
rame

2000
0

N
=]
IN
o
@
=]
©
o
©
o

Figure 6.13: Histories of the evaluation functions.

instructed AVAj3 that it could observe object 1. Since the object-importance of object 1 is
much larger than that of object 2, AVA; transferred from agencys to agency; and started
again tracking object 1 (f14, f14). Then, agencys disappeared. The visible/invisible area
information for AVAj is shown in Figure 6.12 where the two different views are illustrated.
P and Q respectively indicate the visible and invisible area. Note that we see the obstacle
area at R? .

6.4.2 Performance Evaluation

We quantitatively evaluated how effectively the system accomplishes the given task. The
following criterion eval(f) is employed for the evaluation:

eval(f) = i obj(n) x area(n, f), (6.1)

n=1

where
e N,, denotes the number of the member-AVAs,

e obj(n) denotes the object-importance of AVA,’s target object, and

3 We can also estimate the 3D geometric information of the scene by integrating the observable-area
information of each AVA.

6.5 Concluding Remarks 199

e area(n, f) denotes the area size (the number of detected pixels) of AVA,,’s target
object at f-th frame.

Figure 6.13 illustrates the histories of eval(f) while system1, 2 and 3 were working.
We can see that the evaluated result of system 3 surpasses those of the other systems at
almost all frames. The average values of eval(f) for system 1, 2 and 3 were 3026, 3143
and 3403 respectively.

We can see the following observations from Figure 6.13 (the histories of eval(f) ob-
tained by system 1, 2 and 3 are called graph 1, 2 and 3, respectively):

e Comparing graph 1, graph 2 and 3 rapidly rises after each system first detected
object 1. This is because the gaze navigation by the agency is executed in systems
2 and 3.

e Between frames 90 and 125, graph 1 and graph 3 are larger than graph 2. This
is because AVAj3 gazed at the obstacle and could not detect any target object in
system 2.

e Between frames 125 and 140, graph 2 and graph 3 are larger than graph 1. This is
because AVA, kept tracking object 2 whose object-importance was lower than that
of object 1.

From the comparative experimental results shown in Section 6.4.1 and Section 6.4.2,
we may conclude that the proposed model improves the effectiveness of cooperation in
tracking.

6.5 Concluding Remarks

We proposed the incremental observable-area model for cooperative tracking. This model
allows a tracking system to dynamically assign the appropriate role to each AVA.

In the proposed system, the visible/invisible area information of each AVA is acquired
based on the reconstructed 3D information of the target object. The information, there-
fore, incrementally increases while the system keep tracking the target object and the
accuracy of the observable-area model is augmented. As the information is accumulated,
the system can utilize the required information for adaptive role assignment. As a result,
the system as a whole can cooperatively work.

We should note that the proposed model is evaluated by multi-agent systems for real-
time object tracking, however, the basic idea (i.e., the knowledge of partners’ abilities is
necessary for cooperation) is applicable to various types of multi-agent systems.

Chapter 7

Concluding Remarks

7.1 Thesis Summary

In this thesis, we have presented real-time cooperative multi-target tracking by communi-
cating active vision agents. To realize real-time flexible tracking in a wide-spread area, we
employ the idea of CDV. Based on the CDV system, our system consists of communicat-
ing AVAs. Multiple autonomous AVAs communicate with each other and cooperatively
behave. Furthermore, the states and their transitions of the system increase enormously
by combining with each other. This property allows the system to cope with various and
complicated situations in the real world. This is a great advantage of the distributed
processing system in contrast to the centralized processing system. We believe that this
property is indispensable to realize the real-world system.

For real-time flexible object tracking by multiple AVAs, we have solved the following
problems:

1. How to design an active camera for dynamic object detection and tracking.

For wide-area active imaging, we developed an FV-PTZ camera. This camera is
designed so that the projection center is always placed at the rotational center
irrespectively of pan, tilt and zoom controls. This property allows the system (1)
to synthesize a wide panoramic image by mosaicing multiple images observed by
changing pan-tilt-zoom parameters and (2) to generate an image taken with any pan-
tilt-zoom parameters from the wide panoramic image. With the F'V-PTZ camera, we
can realize an active camera system that detects anomalous regions in the observed
image by the background subtraction method.

2. How to realize real-time object tracking with an active camera.

For real-time object detection and tracking, we designed an active background sub-
traction method with the FV-PTZ camera. To successfully gaze at the target dur-
ing tracking, the system incorporates a flexible control system named the dynamic
memory architecture to dynamically control visual perception and camera action
modules. The dynamic memory enables parallel modules to asynchronously obtain
the information of another process without disturbing their own intrinsic dynamics.

201

202 Concluding Remarks

3. How to realize cooperation among AVAs for real-time multi-target object tracking.

To implement a real-time cooperation among AVAs, we designed a three-layered
interaction architecture:

e 1st layer (Intra-AVA layer): Visual perception, action and communication mod-
ules work together as a single AVA by dynamically interacting with each other.
Each module exchange its information through the dynamic memory.

e 2nd layer (Intra-Agency layer): AVAs that track the same target form an
agency. AVAs in the same agency exchange object information to coopera-
tively track the target. Each agency has its own dynamic memory, and all the
AVAs exchange their information of the detected objects through the dynamic
memory. The dynamic memory allows the agency to obtain the reliable result
of object identification from asynchronous object information observed by the
AVAs.

e 3rd layer (Inter-Agency layer): In order to adaptively restructure agencies
taking into account targets’ motions, agencies exchange the target and agency
information with each other.

The dynamic interaction in each layer allows the whole system to track multiple
moving objects under complicated dynamic situations in the real world.

In addition, we devised a scene model for efficient cooperation among AVAs. The
visible/invisible area information is included in the scene model that is called an
observable-area model. The model is incrementally updated while the system works.
With the help of the observable-area information in the model, all the AVAs can
cooperatively and adaptively assign their works to each other.

7.2 Future Works

As mentioned above, our real-time tracking system can work under complicated dynamic
situations in the real world. We believe that this system can be a basic technology to
realize various real-world vision systems. To practically apply our system to real-world
vision systems, other issues in Computer Vision should be discussed. In what follows, we
briefly summarize several aspects untaken in the thesis and directions of future works.

1. More robust object detection

e Robust background subtraction: To detect object regions in the observed im-
age taken with arbitrary combinations of pan-tilt-zoom parameters, we employ the
background subtraction method with the following properties:

— Wide panoramic background image (generating a background image taken with
arbitrary combinations of pan-tilt-zoom parameters).

— Variable threshold (coping with camera calibration errors).

7.2 Future Works 203

— Subtracting the background image from several shifted versions of the observed
image (measures to stably detect object regions in the observed image taken
with smooth camera motion).

These properties allows the system to acquire reliable detection results in a sta-
tionary scene. The effectiveness of the proposed background subtraction method,
however, is limited because the stationary background scene assumption does not
always hold in the real world, especially in the outdoor scene. To cope with the
following types of variations in scenes, many works have been reported:

Continuous small variations in objects: In [SG99] and [HHDOO0b], probability
distributions are employed to model the intensity variations at each pixel.

Intermittent large variations in objects: In [SMKUO0], the background scene
image is adaptively renewed by employing M-Estimation.

Variations in the illumination: In [MOHO0O], variations in the scene are modeled
by (1) variations in the overall lighting conditions, and (2) local image pattern
fluctuations, and so on.

By applying these methods to our tracking system, the system can work under
dynamic variations in the real world.

e Detection using knowledge about the target object: Although the back-
ground subtraction method is effective, it is difficult to detect an object in all sit-
uations and environments. To solve this problem, the knowledge about the target
object should be utilized:

— In [TMO00], the object region in the observed image is roughly estimated based
on the past object trajectory. Then, the threshold for subtraction is dynam-
ically determined depending on the gray level distribution in the estimated
region.

— In [KMSO00], the system detects a human face using the given knowledge: eigen
images[MN95] [AIS95] of the human face are generated in advance and used
for face detection.

e How to look problem: In the proposed system, each camera captures an image
while varying the view direction. In general, such image capturing incurs motion
blurs and results in difficulty in object detection. We restricted the upper speed of
the camera to suppress motion blurs. To solve this problem radically, we have to
consider ‘how to look problem’. That is, the observation method should be changed
depending on the states of the system and camera. For example:

— If object motion is slow enough to track it by a slow camera action, the active
background subtraction method is effective.

— In [MWM98b], object regions are detected while a camera is rotated at high
speed based on the optical flow analysis. The optical flow, however, cannot
detect stationary objects.

204 Concluding Remarks

Since these two methods compensate the disadvantage of the other, the system can
continue to detect objects by selecting the method according to camera motion.

2. More reliable object identification

e Error detection and correction for object identification: In the proposed
system, an error in object identification is corrected in the higher layer and the
subsequent observation:

— If a member-AVA makes unsuccessful object identification, the agency detected
it, and the corrected object information is sent from the agency to the member-
AVA (i.e., the agency maintenance).

— If an agency makes unsuccessful object identification, it is detected and cor-
rected by the inter-agency interaction in the subsequent observation (e.g., the
agency unification).

While these methods work well, each AVA and agency need the interval to adapt
themselves to actual situations.

Such identification error detection and correction methods are indispensable for
multi-target tracking, and many works have been reported (see [BS78] [Rei79], for
example). These methods can be utilized to improve (1) the reliability of object
identification established by each AVA and agency and (2) the reactiveness of the
error correction.

e Object identification based on multimodal information: In the thesis, we
established object identification among multiple AVAs by integrating the detected
results of AVAs. To implement the integration, we put our focus upon a real-time
cooperation among AVAs.

On the other hand, some researchers addressed this problem by developing high-
performance image recognition methods (see [IB98] and [HHDOOa], for example).
In these methods, the appearance information is employed for object identification.
These methods can be applied to our system. In particular, the appearance infor-
mation is useful when it is hard to identify the target object by employing only the
3D trajectory data. Followings are actual examples:

— When the object is observed again after it has got out of the scene.
— When multiple objects become close together.

To employ the appearance information for the proposed system, we have to note
that it should be represented as follows:

— For each AVA and agency to effectively manage the appearance information in
the dynamic memory, it should be represented as time-series data.

— For object identification among multiple cameras, the omnidirectional appear-
ance information is required.

7.2 Future Works 205

Besides the visual information, employing multimodal information is effective not
only for object identification but also for object detection. While only the visual
information is employed for object detection and tracking in the proposed system,
the auditory and visual information is observed and analyzed for real-time multi-
object tracking in [NHM*01]. In this system,

— auditory streams with sound source direction are extracted, and

— visual streams with face ID and 3D-position are extracted by combining skin-
color extraction, correlation-based matching, and multiple-scale image genera-
tion from a single camera.

These auditory and visual streams, each of which is obtained asynchronously on dif-
ferent PCs connected via network, are associated by comparing the spatial location.

3. The number of the trackable target objects:

The completeness for persistent tracking in our system (i.e., the relations between the
numbers of cameras and target objects) is mentioned in Section 5.4.1. Here, we discuss
how to increase the number of the trackable objects.

To increase the number of the trackable objects, we can modify the system as follows:

e Vacuous agency without member-AVAs: In general, since an agency manager
is a software agent, the number of agencies can increase regardless of the number
of AVAs. In the proposed system, however, the number of agencies cannot increase
more than the number of AVAs. This is because an agency has to be attended by
at least one member-AVA. Although this restriction assists each agency in tracking
its target object persistently, the flexibility of the system declines.

To solve this problem, we can modify the system so that an agency without any
member-AVAs can be generated. This definition allows the system to track target
objects more than the number of AVAs (i.e., cameras). Instead of this advantage,
we have to consider the following problems:

When is an agency generated by whom? As well as the proposed system, an
agency should be generated by an AVA that detects a target object when it
is confirmed that no agency tracks the newly detected object. The difference
from the proposed system is that the AVA necessarily belongs to the newly
generated agency as a member-AVA.

How does a vacuous agency obtain the information of the target object?
A vacuous agency has to receive the object information detected by non-
member-AVAs (i.e., freelancer-AVAs and member-AVAs of other agencies).
While a freelancer-AVA broadcasts the information of the detected object, a
member-AVA sends it only to its agency manager. The following two methods
can be employed for the member-AVA to report the detected information to
vacuous agencies:

206 Concluding Remarks

Broadcast: By broadcasting the message, each member-AVA can easily re-
port the information of its detected objects to all agencies. This method,
however, increases a network-load enormously.

Multicast: To suppress a network-load, each member-AVA should send the
information only to agencies. For this message transmission, each member-
AVA has to grasp the existence of all the agencies in the system. An agency
should distinguish its member-AVAs from member-AVAs in other agencies,
which send the information of their detected objects to the agency. This
is because the agency cannot control their cameras to keep tracking the
target object. We call such an AVA a Supporter-AVA (mentioned later).

This information transmission to multiple agencies allows not only vacuous
agencies but also common agencies with their member-AVAs to obtain more
information of their target objects.

e Supporter-AVA: While a supporter-AVA works as a member-AVA in an agency,
it sends the information of the detected objects to other agencies. A member-AVA
can be supporter-AVAs of multiple other agencies simultaneously. Note that each
member-AVA is controlled only by the agency that it belongs to, and the agency
cannot interfere in the behaviors of its supporter-AVAs.

4. Camera configuration planning:

While we do not consider how to arrange the cameras to effectively gaze at the target
objects, there are many researches about the effective camera configuration for realizing
the given task.

In [CK88|, an automatic camera placement method for object feature detection is
proposed. In this method, each camera is placed so that all surface points be in focus,
all surfaces lie within the visual field of the camera, and no surface points be occluded.
In [TTA95], the MVP sensor planning system is proposed. This system determines the
optimal settings of the camera and illumination by virtually synthesizing desirable camera
views based on geometric models of the environment, optical models of the cameras, and
models of the task.

Similarly, the effective camera configuration for object tracking should be planned
depending on the given task. For example:

e The wider the observation scene becomes, the larger the number of cameras be-
comes. Then, a network-load increases. To avoid this problem, an efficient camera
configuration is required.

e For the system to keep tracking a target object in a wide area, all areas have to be
observable from a camera. In addition, to reconstruct 3D information of an object,
visual fields of cameras have to be overlapped and all areas have to be observable
from multiple cameras.

e If search is important, cameras should be embedded in the scene so that each camera
is suitable for observing a wide area.

7.2 Future Works 207

e If there exists a place that should be monitored selectively, many cameras should
be embedded around there.

5. Tracking with isolated camera configuration:

In all the experiments conducted in this thesis, visual fields of all AVAs are overlapping
with each other. This situation does not always hold depending on the task. To keep
tracking the target object even if cameras are embedded sparsely in the scene, the system
has to employ not only the 3D trajectory of the target object but also other information
for object identification:

e The above appearance-based object identification is useful.

e In general, for object identification among widely distributed cameras, the system
searches enormous candidates for an optimal solution. Since such a method makes
real-time processing difficult, we should reduce the candidates by applying some
constraints. In [KZ99] [WTMO96], several constraints on the route and lapse assist
object identification in addition to the appearance information.

6. Capturing selective object image depending on the task:

Depending on the task, the required information of the target object varies; whole
body, face, hands and so on. For example:

e In order to acquire not only the target trajectory but also the precise volumetric and
appearance information (e.g., [WWTMO00] and [BDO00]), the system should control
cameras to capture the high-resolution untaken and meaningful object image.

e For individual identification, information on human face is significant. In [KMS00]
and [YWMO00], the human head is detected based on the appearance and feature
models.

As mentioned above, the proposed system has to be expanded for actual real-world
systems. We, however, believe that the fundamental and essential problems have been
solved in this thesis, and our proposed system can be applied to various real-world sys-
tems: visual surveillance and monitoring systems, ITS (Intelligent Transport System),
navigation of mobile robots and disabled people, and so on.

We hope that all the fruits of this thesis are utilized for many researches in future.

Bibliography

[AAB97]

[AB99]

[AIS95]

[AV&9]

[AWBSS]

[Balg9)

[BD0O]

[Bro90]

[BS78]

[BT93]

A. Amano, N. Asada, and M. Baba. Photometric calibration of zoom lens
systems: Analysis and correction of vignetting distortion by the variable
cylinder model. Transaction of The Institute of Electronics, Information
and Communication Engineers D-II, J80-D-11(6):1458-1465, 1997. (written
in Japanese).

A. A. Argyros and F. Bergholm. Combining central and peripheral vision
for reactive robot navigation. In Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition 99, volume 3,
pages 646-651, 1999.

Y. Ariki, N. Ishikawa, and Y. Sugiyama. FExtraction and recognition of
facial recognitions by subspace method. In Proceedings of Asian Conference
on Computer Vision ’95, volume 3, pages 738-742, 1995.

N. Ahuja and J. Veenstra. Generating octrees from object silhouettes in
orthographic views. IEEE Transaction on Pattern Analysis and Machine
Intelligence, 2(2):137-149, 1989.

Y. Aloimonos, I. Weiss, and A. Bandyopadhyay. Active vision. International
Journal of Computer Vision, 1(4):333-356, 1988.

D. H. Ballard. Reference frames for animate vision. In Proceedings of Inter-
national Joint Conference on Artificial Intelligence, pages 1635-1641, 1989.

E. Borovikov and L. Davis. A distributed system for real-time volume recon-
struction. In Proceedings of Fifth IEEE International Workshop on Com-
puter Architectures for Machine Perception, pages 183-189, 2000.

C. M. Brown. Gaze controls with interactions and delays. IEFE Transaction
on Systems, Man and Cybernetics, 20(1):518-527, 1990.

Y. Bar-Shalom. Tracking methods in a multitarget environment. [FEFE
Transaction on Automation and Control, AC-23(4):618-626, 1978.

M. Barth and S. Tsuji. Egomotion determination through an intelligent
gaze control strategy. IEEE Transaction on Systems, Man and Cybernetics,
23(5):1424-1432, 1993.

209

210

[CA99]

[Che95]

[CKSS]

[CLK*+00]

[Fau93)]
[Gre86]

[HB96]

[HHD0Oa]

[HHDOOb]

[HIZ00]

[IB9S8]

[ISh97]

[IYT90]

BIBLIOGRAPHY

Q. Cai and J. K. Aggarwal. Tracking human motion in structured envi-
ronments using a distributed camera system. IEFE Transaction on Pattern
Analysis and Machine Intelligence, 21(11):1241-1247, 1999.

S. E. Chen. Quicktime vr — an image-based approach to virtual environment
navigation. In Proceedings of SIGGRAPH 95, pages 29-38, 1995.

C. K. Cowan and P. D. Kovesi. Automatic sensor placement from vision
task requirements. IEFE Transaction on Pattern Analysis and Machine
Intelligence, 10(3):407-416, 1988.

R. T. Collins, A. J. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin,
D. Tolliver, N. Enomoto, O. Hasegawa, P. Bert, and L. Wixson. A system for
video surveillance and monitoring. Technical report, The Robotics Institute,
Carnegie Melon University, 2000.

O. D. Faugeras. Three-Dimensional Computer Vision. The MIT Press, 1993.

N. Greene. Environment mapping and other applications of world projec-
tions. IEEE Computer Graphics and Applications, 6(11):21-29, 1986.

G. D. Hager and P. N. Berhumeur. Real-time tracking of image regions with
changes in geometry and illumination. In Proceedings of IEEE Computer
Society Conference on Computer Vision and Pattern Recognition 96, pages
403-410, 1996.

I[. Haritaoglu, D. Harwood, and L. S. Davis. An appearance-based body
model for multiple people tracking. In Proceedings of 15th International
Conference on Pattern Recognition, volume 4, pages 184-187, 2000.

I. Haritaoglu, D. Harwood, and L. S. Davis. A fast background scene model-
ing and maintenance for outdoor surveillance. In Proceedings of International
Conference on Pattern Recognition 2000, volume 4, pages 179-183, 2000.

T. Hasegawa, K. Imamura, and H. Zen. Observation of moving vehicles
by the plural cameras established freely. In Proceedings of 3rd IEEE Inter-
national Conference on Intelligent Transportation Systems, pages 328333,
2000.

M. Isard and A. Blake. Condensation - conditional density propagation for
visual tracking. International Journal of Computer Vision, 29(1):5-28, 1998.

H. Ishiguro. Distributed vision system: A perceptual information infras-
tructure for robot navigation. In Proceedings of 15th International Joint
Conference on Artificial Intelligence, pages 36—41, 1997.

H. Ishiguro, M. Yamamoto, and S. Tsuji. Omnidirectional stereo for making
global map. In Proceedings of IEEE International Conference on Computer
Vision, pages 540-547, 1990.

BIBLIOGRAPHY 211

[Kan97]

[KIMOO]

[KKD*98]

[KMS00]

[KOKO0]

[K799]

[LCS3)

[LDPD97]

[LK93]

[Mat98]

[MB94]

[MHW+00]

T. Kanade. Cooperative multisensor video surveillance. In Proceedings of
DARPA Image Understanding Workshop 1997, pages 3—10, 1997.

Y. Kameda, K. Ishizuka, and M. Minoh. A study for distance learning
service - tide project -. In Proceedings of IEEE International Conference on
Multimedia and Ezpo, volume 3, pages 1237-1240, 2000.

Nobuhiro Kataoka, Hisao Koizumi, Hideru Doi, Kenichi Kitagawa, and No-
rio Shiratori. A proposal of a method of total quality evaluation in remote
conference systems based on atm networks. Transaction of The Institute
of Electronics, Information and Communication Engineers on Communica-
tions, E81-B(9):1709-1717, 1998.

T. Kato, Y. Mukaigawa, and T. Shakunaga. Cooperative distributed track-
ing for effective face recognition. In Proceedings of IAPR Workshop on
Machine Vision Applications 2000, pages 353-358, 2000.

I. Kitahara, Y. Ohta, and T. Kanade. 3d video display of sports scene using
multiple video cameras. In Proceedings of Meeting on Image recognition and
Understanding 2000, volume 1, pages 3-8, 2000. (written in Japanese).

V. Kettnaker and R. Zabih. Bayesian multi-camera surveillance. In Pro-
ceedings of IEEE Computer Society Conference on Computer Vision and
Pattern Recognition 99, pages 253-259, 1999.

V. R. Lesser and D. D. Corkill. The distributed vehicle monitoring testbed:
a tool for investigating distributed problem solving networks. AI Magazine,
4(3):15-33, 1983.

J. M. Lavest, C. Delherm, B. Peuchot, and N. Daucher. Implicit reconstruc-
tion by zooming. Computer Vision and Image Understanding, 66(3):301—
315, 1997.

J.J. Little and J. Kam. A smart buffer for tracking using motion data. In
Proceedings of IEEFE International Workshop on Computer Architecture for
Machine Perception, pages 257-266, 1993.

T. Matsuyama. Cooperative distributed vision - dynamic integration of
visual perception, action and communication -. In Proceedings of DARPA
Image Understanding Workshop 1998, pages 365384, 1998.

D. Murray and A. Basu. Motion tracking with an active camera. IEFE
Transaction on Pattern Analysis and Machine Intelligence, 16(5):449-459,
1994.

T. Matsuyama, S. Hiura, T. Wada, K. Murase, and A. Yoshioka. Dynamic
memory: Architecture for real time integration of visual perception, camera

212

[Mil91]

[MNO5]

[MOHO0]

[MWMO98a)

[MWMOSb]

[MWMO9]

[NakO1]

[NHM*01]

[NKIOS]

[NO92]

[OK93]

BIBLIOGRAPHY

action, and network communication. In Proceedings of IEEE Computer So-

ciety Conference on Computer Vision and Pattern Recognition 2000, pages
728735, 2000.

D. L. Mills. Internet time synchronization: the network time protocol. IEEE
Transaction of Communications, 39(10):1482-1493, 1991.

H. Murase and S. K. Nayar. Virtual learning and recognition of 3-d objects
from appearance. International Journal of Computer Vision, 14(1):5-24,
1995.

T. Matsuyama, T. Ohya, and H. Habe. Background subtraction for non-
stationary scenes. In Proceedings of Asian Conference on Computer Vision
2000, pages 662-667, 2000.

T. Matsuyama, T. Wada, and M. Maruyama. Cooperative object tracking
by multiple active vision agents. In Proceedings of Meeting on Image recog-
nition and Understanding '98, volume 1, pages 365-370, 1998. (written in
Japanese).

K. Murase, T. Wada, and T. Matsuyama. Moving object detection by a
rotating camera. In Proceedings of Meeting on Image Understanding and
Recognition 98, volume 1, pages 425-430, 1998. (written in Japanese).

T. Matsuyama, T. Wada, and Y. Monobe. Real-time object detection and
tracking with a fixed-viewpoint pan-tilt-zoom camera. Information Process-
ing Society of Japan Journal, 40(8):3169-3178, 1999. (written in Japanese).

A. Nakazawa. Human Tracking using Distributed Vision Systems. PhD
thesis, Osaka university, 2001.

K. Nakadai, K. Hidai, H. Mizoguchi, H. G. Okuno, and H. Kitano. Real-
time auditory and visual multiple-object tracking for robots. In Proceedings

of the Seventeenth International Joint Conference on Artificial Intelligence
(IJCAI-01), volume 2, pages 1425-1432, 2001.

A. Nakazawa, H. Kato, and S. Inokuchi. Human tracking using distributed
vision systems. In Proceedings of 14th International Conference on Pattern
Recognition, pages 593-596, 1998.

S. Nishio and Y. Ohta. Tracking of vehicles at an intersection by integration
of multiple image sensors. In Proceedings of IAPR Workshop on Machine
Vision Applications ’92, pages 321-324, 1992.

M. Okutomi and T. Kanade. A multiple-baseline stereo. IEEE Transaction
on Pattern Analysis and Machine Intelligence, 15(4):353-363, 1993.

BIBLIOGRAPHY 213

[PDBSW92] K. R. Pattipati, S. Deb, Y. Bar-Shalom, and R. B. Washbarn. A new re-

[PNO7]

[Rei79]

[RH90]

SG99]

[SHY7]

[SITO0]

[SMKUO0]

[SO00]

[SSTS6]

[Ste99]

laxation algorithm and passive sensor data association. IEFE Transaction
Auto. Contr., AC-37(2):198-213, 1992.

V. N. Peri and S. K. Nayar. Generation of perspective and panoramic video
from omnidirectional video. In Proceedings of DARPA Image Understanding
Workshop, pages 243-245, 1997.

D. B. Reid. An algorithm for tracking multiple targets. IEEE Transaction
on Automation and Control, AC-24(6):843-854, 1979.

D. Raviv and M. Herman. Towards an understanding of camera fixation. In

Proceedings of International Conference on Robotics and Automation, pages
28-33, 1990.

C. Stauffer and E. Grimson. Adaptive background mixture models for real-
time tracking. In Proceedings of IEEE Computer Society Conference on
Computer Vision and Pattern Recognition °99, volume 2, pages 246-252,
1999.

T. M. Strat and S. J. Henessy. Video surveillance and monitoring. In Pro-
ceedings of First International Workshop on Cooperative Distributed Vision,
pages 195-219, 1997.

T. Sogo, H. Ishiguro, and M. M. Trivedi. Real-time human tracking system
with multiple omni-directional vision sensors. Transaction of The Insti-
tute of Electronics, Information and Communication Engineers D-11, J-83-
DII(12):2567-2577, 2000. (written in Japanese).

H. Shimai, T. Mishima, T. Kurita, and S. Umeyama. Adaptive background
estimation from image sequence by on-line m-estimation and its application
to detection of moving objects. In Proceedings of Infotech Oulu Workshop
on Real-Time Image Sequence Analysis, pages 99-108, 2000.

Y. Sugaya and Y. Ohta. A video-rate stereo system by integration of two
algorithms with /without occlusion handling. In Proceedings of IAPR Work-
shop on Machine Vision Applications 2000, pages 244-247, 2000.

S. A. Shafer, A. Stentz, and C. E. Thorpe. An architecture for sensor fusion
in a mobile robot. In Proceedings of IEEE Conference on Robotics and
Automation, pages 2002-2011, 1986.

G. P. Stein. Tracking from multiple view points: Self-calibration of space and
time. In Proceedings of IEEE Computer Society Conference on Computer
Vision and Pattern Recognition 99, volume 1, pages 521-527, 1999.

214

[TATO5]

[TMOO]

[Tsa86]

[TTA95]

[TWMO1]

[WADPY7]

[WGCM96]

[WSN87]

[WTMO6]

[WWTMOO]

[YAT00]

BIBLIOGRAPHY

K. A. Tarabanis, P. K. Allen, and R. Y. Tsai. A survey of sensor planning in
computer vision. IEEE Transaction on Robotics and Automation, 11(1):86—
104, 1995.

T. Tomiyama and T. Matsuyama. Real-time object tracking using the dy-
namic memory. In IPSJ SIG Notes, 2000-CVIM-121, pages 49-56, 2000.
(written in Japanese).

R. Y. Tsai. An efficient and accurate camera calibration technique for 3d
machine vision. In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition 86, pages 364-374, 1986.

K. A. Tarabanis, R. Y. Tsai, and P. K. Allen. The mvp sensor planning sys-
tem for robotic vision tasks. IEEE Transaction on Robotics and Automation,
11(1):72-85, 1995.

S. Tsunetani, T. Wada, and T. Matsuyama. Object tracking with fixed-
viewpoint pan-tilt stereo camera. In IPSJ SIG Notes, 2001-CVIM-128, pages
103-110, 2001. (written in Japanese).

C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. Pfinder: Real-time
tracking of the human body. IEFEE Transaction on Pattern Analysis and
Machine Intelligence, 19(7):780-785, 1997.

N. Nandhakumar Wei-Ge Chen and Worthy N. Martin. Image motion esti-
mation from motion smear - a new computational model. IEEE Transaction
on Pattern Analysis and Machine Intelligence, 18(4):412-425, 1996.

L. E. Weiss, A. C. Sanderson, and C. P. Neuman. Dynamic sensor-based
control of robotics with visual feedback. IEEE Transaction on Robotics and
Automation, RA-3(5):404-417, 1987.

T. Wada, M. Tamura, and T. Matsuyama. Cooperative distributed object
identification for wide area surveillance systems. In Proceedings of Meeting
on Image recognition and Understanding 96, volume 1, pages 103108, 1996.
(written in Japanese).

T. Wada, X. Wu, S. Tokai, and T. Matsuyama. Homography based parallel
volume intersection: Toward real-time volume reconstruction using active
cameras. In Proceedings of Fifth IEEE International Workshop on Computer
Architectures for Machine Perception, pages 331-339, 2000.

S. Yonemoto, D. Arita, and R. Taniguchi. Real-time human motion analysis
and ik-based human figure control. In Proceedings of IEEE Workshop on
Human Motion, pages 149-154, 2000.

BIBLIOGRAPHY 215

[YKS86]

[YM96]

[YWMO0]

YY91]

YYY95]

[ZMO95]

M. Yachida and Y. Kitamura. 3-d data acquisition by multiple views. In
Third International Symposium on Robotics Research, pages 11-18. MIT
Press, 1986.

N. Yoshida and A. Mitani. Decentralized processing for multitarget motion
analysis. In Proceedings of IEEE International Conference on Multisensor
Fusion and Integration for Intelligent Systems, pages 297-303, 1996.

K. Yachi, T. Wada, and T. Matsuyama. Human head tracking using adaptive
appearance models with a fixed-viewpoint pan-tilt-zoom camera. In Pro-
ceedings of Fourth International Conference on Automatic Face and Gesture
Recognition, pages 150155, 2000.

Y. Yagi and M. Yachida. Real-time generation of environmental map and
obstacle avoidance using omnidirectional image sensor with conic mirror.
In Proceedings of IEEFE International Conference on Computer Vision and
Pattern Recognition 91, pages 160165, 1991.

K. Yamazawa, Y. Yagi, and M. Yachida. Obstacle detection with omni-
directional image sensor hyperomni vision. In Proceedings of International
Conference on Robotics and Automation '95, pages 1062-1067, 1995.

Y. Zhang and A. Mackworth. Constraint nets: A semantic model for a
hybrid dynamic systems. Theoretical Computer Science, 138:211-239, 1995.

List of Publications

e Journal Paper

1. T. Wada, N. Ukita and T. Matsuyama: “Fixed-Viewpoint Pan-Tilt-Zoom
Camera and Its Applications”, Transaction of The Institute of Electronics,
Information and Communi cation Engineers D-II, Vol. J81-DII, No.6, pp.1182—
1193, 1998.

2. N. Ukita and T. Matsuyama: “Incremental Observable-Area Modeling for Co-
operative Tracking”, IPSJ Journal, Vol.42, No.7, pp.1902-1913, 2001.

e International Conference

1. N. Ukita and T. Matsuyama: “Incremental Observable-Area Modeling for Co-
operative Tracking”, Proceedings of 15th International Conference on Pattern
Recognition, Vol.4, pp.192-196, 2000

2. N. Ukita, T. Nagao and T. Matsuyama: “Versatile Cooperative Multiple-
Object Tracking by Active Vision Agents”, Proceedings of TAPR Workshop
on Machine Vision Applications 2000, pp.569-573, 2000

e Presentation

1. N. Ukita and T. Shakunaga: “3D Reconstruction from Wide-Range Image Se-
quences Using Perspective Factorization Method”, Technical Report of IEICE,
PRMU, Vol.97, No.596, pp.81-88, 1998.

2. N. Ukita, S. Tokai, T. Matsuyama and R. Taniguchi: “Database Development
of Multi-Viewpoint Image Sequences for Evaluation of Image Understanding
Systems”, Technical Report of IEICE, PRMU, Vol.99, No.182, pp.65-72, 1999.

3. N. Ukita and T. Matsuyama: “Incremental Observable-Area Modeling for Co-
operative Tracking”, Proceedings of Meeting on Image Recognition and Un-
derstanding 2000, Vol.1, pp.421-426, 2000.

4. T. Wada, N. Ukita and T. Matsuyama: “Appearance Sphere — Background
Model for Pan-Tilt-Zoom Camera—", Proceedings of Meeting on Image Recog-
nition and Understanding "96, Vol.2, pp.103-108, 1996.

5. T. Nagao, N. Ukita and T. Matsuyama: “Multi-target Tracking by Communi-
cating Active Vision Agents”, IPSJ SIG Notes, CVIM, Vol.2000, No.33, pp.57—
64, 2000.

217

