
Bayesian perspective-plane (BPP) with maximum
likelihood searching for visual localization

Zhaozheng Hu & Takashi Matsuyama

Received: 8 November 2013 /Revised: 15 April 2014 /Accepted: 26 May 2014
# Springer Science+Business Media New York 2014

Abstract The proposed “Perspective-Plane” in this paper is similar to the well-known
“Perspective-n-Point (PnP)” or “Perspective-n-Line (PnL)” problems in computer vision.
However, it has broader applications and potentials, because planar scenes are more widely
available than control points or lines in daily life. We address this problem in the Bayesian
framework and propose the “Bayesian Perspective-Plane (BPP)” algorithm, which can deal
with more generalized constraints rather than type-specific ones. The BPP algorithm consists
of three steps: 1) plane normal computation by maximum likelihood searching from Bayesian
formulation; 2) plane distance computation; and 3) visual localization. In the first step,
computation of the plane normal is formulated within the Bayesian framework, and is solved
by using the proposed Maximum Likelihood Searching Model (MLS-M). Two searching
modes of 2D and 1D are discussed. MLS-M can incorporate generalized planar and out-of-
plane deterministic constraints. With the computed normal, the plane distance is recovered
from a reference length or distance. The positions of the object or the camera can be
determined afterwards. Extensions of the proposed BPP algorithm to deal with un-calibrated
images and for camera calibration are discussed. The BPP algorithm has been tested with both
simulation and real image data. In the experiments, the algorithm was applied to recover planar
structure and localize objects by using different types of constraints. The 2D and 1D searching
modes were illustrated for plane normal computation. The results demonstrate that the
algorithm is accurate and generalized for object localization. Extensions of the proposed
model for camera calibration were also illustrated in the experiment. The potential of the
proposed algorithm was further demonstrated to solve the classic Perspective-Three-Point
(P3P) problem and classify the solutions in the experiment. The proposed BPP algorithm
suggests a practical and effective approach for visual localization.
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1 Introduction

Visual localization has important applications in computer vision, virtual/augmented reality
(VR/AR), multimedia modeling, human-computer interface (HCI), motion estimation, navi-
gation, and photogrammetric communities, etc. This topic has been intensively investigated for
the past decades [2,4,5,8,9,12]. The basic objective is to compute the position of an object or
the camera in a reference coordinate system by using either multiple (two or more) or single
image (s). For example, stereo vision is a commonly used approach for localization from two
images, which can retrieve the 3D coordinates or position of an object in the scene from image
disparity, baseline width, and camera focal length [8]. Compared to the multi-view methods,
localization from a single view usually relies on some “prior knowledge” of the scene. Based
on different scene constraints, there are many algorithms developed for visual localization.
However, these algorithms are usually type-specific ones and not generalized enough.

In the literatures, there are many localization methods that try to exploit different scene
constraints. For example, model-based localization is a very popular localization approach,
which tries to exploit prior knowledge of a “well-known model” to estimate the depth,
distance, or relative pose between object and camera. Actually, the model can be represented
in different forms, such as a complete 3D map, e.g., a CAD model of the environment, a set of
points or lines, which have known coordinates in a reference coordinate system (also known as
control points or control lines), a well-defined landmark including structured light patterns, a
natural or artificial object, a specific shape, etc. The researches on localization from a set of
control points or lines have been formulated as the well-known Perspective-n-Point (PnP) and
Perspective-n-Line (PnL) problems in the field of computer vision [6,10,11,15,18,25]. For the
past decades, a lot of algorithms and computation models have been successfully developed to
address the P3P (n=3), P4P (n=4), P5P (n=5), and P3L (n=3), P4L (n=4), P5L (n=5)
problems. The PnP and PnL researches try to address two problems: 1) how to solve the
PnP problem; 2) how to classify the multiple solutions. As for n≥6 cases, PnP and PnL
problems have unique solutions. Existing approaches, such as Direct Linear Transform (DLT)
[8], have been successfully developed to address these problems. Landmark-based algorithms
are another category for visual localization, which have been intensively investigated, espe-
cially for mobile robot navigation. For the purpose of easy recognition and position compu-
tation, landmarks are usually professionally designed with good features, such as dominant
colors, textures, etc., and pre-defined shapes [1,29]. Moreover, some natural or artificial
objects in the scene, such as human body, face, eye, window in the street, etc., can also be
used for localization. For example, we can estimate the relative position between a camera and
a human face from a single image, by using a calibrated 3-D face model [21], which has a lot
of application for human-computer interface (HCI). A single image of human eye balls can
help to localize the eyes and compute the gaze directions, which have important applications
for human attention analysis [19]. Zhu and Ramanan investigated the localization problem
from landmark in the wild [30]. Camera pose can be computed from 3D corner, which is
widely available in artificial buildings [20]. Urban building and roads can provide rich
information for visual localization of mobile devices, which has important applications for
navigation [27]. Symmetry is also important clue for localization [23]. More generally, if a
planar structure is determined, it is possible to localize object and camera in between. Actually,
planar scenes are commonly found in daily life. Hence, localization based on planar structure
is very practical and flexible. In existing algorithms, planar structure, such as the plane normal
or the distance, can be computed from circular points, parallel lines, homography, conics,
control points, deterministic or statistical texture, etc. For example, Hu et al. determine the
support plane from the geometric constraints of three control points [10]. If there are four
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control points or more on the plane, we can compute the homography and determine the
position of the plane by decomposition [28]. It is also feasible to compute the plane normal
from vanishing line, if two sets of parallel lines are available in the scene [13]. Planar conics,
such as circles, give other important clues for plane computation, which can be interpreted by
the circular points [26]. Planar structure can be calculated from video sequences using specific
constraints [7]. Pretto et al. investigated the 3D localization of planar objects for industry bin-
picking [17]. Textures were investigated for plane shape recovery, which usually assume prior
knowledge of statistical characteristics, such as homogeneity, or repetition of specific shapes
[24].

From the literatures, it can be found that existing single view algorithms for localization or
planar structure computation algorithms are mostly based on some specific scene constraints.
They are not generalized or practical enough because of two reasons. On the one hand, some strict
scene constraints, which are required by the type-specific algorithm, are sometimes difficult to
satisfy in the scene. On the other hand, some constraints, which are available in the scene, are
difficulty to be utilized by the type-specific algorithm. As a result, these algorithms have
limitations in practice, especially for the occlusion and partially visible situations. For example,
the rectangle based method is not feasible if the one edge of the rectangle target is occluded.
However, with the proposed method, we can still make use of the three angles between the three
remaining edges for visual localization, as the proposed method can exploit generalized scene
constraints rather than specific shapes. Hence, the motivation of this paper is to propose a new
model that could incorporate generalized scene constraints rather than type-specific ones for
visual localization. The proposed is expected to replace or complement existing localization
methods by proposing a unified framework to cope with different constraints.

In this paper, we propose a novel localization problem of “Perspective-Plane” to address the
issues arisen in the constraint-specific methods in the literatures. “Perspective-Plane” is similar
to PnP or PnL problems in computer vision, but with broader applications and potentials, since
planar scenes are more widely available in daily life. The “Perspective-Plane” problem deals
with the planar object instead of particular control points or lines cases for visual localization.
And we propose “Bayesian Perspective-Plane” (BPP) algorithm to solve the “Perspective-
Plane” problem. The BPP algorithm can incorporate both planar and out-of-plane deterministic
constraints to compute the planar structure and localize the object. By using the Bayesian
formula, determination of the planar structure is formulated as a maximum likelihood problem,
which is solved by the maximum likelihood searching model (MLS-M) on Gaussian hemi-
sphere. We also present 1D searching mode to simplify and enhance the searching. Localiza-
tion is accomplished from the recovered planar structure afterwards. The proposed model can
also be extended to deal with un-calibrated images and for camera calibration. Since planar
scenes are commonly found in daily life, the proposed BPP algorithm is expected to be
practical and flexible in many computer vision applications.

The contributions of this paper are summarized as follows: 1) propose the conception of
“Perspective-Plane”, and address it within the Bayesian framework by proposing the Bayesian
Perspective-Plane (BPP) algorithm. The BPP algorithm can deal with more generalized
constraints rather than specific ones for visual localization, compared to the traditional PnP
and PnL problems; 2) model the likelihood with normalized Gaussian functions and proposed
Maximum Likelihood Searching Model (MLS-M) to solve for the plane normal by searching
on Gaussian hemisphere. Moreover, we proposed two searching modes of MLS-M, 1D and
2D searching modes, for efficient computation; 3) extend the proposed BPP method to un-
calibrated images and camera calibration.

The structure of the paper is organized as follows. Section 2 introduces “Perspective-Plane”
geometry and the formulation of planar and out-of-plane geometric constraints from scene prior
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knowledge; Section 3 proposes the algorithm of Bayesian Perspective-Plane (BPP) by using
generalized constraints and the extensions of the model; Section 4 presents the experimental
results with both simulation and real image data. The conclusions are drawn in the final section.

2 Formulation of geometric constraints

2.1 Geometry from a reference plane

Under a pin-hole camera model, a physical plane and its image are mapped by a 3×3
homography [1]

x≅HX ð1Þ
where X is for the coordinates of the point on the physical plane, x is for the image coordinates,
and ≅ means equal up to a scale. Given the camera calibration matrix and the plane structure,
i.e., the plane normal and distance, there are two approaches to compute the homography. One
is based on the stratified reconstruction by determining the vanishing line and the circular
points [16]. The other is to assume a world coordinate system (WCS) from the physical plane
[28]. For example, let the X-O-Y plane in WCS coincides with the physical plane, we try to
derive two unit orthogonal directions N1 and N2, as the directions of x- and y- axes, from plane
normal (i, j=1, 2 and i≠j)

NTN i ¼ 0
NT

i N j ¼ 0
NT

i Ni ¼ 1

8<: ð2Þ

The third constraint in Eq. (2) forces unit N1 and N2. Actually, we cannot uniquely
determine N1 and N2 from Eq. (2). In practice, we can set N1 as

N1≅ Nz 0 −Nx½ �T ð3Þ
where N ¼ Nx Ny Nz½ �T . With N1, the direction N2 is computed from Eq. (2) readily. As
a result, we can compute the homography as [28]

H ¼ K N1 KN2 Kt½ � ð4Þ

where K is the calibration matrix, t is the translation vector between the WCS and camera
coordinate system, and Kt is the image of the origin of the WCS.

With the homography, we can compute the coordinates X on the physical plane from its
image point x as X≅H−1x. Hence, a Euclidean reconstruction of the plane is possible. And
more geometric attributes, such as distance, angle, length ratio, curvature, shape area, etc., are
calculated readily. Note that a metric reconstruction of the plane is also feasible with known
plane normal and unknown distance. However, all the absolute geometric attributes, such as
coordinates, distance, etc., are computed up to a common scale to the actual ones. And some
non-absolute geometric attributes, such as length ratio, angle, etc., are equal to the actual ones.
This is because the metric reconstruction is up to a similarity transform with the Euclidean one.

It is also feasible to compute the geometric attributes associated with some specific out-of-
plane features by referring to a known plane. For example, Wang et al. show that an orthogonal
plane can be measured [22], if a reference plane is well determined. Criminisi et al. show that if
the vanishing line of a reference plane and one vanishing point along a reference direction are
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known, object height, distance, length ratio, angle, and shape area on the parallel planes etc.,
are readily computed [3]. From projective geometry, both the vanishing line of the plane and
the vanishing point along the vertical direction can be computed from the plane normal and the
camera calibration matrix. Hence, the out-of-plane geometric attributes, as discussed above,
can be computed from a determined planar structure and camera calibration matrix.

2.2 Geometric constraint formulation

Prior knowledge of the scenes can generate geometric constraints on the planar structure. We
classify the scene constraints into two categories: planar and out-of-plane constraints. Planar
constraints are derived from prior knowledge of the geometric attributes of planar features on
the plane, while the out-of-plane constraints are from the out-of-plane features. The planar
features are those that lie on the plane, such as the point, line, angle, curve, shape, etc. (see
Fig. 1 (a)), while the other are defined as out-of-plane features, such as an orthogonal line, an
angle on parallel plane, etc. (see Fig. 1 (b)). Formulation of both planar and out-of-plane
constraints is introduced as follow.

Assume a calibrated camera so that the computation of the geometric attributes relies on the
planar structure only. Actually, the plane normal can determine the plane up to a scale, which
allows the computation of a lot of non-absolute geometric attributes, such as the relative length,
angle, etc., without knowing the plane distance. Hence, we only consider the non-absolute
geometric attributes to calculate the plane normal. The plane distance is computed readily from
reference length, once the plane normal is determined, as will be discussed in section 3.4.

Let Qi(N) be the geometric attribute computed from a given plane normal N. Let ui be the
deterministic value associated with such geometric attribute that we know a prior. The
difference is defined as the measurement error associated with the normal N

di Nð Þ ¼ Qi Nð Þ−ui ð5Þ
By forcing zero measurement error, we can derive one constraint Ci as

Ci :di Nð Þ ¼ Qi Nð Þ−ui ¼ 0 ð6Þ
Note that Eq. (6) holds for both planar and out-of-plane constraints. Similarly, we can

derive a set of geometric constraints on plane normal

C ¼ Ci

���di Nð Þ ¼ Qi Nð Þ−ui ¼ 0
n o

i ¼ 1; 2;⋯Mð Þ ð7Þ

(a) (b)

Fig. 1 a) planar features, e.g., control point, control line, known angle, specific shape, etc., on the plane; b) Out-
of-plane features that lie out of the plane, e.g., orthogonal line, known angle on a parallel plane, point on an
orthogonal plane, etc
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The plane normal can be computed by solving Eq. (7), which is, however, not an easy task.
Existing algorithms are usually based on some specific constraints to solve Eq. (7), and not
generalized or practical enough. A generalized algorithm, “Bayesian Perspective-Plane (BPP)”
is discussed as follows.

3 Bayesian perspective-plane (BPP)

3.1 Localization from planar structure

Localization is possible from single image of a planar structure, i.e., with known
plane normal and distance, as illustrated in Fig. 2. The point on the plane can be
localized by calculating the intersection of the back-projection ray and the plane as
follows

X ¼ λK−1x
X TN ¼ d

�
ð8Þ

where the first equation in Eq. (8) defines the back-projection ray by using the
camera calibration matrix and the image (see the dash line in Fig. 2), while the
second one is the equation for a known plane (N, d). In a similar way, we can
localize all the points on the plane. If we use the plane to expand a reference
coordinate system, the position of the camera can be computed as well [28]. Hence,
we can localize the object and camera in-between. And the key is to determine the
plane normal and distance.

3.2 Formulation of Bayesian perspective-plane (BPP)

We assume the plane normal N with certain distributions in the searching space. For
example, if no geometric constraints are given, N is uniformly distributed, as shown in
Fig. 3 (a). Given one geometric constraint, the distribution of the normal (P(N|Ci)) is
updated from uniform to non-uniform, as shown in Fig. 3 (b). Given a set of geometric
constraints, the plane normal has a new distribution (P(N|C1,C2,⋯CM)) with a dominant
peak (if we have sufficient constraints). And the plane normal with the highest probability

Fig. 2 Localize a 3D point X in the camera coordinate system from single view of a known plane by computing
the intersection with the back-projection ray
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gives the solution (see Fig. 3 (c)). Note that we use probability instead of probability
dense function model (P.D.F.) throughout the paper, because we need to partition Gauss-
ian hemisphere to discrete the space for maximum likelihood searching.

Based on the above consideration, computation of the plane normal from a set of geometric
constraints is formulated as to maximize the following conditional probability

N � ¼ argmax
N

P N
���C1;C2;⋯CM

� �
ð9Þ

However, it is difficult to solve Eq. (9) directly. By using Bayesian formula, we can
transform Eq. (9) and derive the following equation

P N
���C1;C2;⋯CM

� �
¼

P C1;C2;⋯CM

���N� �
P Nð Þ

P C1;C2;⋯CMð Þ ð10Þ

where P(C1,C2,⋯CM|N) is the likelihood. P(N) and P(C1,C2,⋯CM) are the prior probabilities
for the plane normal and geometric constraints, respectively. Assume that the constraint Ci(i=
1,2,…M) is conditionally independent to each other, so that

P C1;C2…CM Njð Þ ¼ ∏
i¼1

M

P Ci Njð Þ ð11Þ

Assume that the plane normal is uniform distribution so that P(N)/P(C1,C2,⋯CM) is a
constant. We can substitute Eq. (11) into Eq. (10) to derive the relative probability

P N
���C1;C2;⋯CM

� �
∝P C1;C2;⋯CM

���N� �
¼ ∏

i¼1

M

P Ci

���N� �
ð12Þ

Substituting Eq. (12) into Eq. (9) yields

N � ¼ argmax
N

P N
���C1;C2;⋯CM

� �
∝argmax

N
∏
i¼1

M

P Ci

���N� �
ð13Þ

Therefore, to solve Eq. (13) is equivalent to compute the normal, which yields the
maximum joint likelihood. In order to solve Eq. (13), we need to model
P(Ci|N),which is defined as the likelihood that the ith constraint is satisfied, given

(a) (b) (c)

Fig. 3 Distributions of plane normal in different conditions: 1) Uniform distribution (P(N)) with no constraints;
2) Non-uniform distribution (P(N|Ci)) from one geometric constraint; 3) Distribution (P(N|C1,C2,⋯CM)) with a
dominant peak from a set of geometric constraints
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the plane normal N. In order to develop a reasonable and accurate model, we develop
the following rules

1) The likelihood is determined by the measurement error. More the absolute measurement
error yields lower the likelihood is. The maximum likelihood is reached when the
measurement error is zero;

2) The maximum likelihoods (for zero measurement error) for different constraints should be
equal so that all constraints contribute equally to solve Eq. (13);

3) The measurement error should be normalized to deal with the geometric attributes with
different forms, units, and scales, etc.

To serve these purposes, we proposed the normalized Gaussian function to model the
likelihood as

G di Nð Þ
���ui;σi

� �
¼ 1ffiffiffiffiffiffi

2π
p

σi

exp −
Qi Nð Þ−uið Þ2
2u2i σ

2
i

 !
¼ 1ffiffiffiffiffiffi

2π
p

σi

exp −
d2i Nð Þ
2u2i σ

2
i

� �
ð14Þ

where ui from Eq. (5) is used to normalize the measurement error. Note that Eq. (14)
expects non-zero ui. Otherwise, the measure error is not normalized. It can be
observed from Eq. (14) that the first rule is well satisfied. The likelihood decreases
with the absolute measurement error. And the maximum likelihood is reached for zero
measurement error. In order to satisfy the second rule, the standard deviations for all
Gaussian models should be equal (σi=σj=σ). In practice, we can choose appropriate
σ. As a result, the likelihood model for each constraint is derived as

P Ci

���N� �
¼ G di Nð Þ

���ui;σ� �
∝exp −

d2i Nð Þ
2u2i σ

2

� �
ð15Þ

Once we model the likelihood function, we can re-organize Eq. (9) by substituting Eq. (15)
into Eq. (12) and derive the following equation

P N jC1;C2;⋯CMð Þ∝∏
i¼1

M

G di Nð Þð Þ∝∏
i¼1

M

exp −
d2i Nð Þ
2u2i σ2

� �
ð16Þ

Finally, we can derive the following equation to compute the plane normal

N� ¼ argmax
N

P N jC1;C2;⋯CMð Þ∝argmax
N

exp −
X
i¼1

M d2i Nð Þ
2u2i σ2

 !
ð17Þ

3.3 Maximum likelihood searching model (MLS-M)

A maximum likelihood searching model (MLS-M) is proposed to solve Eq. (17). And two
searching modes of 2D and 1D are proposed in the following paragraph.

a. 2D searching mode

A unit plane normal corresponds to a point on the Gaussian sphere surface. Hence, the
Gaussian sphere defines the searching space. In practice, we search on Gaussian hemisphere to
reduce the searching space into half, because only the planes in front of the camera are visible
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in the image. Once we define the searching space, we need to partition the space for plane
normal sampling. A uniform sampling can be realized by evenly partition Gaussian hemi-
sphere into a number of cells. Some algorithms are developed to serve this purpose. And in this
paper, we used the recursive zonal equal area sphere partitioning algorithm in [14]. After
partition, the center of each cell represents a sampled normal. The likelihood for each sampled
normal is computed by using Eq. (17). Once the likelihoods for all the samples are calculated,
the maximum likelihood is computed by sorting. The corresponding plane normal is the
solution. Since Gaussian sphere in 3D space is two dimensional (2D), it is called the 2D
searching mode.

b. 1D searching mode

A linear constraint can reduce 2D searching into 1D to enhance the searching efficiency. In
practice, some linear constraints are widely available in the scene, such as parallel lines,
orthogonal lines or planes, etc. For example, a linear constraint on the plane normal can be
formulated from an orthogonal line. Let L be the orthogonal line, with its image l. Because L is
parallel to the plane normal, the vanishing point Vnormal along the normal direction lies on l
and satisfies the following equation

lTV normal ¼ lT KNð Þ ¼ KT l
	 
T

N ¼ 0 ð18Þ
The term KTl represents a re-projection plane passing through the camera center and the

image l, on which the normal vector lies. Since N also lies on the Gaussian sphere, we can
derive

KT l
	 
T

N ¼ 0
NTN ¼ 1

(
ð19Þ

Eq. (19) above defines a circle in 3D space, which is the intersection between the plane and
the Gaussian sphere (see Fig. 4).

We can thus search on a 1D circle (actually half of the circle) instead of 2D Gaussian
hemisphere. A uniform sampling is implemented to discrete the space (see APPENDIX A).
Similarly, we compute the likelihood for each sample normal and search for the maximum
likelihood to compute the plane normal. Other linear constraints can also help reduce 2D into

Fig. 4 1D searching on a unit circle in 3D space, which is the intersection of Gaussian sphere and a plane
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1D searching by following the similar steps, such as a vanishing point on the plane, an orthogonal
plane, etc.

3.4 Plane distance determination and localization

Assume unit plane distance and re-write Eq. (8) as follows

X
0 ¼ λK−1x

X
0T
N ¼ 1

�
ð20Þ

By comparing Eq. (8) and Eq. (20), the computed coordinates are equal to the
actual ones up to a scale: X′≅X. As a result, we can compute the 3D coordinates for
all the points on the plane, and localize them in the camera coordinate system, all up
to a common scale.

In order to get the actual coordinates and distances, we need a reference length or distance.
Assume the actual length LAB between two points A,B is known, the scale factor can be
determined by

β ¼ LAB
X

0
A−X

0
B

�� �� ð21Þ

where XA
′ and XB

′ are the 3D coordinates of A,B from Eq. (20) by assuming unit plane
distance and ‖XA

′ −XB
′ ‖ is the distance. Once the scale factor is determined, the actual

plane distance is d=β. We can compute the actual coordinate for localization as

X ¼ βX
0 ð22Þ

3.5 Extensions of the BPP algorithm

So far we assume calibrated camera so that the geometry computation relies on the planar
structure only. However, the BPP algorithm can be extended to deal with un-calibrated images
by assuming minimum camera calibration, i.e., with zero skew, unit aspect ratio, central
principle point. The geometry computation is determined by both the plane normal and the
focal length. Hence, the measurement error is given by

di N ; fð Þ ¼ Qi N ; fð Þ−ui ð23Þ
As a result, we re-formulate Eq. (9) by incorporating both plane normal and focal length:

N �; f �ð Þ ¼ arg max
N ; f

P N ; f
���C1;C2;⋯CM

� �
ð24Þ

The focal length is assumed independence to the normal with uniform distribution. We can
use the Bayesian formula to transform Eq. (24) by applying the Gaussian likelihood model as
follows

N �; f �ð Þ ¼ arg max
N ; f

P N ; f
���C1;C2;⋯CM

� �
∝ arg max

N ; f
exp −

X
i¼1

M d2i N ; fð Þ
2u2i σ

2

 !
ð25Þ

In order to compute the maximum likelihood, we need to search for both the plane normal
and the focal length. Hence, a 3D searching is required. However, as we discussed in the above
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paragraphs, if there is one linear constraint on the plane normal available, the 3D searching can
be reduced into 2D.

A further extension of the proposed model is for camera calibration. We start from the
assumption that the plane vanishing line is known, the same assumption as used in [7,13]. We
can compute the plane normal from the vanishing line, given the camera focal length, and
compute the geometric attributes. As a result, we formulate the camera calibration as to
maximize the following conditional probability

f � ¼ arg max
f

P f
���C1;C2;⋯CM

� �
ð26Þ

Once again, we can apply the Gaussian likelihood model and derive the following equation
for camera calibration (focal length computation)

f � ¼ arg max
f

P f
���C1;C2;⋯CM

� �
∝ arg max

f
exp −

X
i¼1

M d2i fð Þ
2u2i σ

2

 !
ð27Þ

where the measurement error for the corresponding focal length is given by

di fð Þ ¼ Qi fð Þ−ui ¼ 0 ð28Þ
Note that Eq. (27) can also incorporate both planar and out-of-plane constraints for camera

calibration, and is more generalized than the algorithms proposed in [7,16]. The proposed
camera calibration method is illustrated in the following experiment.

4 Experimental results

The proposed BPP algorithm was tested with both simulation and real image data by using
planar and out-of-plane constraints. Extension of the proposed model for camera calibration
was also tested. Furthermore, the proposed model was applied to solve the well-known
Perspective-Three-Point (P3P) problem in the real image test. Although the proposed algo-
rithm is designed to deal with generalized deterministic constraints, it is not feasible to discuss
all types of constraints in the experiments. Without loss of generality, we chose two types of
constraints: 1) known length ratio; 2) known angle, which are also two fundamental geometric
attributes in measurement.

4.1 Results with simulation data

A simulated pin-hole camera was used to generate the image data. The camera has the focal
length of 1800 pixels, unit aspect ratio, zero skew, and principle point at [800, 1000] T (in
pixel). Random Gaussian noises with zero mean and standard deviations of half pixels were
added to the image coordinates to model the practical image noises.

The BPP algorithm was first tested by using planar geometric constraints. Three geometric
constraints were used: 1) two constraints from two known angles of 10 and 20°; 2) one
constraint from known length ratio (valued 2) of two segments. A physical plane with the
normal [−0.5612, 0.3333, 0.7576] T and a distance of 72 cm was projected onto the imaging
plane by the simulation camera. The MLS-M model was applied to compute the plane normal.
The 2D searching mode was applied and the Gaussian hemisphere was partitioned into 200×
400 cells, with each cell center representing one sampled plane normal. The likelihood for each
sampled normal was computed with Eq. (15) by using the three geometric constraints. Due to
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the Gaussian hemisphere sampling, we may not derive the exact normal. Hence, we define a
“best” normal that has minimum angle with the actual one. In this test, the “best” normal is
[−0.5641 0.3336 0.7553] T, which has the minimum angle of 0.21° with the actual one.

Figures 5 (a)~(c) are for the likelihoods from the three constraints respectively, where the
image intensity represents the likelihood, with high intensity for high likelihood. It can be
observed that the likelihood of the plane normal is non-uniform due to the different geometric
constraints. The joint likelihood from the three constraints is presented in Fig. 5 (d), from
which we can observe a dominant area with high likelihoods (see the bright area on the bottom
right). Fig. 5 (e) shows the positions of the 30 normal with the highest likelihoods. And the
maximum likelihood was searched in the joint likelihood map, with the position marked by ‘+
’ (see Fig. 5 (f)). The corresponding plane normal was computed as [−0.5590 0.3306 0.7604] T.
In Fig. 5 (f), the position of the best normal was also marked by ‘o’. From the computation
results, the computed normal from the proposed model has 0.25 and 0.45° with the actual and
the best normal, respectively. The results show that MLS-M is accurate.

The second simulation experiment was performed to test the proposed model by using both
planar and out-of-plane constraints. The same simulation camera was used. The physical plane
has the normal direction [−0.2374, 0.9102, 0.3322] T with 167 cm distance to the camera
center. Three geometric constraints were used for plane structure computation and localization.
Among them, one planar constraint is from a known angle (45°). Two out-of-plane constraints
are derived from: 1) one line orthogonal to the plane; 2) a known length ratio (0.5) between
two segments on a parallel plane.

The 2D searching mode was first applied to compute the likelihood and calculate the plane
normal by searching for the maximum likelihood. The Gaussian hemisphere was also partition
into 200×400 cells. Figure 7 shows the likelihoods for each sampled normal from different
constraints. Among them, Fig. 7a and c are for the likelihoods generated from the three
individual constraints, which clearly show the non-uniform distributions for the plane normal.
The joint likelihood from the three constraints is presented in Fig. 7 (d), from which we can
clearly observe a dominant bright area on the upper right corner. It shows that the plane normal
has dominant peak distribution due to three constraints. The positions of the 30 plane normal
with the highest likelihoods are shown in Fig. 7 (e) to highlight the area. From the joint
likelihood map in Fig. 7 (f), the maximum likelihood was computed with the corresponding

(a) (b) (c)

(d) (e) (f)

Fig. 5 (a) (b) (c) the likelihoods from three geometric constraints, respectively, (d) the joint likelihood, (e) the
positions of the 30 plane normal with the highest likelihood; (f) positions of the computed and the best normal
marked by cross ‘+’ and circle ‘o’, respectively
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normal position marked by ‘+’. We also marked the position of the “best” normal by circle. It
can be observed that they are in the same position. Hence, the proposed model calculated the
“best” normal in this test.

From the orthogonal line constraint, 1D search mode is feasible to search for the maximum
likelihood. We first defined the circle to search by using Eq. (17). Afterwards, we sampled
10,000 points within the searching space (half of the circle in 3D space). The likelihoods were
computed for each sampled normal by using Eq. (15) and Eq. (17). Fig. 8a and b illustrate the
likelihoods computed from the planar constraints of known angle, and out-of-plane constraints
of known length ratio on the parallel plane. We can observe multiple peaks in both likelihood
curves, which indicate multiple solutions from the individual constraint. More knowledge on
multiple solutions is referred to [26]. Fig. 8 (c) shows the joint likelihood, from which we can
observe a unique peak. The plane normal was then calculated as [−0.2474 0.9101 0.3313] T,
which has 0.03 and 0.01° with the actual and “best” normal, respectively.
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Fig. 6 Localization results: a) 3D positions (marked by ‘+’) of 100 points on the plane in the camera coordinate
system (in cm), with the actual positions marked by ‘o’; b) Relative errors for point-to-camera distance
computation

(a) (b) (c)

(d) (e) (f)

Fig. 7 (a) (b) (c) likelihoods from three geometric constraints of known angle, known angle, and known length
ratio, (d) joint likelihood, (e) positions of the 30 plane normal with the highest likelihood; (f) positions of the
computed and the best normal marked by cross ‘+’ and circle ‘o’, respectively
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Once the plane normal was calculated, we computed the plane distance by referring to a
known length on the plane. And the points on the plane were localized afterwards. Figure 9 (a)
shows the reconstructed 3D positions of one hundred points. Figure 9 (b) shows the relative
errors for the point-to-camera distance computation. It can be observed that relative distance
computation errors are less than 0.8 %. And the mean of the relative errors is 0.7 %. Compared
to results in Fig. 6, the mean of the relative error increases by 0.3 %. This is because the plane
normal has more tilted angle with the camera optical axis and the sampled points are further
from the camera.

Finally, the proposed BPP algorithm was compared to the existing localization method with
simulation data. We typically chose the classic homography-based method for comparison
[28], which is also the foundation of many other localization methods. For the purpose of fair
judgment, we used the same constraints for both methods, which are four control points with
known coordinates on a reference plane. The homography-based method was realized as
follows. First, the homography between the reference plane and its image was computed from
the four control points linearly by using the DLT method [8,28]. Second, the rotation and
translation were calculated from the computed homography and camera calibration matrix.
And finally the normal of the reference plane was calculated from the rotation. In order to
robust estimate the homography matrix, the coordinates of the control points were normalized.
As for the proposed BPP method, we derived six length ratios and four angles from the control
points as the constraints. Moreover, we partitioned the Gaussian hemisphere into 250×500
cells. In the test, the images of the control points were noised with random zero-mean Gaussian
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Fig. 8 1D searching mode with the likelihoods from the two constraints (a-b), and the joint constraints (c)
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Fig. 9 localization results: a) 3D positions (marked by ‘+’) of 100 points in the camera coordinate system (in
cm), with the actual positions marked by ‘o’; b) Relative errors for point-to-camera distance computation
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noises. And four noise levels (or the standard deviation of the noises) were set as 0.5, 1.0, 1.5,
and 2.0 (in pixel). Both the proposed BPP and homography-based methods were tested against
different noise levels. In our test, we used the angle between the computed plane normal and
the actual normal as the error to evaluate the performance of the methods. For each noise level,
we ran 20 trials for both methods and computed the means and standard deviations. The results
are illustrated in Fig. 10, where Fig. 10 (a) is for the means and Fig. 10 (b) is for the standard
deviations for both methods.

As can be observed from Fig. 10, the proposed method performs better than existing
homography-based method. Especially, with the noise level increasing, the proposed BPP
method is more accurate and robust than the homography-based one. For example, when the
noise level is as high as 2.0 pixels, the mean of BPP has about 0.5° angle, while the existing
homography-based one has 5.5 mean degrees. The corresponding standard deviation of BPP is
less than 1.0°, while the homography-based one has standard deviation of 5.5°. The results
demonstrate the proposed BPP is more accurate and robust than existing homography-based
method.
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Fig. 10 comparison of the proposed BPP with the homography-based method: a) the mean computation errors;
b) standard deviations of the computation errors

(a) (b)

Fig. 11 Localization from planar constraints: a) original image; b) three constrains (two known angles and one
length ratio) from extracted lines and points
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4.2 Results with real image data

A Nikon700 digital camera was used to generate the real image data in the first three real
image experiments. The images have the resolution of 2218×1416 (in pixel). The camera was
calibrated with Zhang’s calibration algorithm. The calibration results show the camera has
1369.2 (in pixel) focal length, 1.001 aspect ratio, zero skew, and principle point at [1079, 720]
T (in pixel). The calibration results were used for the planar structure recovery and localization.
The focal length was also used as ground truth to validate the proposed calibration algorithm.
Note that we assume that the image features such as lines, points, corners, etc., were well
extracted using image processing techniques in the following tests.

The first real image experiment was performed to compute the plane structure and localize
the points using planar constraints. Figure 11 (a) shows an original image of a white A4-size
paper, attached on a wall. Six black line segments were drawn on the paper, from which we

(a) (b) (c)

(d) (e) (f)

Fig. 12 (a) (b) (c) likelihoods from three geometric constraints, (d) the joint likelihood from the three
constraints, (e) positions of the 30 normal with the highest likelihood; (f) position of the maximum likelihood
marked by ‘+’
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derived two angles from the lines L1-L2 and L3-L4, and one length ratio between the two
segments of M1-M2 and M3-M4 (see Fig. 11 (b)). They were formulated into three planar
constraints.

The MLS-M model was then applied to compute the plane normal. The likelihood map
from each individual constraint is presented in Fig. 12 (a)-(c), which clearly shows the non-
uniform distribution of plane normal due to different constraints. The joint likelihood map
from the three constraints is given in Fig. 12 (d), in which a bright area on the bottom can be
observed. The bright area is further highlighted in Fig. 12 (e) by showing the positions of the
plane normal with the highest likelihoods. The position of the maximum likelihood in the joint
likelihood map is marked by a cross ‘+’ (see Fig. 12 (f)). The corresponding plane normal is
[0.0993 0.1679 0.9808] T.

The plane distance was computed by referring the length of P1-P2 (297 mm) in Fig. 13).
All the points were localized in the camera coordinate system. Figure 13 shows the localization
of the points on the six line segments, and the four corners points of the paper (P1, P2, P3, and
P4, marked with circle ‘o’). The computed results were validated as follow. We used the
calculated 3D coordinates to compute the length of P2-P3, P3-P4, and P1-P4, which are
206.7 mm, 294.6 mm, and 211.8 mm, respectively. According to the ground truth (the standard
A4-size paper of 210 mm×297 mm), the absolute errors are 3.3 mm, 2.4 mm, and 1.8 mm,
corresponding to 1.6 %, 0.8 %, and 0.9 % relative errors. It demonstrates that the computation
results of plane normal computation and localization are accurate.

A second real image experiment was performed to test the proposed model by using both
planar and out-of-plane constraints with 1D searching mode. As shown in Fig. 14 (a) and

(a) (b)

Fig. 14 a) original image of a book for localization; b) three lines (L1, L2, L3) expand three planes
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Fig. 15 The likelihoods for the normal of the three planes defined by: a) L1-L2; b) L1-L3; c) L2-L3
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Fig. 14 (b), there is an orthogonal corner structure on the book. And every two orthogonal lines
define a plane and we totally have three orthogonal planes. And for each plane, there are two
constraints: 1) an orthogonal line to the plane; 2) a right angle on the plane. The orthogonal
line constraint allows the 1D searching mode to compute the plane normal.

We applied the proposed MLS-M model to compute the normal directions for these three
planes from two constraints for each plane. The plane normal was computed by 1D searching
mode. We uniformly sampled 10,000 points within the searching space (half of the circle in 3D
space), with each point representing a sampled normal. Hence, the angle between two
neighboring sampled normal is 0.0018°. The likelihood for each sample normal was computed
with Eq. (17). The results for the normal computation of the three planes are shown in Fig. 15.

One important phenomenon, the multiple solutions to each plane, can be observed in
Fig. 15 (a)~(c). In each likelihood curve, there are two peaks to indicate two solutions to
the plane normal. More about the multiple solutions for pose computation can be found in [20].
And the results with the proposed model comply with conclusions in the literature [20]. Hence,
we totally have eight combinations for the three orthogonal planes, with two of them satisfying
the mutually orthogonal constraints. And the proposed algorithm can classify and yield all the
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Fig. 16 Unique solution by adding one constraint from length ratio: a) the likelihood from the length ratio
constraint; b) the joint likelihood from two constraints with one peak point
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possible solutions. The algorithm can complement existing non-linear iteration methods by
providing good initial guess for result refinement.

To remove the ambiguity, we added one more constraint to uniquely define the normal of
the plane L1-L2, which is the length ratio (valued 1.5) of the length (M0-M1) and width (M0-
M2) of the book. The computation results are illustrated in Fig. 16 (a). The joint likelihood (see
Fig. 16 (b)) was then computed from the two constraints by combing the results from Fig. 15
(a) ad Fig. 16 (a). From the joint likelihood, we searched for the maximum likelihood and
derived a unique normal to the plane defined by L1 and L2, which is [−0.0022 0.8425 0.5387]
T. Once the L1-L2 plane normal is determined, the normal for the other two planes can be
uniquely computed. We used one actual length to compute the plane distance and localize the
corners of the book in the camera coordinate system. The positions are shown in Fig. 17.

We validated the computation results based on the fact that the three lines, defined by M0-
M1, M0-M2, and M0-M3, are mutually orthogonal. We calculated the three angles by using
the calculated 3D coordinates of the points in Fig. 17. The computed angles are 89.4, 88.1, and
94.1°, respectively, with the absolute errors of 0.6, 1.9, and 4.1°. The relative errors are 0.7 %,
2.1 %, and 4.6 %, with the average 2.4 %. The results demonstrate that the BPP algorithm is
accurate for visual localization. We also localized the camera in the reference coordinate
system, defined by the corner structure, i.e., with M0 the origin and L1, L2, L3 as the three
axes, by simple coordinate system transformation. The result is [−21.64, −23.82, −12.26] T (in
cm). Hence, the object and the camera can be localized from each other.

Another experiment was performed to extend the BPP algorithm to camera calibration. As
shown in Fig. 18, there is a rectangle-shape mouse pad on the desktop, from which the

Fig. 18 Camera calibration from generalized constraints. Left: original image. Right: two constraints generated
from extracted line (L1) and points (M1, M2, and M3)
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Fig. 19 Likelihoods of focal length from: a) length ratio; b) orthogonal line constraint; c) joint constraints
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vanishing line of the desktop plane was computed as [−0.0006 0.0015 –1.0000] T. In order to
test the calibration algorithm with generalized constraints, we chose two representative
constraints: 1) one out-of-plane constraint that L1 is orthogonal to the desktop plane; 2) one
planar constraint from the length ratio (valued 1.2) between the two segments of M2-M3 and
M1-M2.

The searching space for focal length was set from 100 to 10000 pixels. The corresponding
horizontal view angles range from 169 to 13° (See APPENDIX B), which covers a big range
from the wide angle to high resolution lens. The partition resolution is one pixel. The
likelihood for each sampled focal length was computed by using Eq. (27). Fig. 19 shows
the likelihoods, generated from the individual and joint constraints. It can be observed that
there is one peak in each curve, which demonstrates that focal length can be computed from
one constraint. The peak point was searched in the joint likelihood and the corresponding focal
length is 1388 pixels. Compared with the calibration results, the absolute error is 18.8 pixels,
corresponding to 1.4 % relative error. The result demonstrates the proposed model can be
extended for camera calibration by exploiting different constraints.

In the last experiment, the proposed BPP algorithm was applied to solve the well-known
P3P problem. We define a support plane from the three control points (see Fig. 20). It can be
proved that the determination of the support plane is the necessary and sufficient condition to
solve the P3P problem (see APPENDIX C). The three point-to-point distances from the control
points allow the computation of three angles and three length ratios as the geometric con-
straints, with which we applied MLS-M model to compute the support plane, and localize the
three control points.

X1

X2

XX33

Fig. 20 Three corner points (non co-linear) randomly chosen from a chessboard pattern as the three control
points

Fig. 21 Images of chessboard pattern for camera calibration and for plane normal recovery with the proposed
algorithm, from left to right numbered as 1, 2, 3, 4
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In the experiment, a different camera, Nikon Cool-Pix 4100, was used to take the images.
The images have the resolution of 1024×768 (in pixel) (see some of the images in Fig. 21).
The three control points (non co-linear) were chosen randomly from grid points on a
chessboard pattern, as shown in Fig. 19, so that the support plane coincide with the pattern
plane. The chessboard pattern was used for two purposes: 1) for accurate camera calibration
with Zhang’s approach [28]. The calibrated focal length is 4175.5 pixels; 2) to obtain the
ground truth data for the plane normal and point-to-camera distances for the three control
points. In the experiments, the ground truth data were obtained from the calibrated camera
exterior parameters, such as the rotation matrix and the translation vector.

The computed plane normal from the four images are presented in Table 1 above. As can be
observed from Table 1, the second and the third rows are for the results of the computed and
ground truth plane normal. The angle between them is defined as computation errors, which
are presented in the last row (unit in degree). It can be observed that the maximum and the
average angles are 0.33 and 0.25°, respectively, which demonstrate that the computation model
is accurate.

The distances of the control points were computed afterwards. Table 2 presents the

computed distances from four images, where eX i

�� �� and ‖Xi‖ (i=1,2,3) are for the computed

and ground truth distances, respectively. The difference eX i−X i

�� �� defines the distance
computation error. From Table 2, the maximum and average distance computation errors are
0.8 cm and 0.4 cm, respectively, within 1 m to 2.2 m distances, which demonstrates the BPP
algorithm is accurate.

The multiple solutions to P3P were also illustrated with the proposed BPP algorithm. The
multiple solutions to P3P indicate multiple support planes. Since P3P gives two solutions most
of the time, we demonstrate a typical two-solution P3P problem in the test. The classification
of two solutions for P3P is referred to [11,25]. As can be observed in Fig. 22, there are two
peak points in the likelihood map computed from the original image on the left. The likelihood
map is highlighted to show the positions of the 30 plane normal with the highest likelihoods by

Table 1 The normal computation results from three control points

Img1 Img2 Img3 Img4

Computed
normal

[0.078 –0.823 –0.562] [0.034 –0.634 –0.773] [−0.700 –0.134 –0.701] [0.029 –0.935 –0.354]

Ground truth
normal

[0.076 –0.825 –0.560] [0.030 –0.631 –0.776] [−0.697 –0.133 –0.705] [0.027 –0.934 –0.356]

Angle error
(in 0)

0.20 0.33 0.26 0.20

Table 2 The computed distances between the control points and the camera (unit in cm)

eX 1

�� �� X 1k k eX 1−X 1

�� �� eX 2

�� �� X 2k k eX 2−X 2

�� �� eX 3

�� �� X 3k k eX 3−X 3

�� ��
Img1 164.3 163.5 0.7 160.6 159.8 0.8 176.6 175.8 0.8

Img2 109.3 109.0 0.3 120.4 120.2 0.2 114.8 114.5 0.3

Img3 114.0 114.6 0.5 113.1 113.6 0.6 126.1 126.5 0.5

Img4 199.8 199.9 0.1 204.7 204.6 0.1 216.9 216.9 0.0
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thresholding. We can observe that there are two dominant areas segmented from the map. For
each area, we computed the local maximum likelihood to derive two plane normal, which are
[0.0699–0.8883 0.4540] T and [−0.0917 0.8019 0.5904] T (see the two positions marked with
‘+’ in Fig. 22). Hence, the proposed BPP algorithm can not only solve a P3P problem but also
classify the solutions.

5 Conclusions and recommendations

Planar scenes are commonly found in daily life and provide rich information for visual
localization. In this paper, we proposed the “Perspective-Plane” problem, a similar but more
general localization problem, compared to the well-known PnP and PnL problem. We
addressed the problem within the Bayesian framework and proposed the “Bayesian
Perspective-Plane (BPP)” algorithm. The core conception is the computation of the plane
normal with a Maximum Likelihood Searching Model (MLS-M) by using generalized
planar and out-of-plane constraints. The likelihood for each constraint is modeled with a
normalized Gaussian function. The 2D and 1D searching modes were proposed to find the
maximum likelihood and compute the plane normal. The proposed BPP algorithm has been
tested with both simulation and real image data, which show that it is generalized to utilize
different types of constraints for accurate object localization. Extensions of the proposed
BPP algorithm for camera calibration were illustrated in the experiment with good results
reported. Moreover, the BPP algorithm was successfully applied to solve the well-known
Perspective-Three-Point (P3P) problem and classify the solutions. The results demonstrate
that the proposed BPP algorithm is practical and flexible with good potentials for visual
localization.

Future researches based on current work are recommended as follow: 1) incorporate the
inequality constraint into the model, such as the first angle is larger than the second one; 2)
improve the likelihood model to deal with different scales, units, etc.; 3) fast implementation of
the maximum likelihood searching model (MLS-M), especially for high partition resolution of
the Gaussian hemisphere. Some possible approaches can be coarse-to-fine searching strategy,

Fig. 22 Illustration of the two solutions to a practical P3P problem: a) Left: original image; b) Top right:
likelihood map with two dominant local maximums; c) Bottom right: positions of the 30 plane normal with the
highest likelihoods and the two computed normal (marked with ‘+’)
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non-uniform distribution of plane normal on Gaussian sphere; 4) extend the proposed models
and methods to more general scenes besides planar scenes, such as curve surface, sphere, etc.
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Appendixes

A. Uniformly sampling on the circle in 3D space
We can uniform sample on the circle in Eq. (19) by first sampling on a standard circle,

and then mapping the sampled points via a rotation transform. This is implemented by
following the three steps:

Step 1 Uniformly sample the standard circle, which has the following equation:

X 2 þ Y 2 ¼ 1
Z ¼ 0

�
ð29Þ

This can be done by uniformly sampling within the angle space, and a

sampled point is represented by cos θið Þ sin θið Þ 0½ �T , with θi∈[0 2π).
Step 2 Compute the rotation transform. The two circles defined by Eq. (19) and (29) are

mapped via a rotation matrix, which satisfies

R 0 0 1½ �T ¼ N ð30Þ

The rotation matrix is not uniquely determined, because a circle is invariant to
the rotation around the normal. We practically can use two arbitrary orthogonal
vectors that satisfy Eq. (3), as the first and second column vectors.

Step 3 Transform the sampled points by rotation. Each sampled normal on the standard
circle is transformed with the rotation matrix

R
cos θið Þ
sin θið Þ

0

24 35 ¼
r1cos θið Þ þ r4sin θið Þ
r2cos θið Þ þ r5sin θið Þ
r3cos θið Þ þ r6sin θið Þ

24 35 ð31Þ

Hence, a uniform sampling on the circle from Eq. (19) is accomplished. We
can prove that the angles between two neighboring sampled points before and
after transformation are identical, because

R
cos θið Þ
sin θið Þ

0

24 350@ 1AT

R
cos θi‐1ð Þ
sin θi‐1ð Þ

0

24 350@ 1A ¼
cos θið Þ
sin θið Þ

0

24 35T cos θi‐1ð Þ
sin θi‐1ð Þ

0

24 35 ð32Þ

B. Define the searching space for focal length
It is difficult to define the searching space of the focal length directly, since images are
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in different resolutions in practice. Instead, we define the searching space from the camera
viewing angles. There are three view angles defined for a camera: horizontal, vertical, and
diagonal. In this paper, we use the horizontal one. It is defined as

θh ¼ 2tan−1
h

2 f

� �
ð33Þ

where h is the horizontal resolution of the image, and f is the camera focal length. As a
result, we can estimate the focal length from the view angle and the image resolution:

f ¼ h

2tan
θh
2

� � ð34Þ

Usually, we have some prior knowledge of the common used lens. We can thus define
the searching space of the focal length from the range of the view angle and the image
resolution.

C. Lemma: Determining the support plane is the necessary and sufficient condition to solve
the P3P problem

1. Proof: 1) Necessary condition
The distances of the three control points to the camera are known from a solved

P3P. Hence, we can determine the 3D coordinates of each control points by the
following equations

X i ¼ λK−1xi
X ik k ¼ di

�
ð35Þ

With the recovered control points, the support plane is uniquely determined then.
1. 2) Sufficient condition

The plane normal and distance are known from a determined support plane. As a
result, we can use Eq. (4) to compute the 3D positions of each control points. The
distances of the three points are computed readily from the 3D coordinates. Hence,
the P3P problem is solved.
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