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Abstract

This paper gives an overview of our five
years project on Cooperative Distributed Vi-
sion (CDV, in short). From a practical point
of view, the goal of CDV is summarized as
follows: Embed in the real world a group of
network-connected Observation Stations (real
time image processor with active camera(s))
and mobile robots with vision. And realize
1) wide-area dynamic scene understanding and
2) versatile scene visualization. Applications
of CDV include real time wide-area surveil-
lance, remote conference and lecturing sys-
tems, interactive 3D TV and intelligent TV
studio, navigation of (non-intelligent) mobile
robots and disabled people, cooperative mobile
robots, and so on. From a scientific point of
view, we put our focus upon Dynamic Integra-
tion of Visual Perception, Action, and Com-
munication. That is, the scientific goal of
the project is to investigate how the dynamics
of these three functions can be characterized
and how they should be integrated dynamically
to realize intelligent systems. In this paper,
we first discuss functionalities of and mutual
dependencies among perception, action, and
communication to formally clarify the meaning
of their integration. Then we present technical
research results so far obtained on moving tar-
get detection and tracking by cooperative ob-
servation stations. Prototype systems demon-
strate the effectiveness and practical utilities of
our approach.

1 Introduction

This paper gives an overview of our five
years project on Cooperative Distributed Vi-
sion (CDV, in short). The project was started
from October 1996 under the support of the
Research for the Future Program, the Japan
Society for the Promotion of Science.

From a practical point of view, the goal of CDV
is summarized as follows (Figure 1):

Embed in the real world a group of network-
connected Observation Stations (real time im-
age processor with active camera(s)) and mo-
bile robots with vision, and realize

1. wide-area dynamic scene understanding
and

2. versatile scene visualization.

We may call it Ubiquitous Vision.

Applications of CDV include

e Real time wide area surveillance and traf-
fic monitoring systems

e Remote conference and lecturing systems

e Interactive 3D TV and intelligent TV stu-
dio

e High fidelity imaging of skilled body ac-
tions (arts, sports, medical operations,
etc)



Figure 1: Cooperative distributed vision.

e Navigation and guidance
of (non-intelligent) mobile robots and dis-
abled people

e Cooperative mobile robots.

We believe CDV offers a fundamental scheme
of computer vision systems in the 21st century.

The aim of the project is not to develop these
specific application systems but to establish
scientific and technological foundations to real-
ize CDV systems enough capable to work per-
sistently in the real world.

From a scientific point of view, we put our focus
upon dynamic integration of visual perception,
action, and communication. That is, the scien-
tific goal of the project is to investigate how the
dynamics of these three functions can be char-
acterized and how they should be integrated
dynamically to realize intelligent systems.

From a technological point of view, we design
and implement hardwares and softwares to em-
body these three functions:

Visual Perception: versatile and high preci-
sion visual sensors, parallel and distributed real
time vision systems.

Action: active camera heads, mobile robots
with vision, and their control systems.
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Figure 2: Information flows formed by inte-
grating perception, action, and communication

Communication: high speed wired and wireless
network systems, communication protocols for
cooperation, and cooperative distributed prob-
lem solving methods.

In this paper, we first discuss functionalities
of and mutual dependencies among perception,
action, and communication to formally clar-
ify the meaning of their integration. Then we
present research results so far obtained on mov-
ing target detection and tracking by coopera-
tive observation stations:

1. Visual Perception: Fixed-Viewpoint Pan-
Tilt-Zoom (FV-PTZ) Camera for wide-
area active imaging,

2. Visual Perception @ Action' : Real time
object detection and tracking by an FV-
PTZ camera,

3. Visual Perception @& Action & Commu-
nication: Cooperative object tracking by
communicating active vision agents.

Prototype systems demonstrate the effective-
ness and practical utilities of the proposed
ideas.

2 Integrating Perception, Ac-
tion, and Communication
2.1 Modeling Intelligence by Dy-

namic Interactions

To model intelligence, (classic) Artificial Intel-
ligence employs the scheme

! The meaning of @ will be explained later.



Intelligence = Knowledge + Reasoning

and puts its major focus upon symbolic knowl-
edge representation and symbolic computa-
tion. In this sense, it may be called Compu-
tational Intelligence[l].

When we apply this scheme to real world prob-
lems, however, its competence is limited by the
incompleteness of knowledge; we cannot de-
scribe all possible objects, their mutual rela-
tions, or dynamic situations in the world.

In CDV project, on the other hand, we propose
an idea of modeling intelligence by dynamic in-
teractions, which can be represented by the fol-
lowing scheme:

Intelligence =

Perception & Action & Communica-
tion,

where @ implies dynamic interactions among
the component modules.

That is, we define an agent as an intelligent
system with perception, action, and communi-
cation capabilities and regard these three func-
tions as fundamental modules to realize dy-
namic interactions between the agent and its
outer world (i.e. scene and other agents):

Function From To
Perception World — Self
Action Self —  World
Communication Self < Others

By integrating perception, action, and com-
munication, various dynamic information flows
are formed (Figure 2): for example,

e Perception—Action Cycle: World — Per-
ception — Self — Action — World

e Communication Cycle: Self — Communi-
cation — Other Agents — Communica-
tion — Self.

In our model, reasoning implies the function
which dynamically controls such flows of infor-
mation.
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Figure 3: Primitive model of interaction be-
tween perception and action.

We believe that intelligence does not dwell
solely in brain but emerges from active inter-
actions with environments through perception,
action, and communication. In other words, we
do not regard intelligence as symbolically rep-
resentable objects but as dynamic events fab-
ricated by intermingled information flows.

2.2 Model of Active Vision Agent
2.2.1 Basic Functional Modeling

First we define Active Vision Agent (AVA, in
short) as a rational agent with visual percep-
tion, action, and communication capabilities.
Let Sate; denote the internal state of ith AVA,
AVA;, and Env the state of the world where a
group of AVAs are embedded.

Intuitively, perception? and action by AVA;
can be modeled by the following mapping func-
tions (Figure 3):

Perception; Env x Sate; — Percept(l)

Action; Sate; — Sate; x Env, (2)

where Percept; stands for entities perceived
by AVA,;. We introduce Reasoning; to link
Perception; and Action;. It means the
perception-driven and/or autonomous internal
state transition by AVA;:

Reasoning; : Percept,; x Sate; — Sate;. (3)

Since Sate; includes camera parameters such
as camera position, viewing angle, zooming
factor, focus, and so on, Perception; depends
on Sate;; Percept, changes depending on

2 Here by ’perception’ we mean visual perception.
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Figure 4: Model of a vacuous AVA.

vacuous body

State;. Action;, on the other hand, can mod-
ify its own internal state Sate; as well as the
state of the world Env:

e AVA with a physically actionable body
(e.g. a mobile robot with manipulators)
can change both Sate; and Env. We call
such AVA embodied AVA. Equation (2)

models such physical actions.

e When AVA is equipped only with ac-
tive camera(s), on the other hand, its
action implies the change of its internal
state without any side effects on the world
state® . We call such AVA wvacuous AVA
and model its action by

Action] : Sate; — Sate;. (4)

We call the implementation of a vacuous
AVA an observation station: real time im-
age processor with active camera(s).

The discrimination between embodied and vac-
uous AVAs plays a crucial role in defining the
meaning of communication.

2.2.2 Communication between Vacuous
AVAs

The communication between vacuous AVAs
can be defined by the following pair of message
exchange functions:

Send;

Receive;

Sate; — Message,; (5)
Message; x Sate; — Sate;(6)

3 Strictly speaking, since active cameras in the real
world have physical bodies, their actions can change the
world state. But we neglect such exceptional cases.

where Message; and Message; denote mes-
sages sent out to AVA; and AVA; via the com-
munication network, respectively. This model
has the following characteristics:

e Send; does not depend on the receiver’s
state State;. That is, it represents an
asynchronous message transfer and can
support broadcast.

e Receive;, on the other hand, depends on
the receiver’s state State;. That is, while
a sender submits a message at its conve-
nience, a receiver can accept and/or reject
the message depending on it own state. To
implement such deliberate message pro-
cessing, a message buffer should be intro-
duced (Figure 4).

We believe these asynchronous message pro-
cessing functions should be supported in the
communication between AVAs since they are
autonomous agents with self-determination.

Based on the functional definitions given
above, we can derive the following observations
about interactions among perception, action,
and communication of vacuous AVAs.

1. Comparing equations (3) and (4), the action
by a vacuous AVA is nothing but a special case
of the reasoning. This view leads us to a new
model of action. As shown in equation (4), the
essence of action is the state transition. This
holds also in the case of embodied AVAs, be-
cause physical body actions can be modeled by
state changes of mechanical parts. The world
state transition caused by the action should be
modeled by the side-effect of the action. Con-
sequently, equation (2) is refined to

Action; Sate; — Sate;, (7)

ActionT oW orld;
(Sate; — Sate;) — Env. (8)

The essential difference between embodied and
vacuous AVAs rests in whether or not function
ActionToW orld; is supported. Further impli-
cations of carrying a physical body will be dis-
cussed in the next section.
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Figure 6: Multi-channel communication be-
tween embodied AVAs.

2. The state transition is caused by the ac-
tion, the perception followed by the reasoning,
and/or the message acception. Thus we can
summarize these processes into

StateTransition;:

Percept,; x Message; x Sate; — Sate;. (9)

Then, the behavior of a vacuous AVA can be
modeled by equations (1), (5), and (9) (Figure
4).

2.2.3 Communication between Embod-
ied AVAs

In the discussion so far presented, the distin-
guishing feature of embodied AVAs is charac-
terized by ActionToW orld;. Here we will show
that carrying a physical body has further im-
plications.

Let AVA; denote an embodied AVA (Figure 5).
Then, (some parts of) State; can be observed
by other AVAs;

e Direct Body State Observation: Some
parts of State; define (i.e. are reflected
on) the physical state of AVA,’s body,
which can be observed by other AVAs.

e Indirect Side-Effect Observation: Equa-
tion (8) shows that some parts of Env
may indirectly reflect State;, which can
be observed by other AVAs. For exam-
ple, AVA; writes down its internal state
on a blackboard, which then is observed

by other AVAs.

Thus, Percept; in equation (1) may include
State;. To estimate State; from Percept;,
we define the following new function:
StateEstimation] : Percept; — State;.

(10)
Note that in order for StateEstimation! to
function meaningfully, AVA; must first iden-
tify AVA; and then should have the knowledge
about how State; is reflected onto its physical
body and/or the world.

The above discussion implies that in the com-
munication between embodied AVAs, their
bodies and surrounding environments can
be used as communication channels through
which the information about AVAs’ internal
states is exchanged. That is, the communi-
cation without message exchange can be real-
ized between embodied AVAs; Send; is sim-
ulated by Action; and ActionToW orld;, and
Receive; by Perception,;.

In summary, in the case of embodied AVAs,
multi-channel communication links are formed
by versatile combinations of perception, ac-
tion and message exchange processes (Figure
6). The scientific goal of our project is to in-
vestigate how we can make a multi-AVA sys-
tem intelligent by dynamically coordinating the
information flow through such communication
links. The three technical results described in
this paper are a step toward this goal:

1. We first introduce Fized-Viewpoint Pan-
Tilt-Zoom (FV-PTZ) Camera to realize wide-
area active imaging (Section 3).

2. Then, a real time object detection and



tracking system with an FV-PTZ camera is
presented, where a dynamic interaction mech-
anism between perception and action is pro-
posed (Section 4).

3. Finally, we present a cooperative object
tracking system, where a group of communicat-
ing vacuous AVAs (i.e. observation stations)
cooperatively track a focused target object.
The system employs a state transition network
to integrate perception, action, and communi-
cation (Section 5).

The key issue studied in these works is how we
can introduce dynamics into the functional de-
pendency model described in this section. A
straightforward way to define dynamics would
be to incorporate time variable ¢ into the
model. For example, equation (3) is aug-
mented to

Reasoning;(Percept;(t), Sate;(t)) = Sate;(t+At).

(11)
This type of formulation is widely used in con-
trol systems. In fact, Asada[26], a core member
of the project, used linearized state equations
to model mobile robot behaviors. We believe,
however, that more flexible models are required
to implement the dynamics of a multi-AVA sys-
tem and event driven asynchronous interaction
architectures are a promising method. Detailed
discussions on this topic will be given in Sec-
tion 4.1.

3 Fixed-Viewpoint Pan-Tilt-
Zoom Camera for Wide-
Area Active Imaging

3.1 Realization of Wide View Cam-
eras

To develop wide-area video surveillance sys-
tems, we first of all should study methods of
expanding the visual field of a video camera:

1) Omnidirectional cameras using fish-eye
lenses and curved mirrors|2], [3], [4], or

2) Active cameras mounted on computer con-
trolled camera heads[5].

In the former optical methods, while omnidi-
rectional images can be acquired at video rate,
their resolution is limited. In the latter me-
chanical methods, on the other hand, high res-
olution image acquisition is attained at the cost
of limited instantaneous visual field.

In the CDV project, we took the active camera
method;

e High resolution images are of the first
importance for object identification and
scene visualization.

e Dynamic resolution control can be realized
by active zooming, which increases adapt-
ability and flexibility of the camera sys-
tem.

e The limited instantaneous visual field
problem can be solved by incorporating a
group of distributed cameras.

Then, the next issue to be studied is how to de-
sign an active camera system. In this section,
we first present an idea of a fixed viewpoint
pan-tilt camera[7] and show the active camera
head designed based on this idea. In the latter
half of the section, we describe a sophisticated
camera, calibration method to make a commer-
cial active video camera work as a fixed view-
point pan-tilt-zoom camera. Experimental re-
sults demonstrate its practical utilities.

3.2 Fixed Viewpoint Pan-Tilt-Zoom
Camera

Suppose we design a pan-tilt camera, where its
optical axis is rotated around pan and tilt axes.
This active camera system includes a pair of ge-
ometric singularities: 1) the projection center
of the imaging system* and 2) the rotation
axes. In ordinary active camera systems, no
deliberate design about these singularities is in-
corporated, which introduces difficult problems
in image analysis. That is, the discordance of
the singularities causes photometric and geo-
metric appearance variations during the cam-
era rotation: varying highlights and motion

4 We model the optical process of a camera by the
perspective projection.



parallax. In other words, 2D appearances of a
scene change dynamically depending on the 3D
scene geometry. To cope with such appearance
variations, consequently, sophisticated image
processing should be employed[5].

The following active camera design eliminates
the appearance variations and hence greatly fa-
cilitates the image processing.

1. Make pan and tilt axes intersect with each
other. The intersection should be at right
to facilitate later geometric computations.

2. Place the projection center at the inter-
secting point. The optical axis of a cam-
era should be perpendicular to the plane
defined by the pan and tilt axes.

We call the above designed active camera the
Fized Viewpoint Pan-Tilt Camera (in short,
FV-PT camera)

Usually, zooming can be modeled by the
shift of the projection center along the opti-
cal axis[6]. Thus to realize the Fized View-
point Pan-Tilt-Zoom Camera (in short, FV-
PTZ camera), either of the following additional
mechanisms should be employed:

e Design such a zoom lens system whose
projection center is fixed irrespectively of
zooming.

e Introduce a slide stage which adjusts
the projection center fixed depending on
zooming.

3.3 Image Representation for FV-
PTZ Camera

While images observed by an FV-PTZ camera
do not include any geometric and photomet-
ric variations depending on the 3D scene ge-
ometry, object shapes in the images vary with
the camera motion (Figure 7). These varia-
tions are caused by the movement of the image
plane, which can be rectified by projecting ob-
served images onto a common virtual screen.
On the virtual screen, the projected images
form a seamless wide panoramic image.

Observed Image 1 Observed Image Dbserved Image 3

Figure 7: Images observed by an FV-PTZ cam-
era.
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For the rectification, we can use arbitrarily
shaped virtual screens. The following are typ-
ical examples:

APS: When we can ob-
serve the 360° panoramic view, a spherical
screen can be used (Figure 8 (a)). We call
the omnidirectional image on the spherical
screen A Ppearance Sphere (APS in short).

APP: When the rotation angle of the camera
is limited, we can use a planar screen (Fig-
ure 8 (b)). The panoramic image on the
planar screen is called APpearance Plane

(APP in short).

As illustrated in the right side of Figure 8, once
an APS or an APP is obtained, images taken
with arbitrary combinations of pan-tilt-zoom
parameters can be generated by re-projecting
the APS or APP onto the corresponding image
planes. This enables the virtual look around of
the scene.

The above mentioned omnidirectional image
representation is equivalent to those proposed
in [8] ~ [10] in Computer Graphics and Vir-
tual Reality. Our objective, however, is not to
synthesize panoramic images natural to human
viewers but to develop an active camera sys-
tem that facilitates the image analysis for wide
area surveillance. That is, in our case both the
image acquisition and the projections on/from
virtual screens should be enough accurate to
match well with physical camera motions. To
attain such accuracy, we have to develop so-
phisticated camera calibration methods.

3.4 Camera Calibration

Figure 9 shows the FV-PT camera head we de-
veloped, where the pan and tilt axes intersect
at right and a video camera is mounted on a
group of adjustable slide and slant stages. We
developed a high-precision camera calibration
method using a laser beam to make the pro-
jection center coincide with the rotation center
[7]. The wide rotation angles (i.e. -180° < pan
< 180° and 0 < tilt < 45°) enables the APS
representation of a scene (Figure 10). Note
that using this camera head, any (compact)

Figure 10: High resolution APS representation
of Kyoto University Clock Tower scene.

video camera with any lens system can be cal-
ibrated to realize an APS camera.

Figure 11, on the other hand, illustrates an off-
the-shelf active video camera, SONY EVI G20,
which we found is a good approximation of an
FV-PTZ camera ( —30° < pan < 30°, —15° <
tilt < 15°, and zoom: 15° < horizontal view
angle < 44°) . We developed the following
internal-camera-parameter calibration method
for this camera, with which we can use the
camera as an FV-PTZ camera.

1. Capture a set of partially overlapping im-
ages of a stationary scene by changing
(pan, tilt) angles with a fixed zoom pa-
rameter (Figure 13).

2. Estimate such internal camera parameters
that maximize the normalized correlation
between those image areas that are mutu-



projection

FV-PTZ Figure 12: Slant an-
gles of the CCD plane.

Figure 11:
camera.

ally overlapping on APP.

The internal parameters employed include fo-
cal length (p), radial distortion parameter (x),
distortion center (zg,yo), and aspect ratio («).
To increase the calibration accuracy, we ad-
ditionally introduce slant angles of the CCD
plane (6, ¢, ) (Figure 12). Figures 14 and 15
show APP images and gray level differences in
the overlapping areas before and after the pa-
rameter optimization respectively. Note that
this calibration method does not require any
reference objects, and can be conducted auto-
matically without any human support.

Changing the zoom parameter, we applied the
above calibration to obtain

® x0,Y0,0, 0,0, are almost constant irre-
spectively of zooming.

e p and k change almost linearly propor-
tional to the zoom parameter.

These observations verify that we can model
the camera as an FV-PTZ camera® .

3.5 Applications

Besides the wide panoramic scene visualization
as illustrated in Figure 15, applications of the

® The laser-beam-based calibration[7] showed that
the projection center is about 1.lcm off the rotation
center along the optical axis when the zooming factor
is set smallest, and that as the zooming becomes large,
the former comes closer to the latter. This displace-
ment, however, does not cause any serious problems in
the later applications; image distortions introduced by
it stay less than 2 pixels when the observed scene is
farther than 2.5m.

(—30°, —10°)

(0°,—10°)  (30°,-10°)

Figure 13: Observed images.

FV-PTZ camera include 1) moving object de-
tection and tracking by background subtrac-
tion, which will be described in the next sec-
tion, and 2) ego motion estimation and moving
object detection and tracking based on optical
flow. The latter uses such property of the FV-
PTZ camera that irrespectively of the 3D scene
geometry, 'homogeneous’ optical flow fields®
are generated by camera motions. In [11], we
demonstrated practical utilities of our FV-PTZ
camera in the optical flow based image analy-
sis.

4 Dynamic Integration of Per-
ception and Action for Real-
Time Moving Object Detec-
tion and Tracking

This section proposes a real time active vision
system for object detection and tracking using
the FV-PTZ camera. The tasks of the system
are 1) detect an object which comes into the
scene, 2) track it by controlling pan-tilt pa-
rameters, and 3) capture object images in as
high resolution as possible by controlling the
zoom. The system incorporates a sophisticated
prediction-based dynamic control method 1) to
cope with delays involved in image processing
and physical camera motion and 2) to syn-
chronize image acquisition and camera motion.
The control system is designed based on what

5 Note that since our FV-PTZ camera employs a gim-
bal mechanism, flow patterns vary depending on tilt
angles.



b)Gray level difference

a)APP image in overlapping areas

Figure 14: APP image generated with the ini-
tial parameters.

a)APP image

b)Gray level difference
in overlapping areas

Figure 15: APP image generated with the op-
timized parameters.

we call the event driven asynchronous interac-
tion architecture, which we believe is more flex-
ible than ordinary control theory based meth-
ods; it can realize flexible temporal coordina-
tions between visual perception and camera
control modules. Note that in a CDV sys-
tem, event driven asynchronous interactions
play a crucial role to realize the dynamic in-
tegration of perception, action, and communi-
cation, since message exchanges among AVAs
are asynchronous in its nature. A prototype
system for object detection and tracking using
the FV-PTZ camera was developed to test our
idea. Experimental results demonstrated that
the proposed dynamic control method greatly
improves the performance of the object track-
ing.

4.1 Dynamic Vision

The integration of visual perception and
camera action has been studied in Active
Vision[12][13] and Visual Servo[14][15]. In the
former, while many studies have been done on
Where to Look problem, i.e. geometric cam-
era, motion planning based on image analysis,
a little analysis has been done on system dy-
namics. Figure 16 illustrates the information
flow between perception and action modules

10
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Figure 16: Information flow and dynamics in
active vision.
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Figure 17: Position-based visual feedback sys-
tem with delays.

and their dynamics. [14] called this dynam-
ics the ’static look and move structure,” where
visual perception and camera control modules
are activated sequentially.

In Visual Servo, on the other hand, various
dynamic control methods have been studied
based on the control theory [14][15]. For ex-
ample, Figure 17 illustrates a position-based
visual feedback system, where both control
and perception delays (i.e. ¢4 and ng) are
taken into account. Brown[15] showed that
the prediction-based control is effective to cope
with delays.

In visual servo systems such as shown in Figure
17, visual perception and camera control mod-
ules work in parallel and the information flows
continuously through the signal lines connect-
ing the modules. Inter-module interactions,
however, are rather simple and fixed. Firstly,
the types of information exchanged between
the modules is just the same as illustrated in
the upper diagram in Figure 16. Secondly, the
interactions are continuously synchronized by
the analog and discrete time parameters (i.e. ¢
and k in Figure 17) and no asynchronous in-
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teraction mechanisms are incorporated, while
asynchronous events usually happen in the real
world. That is, the world itself has its own dy-
namics, which exhibits asynchronous features
as its complexity increases; the world may in-
clude autonomous AVAs as illustrated in Fig-
ure 3. To make a system work adaptively in
such complex scenes, we should develop more
flexible dynamic interaction mechanisms be-
tween visual perception and camera control
modules.

Based on the above discussions, we are propos-
ing a novel scheme named Dynamic Vision,
where the event driven asynchronous interac-
tion between perception and action modules is
realized. Distinguishing characteristics of dy-
namic vision are as follows.

e In a dynamic vision system, complicated
information flows are formed between per-
ception and action modules to solve When
to Look and How to Look problems as well
as ordinary Where to Look problem (Fig-
ure 18). For example, When to Look:
Image acquisition timing should be de-
termined depending on the camera mo-
tion, because quick motion can degrade

11
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Figure 20: Dynamic memory architecture.

observed images. How to Look: Cam-
era parameters (focus, iris, zoom as well
as motion parameters) can facilitate im-
age analysis.

e The system dynamics is represented by a
pair of parallel time axes, on which the dy-
namics of perception and action modules
are represented respectively. Dynamic in-
teractions between the modules are rep-
resented by inter-time-axes coordinations
such as event-driven synchronizations and
interruptions (Figure 19).

To implement a dynamic vision system, the dy-
namic memory architecture illustrated in Fig-
ure 20 can be used, where perception and
action modules share what we call the dy-
namic memory. It records histories of con-
trol signals as well as state variables such as
pan, tilt, and zoom. In addition, it stores
their predicted values in the future (dotted
lines in the figure). Perception and action
modules read from and write into the mem-
ory depending their objectives and dynam-
ics. Event driven asynchronous interactions
between the modules can be realized by incor-
porating various temporal coordination mech-
anisms in concurrent/parallel processing: bar-
rier synchronization, producer-consumer syn-
chronization, semaphore, monitor and so on
[16]. The dynamic memory architecture en-
ables not only sophisticated prediction-based
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controls but also flexible dynamic interactions
between perception and action modules.

4.2 Prototype System Development

4.2.1 Basic Scheme of Object Detection
and Tracking

To embody the idea of Dynamic Vision, we de-
veloped a prototype system for real-time mov-
ing object detection and tracking by the FV-
PTZ camera. Figure 21 illustrates its basic
scheme:

1. Generate the APP image of the scene.

2. Extract a window image from the APP ac-
cording to the current pan-tilt-zoom pa-
rameters and regard it as the background
image.

3. Compute difference between the back-
ground image and an observed image.

4. If anomalous regions are detected in the
difference image, select one and control
the camera parameters to track the se-
lected target.

5. Otherwise, move the camera along the
predefined trajectory to search for an ob-
ject.

This scheme is too naive and should be aug-
mented in the following points:

Robust background subtraction :
Although the background subtraction is a
useful method to detect and track moving
objects in video images, its effectiveness is
limited; the stationary background scene
assumption does not hold always in the
real world.

System dynamics : The system dynamics
realized by repeating the above steps se-
quentially is too simple to make the sys-
tem adaptable to dynamically varying tar-
get object behaviors.

To augment the background subtraction for
non-stationary scenes, [17], [18], and [19] em-
ployed probability distributions to model in-
tensity variations at each pixel and used prob-
abilistic anomaly computation methods for ob-
ject detection. In [20], we proposed a novel ro-
bust background subtraction method for non-
stationary scenes, where non-stationarities are
modeled by 1) variations of overall lighting
conditions and 2) local image pattern fluc-
tuations caused by soughing leaves, flickering
CRTs and so on. Experimental results using
real world scenes demonstrated its practical
utilities. Since this method is time consum-
ing, the prototype system employs the stan-
dard background subtraction followed by sev-
eral auxiliary image processing operators.

In what follows, we concentrate ourselves on
the design of the system dynamics.

4.2.2 When to Look Problem

The basic scheme requires that the image ac-
quisition should be done taking the following
points into account:

e State of Action: To prevent motion
blurs from being included in an observed
image’ , the image acquisition should be
done when the camera stops or its speed is
very slow. This means that the image ac-
quisition cannot be done based on periodic

" Motion blurs in an observed image incurs many
false alarms in the background subtraction.
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clocks but should be triggered depending
on the state of camera motion.

State of Target: The image acquisi-
tion is to be done only when observed im-
ages are meaningful. That is, the images
should include the target object in good
appearance.

Thus, the determination of the image acquisi-
tion timing becomes a major concern in design-
ing the temporal coordination between percep-
tion and action modules.

One may claim that if the background sub-
traction were not employed, then such image
acquisition timing control would not be re-
quired. In general, however, since computa-
tional resources of an AVA system are limited,
the observation of meaningless images wastes
the resources which could be used for other
processing such as communication. Moreover,
since the scene and other AVAs are interacting
with the AVA based on their own dynamics,
the image acquisition and processing should be
done adaptively in accordance with such dy-
namics. Thus, the above mentioned When to
Look problem has the generality.

4.2.3 Temporal Coordination between
Perception and Action Modules

Figure 22 shows the time chart of the
perception-action cycle. Suppose the image
acquisition is initiated at ty. The right ver-
tical bar in Figure 22 illustrates the video cy-
cle, which is not synchronized with the system;
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our FV-PTZ camera cannot accept the exter-
nal trigger. Then, what the system has to de-
termine are

1. to + t4: the next image acquisition time
and

. such camera control command that satis-
fies 1) A good target object image is taken
at to + 14 2) The camera motion is enough
slow to apply the background subtraction
at to + 4.

To solve theses problems, the system first esti-
mates the target object motion, which then is
used to determines t; and the camera action.

4.2.3.1 Target Motion Estimation

Assuming the 2D motion vector (i.e. (Apan,
Atilt)) of the target object is constant, its dy-
namics is represented by

dP oy (t
Popj(to +1t) = Pop;(to) + % x ¢12)
dT i (
Tajlto +1) = Taylto) + 20y
where ey s
(Pob;(t0), Tonj(to)) and ( "fjt( "), D(bj]t( 0)) de-

note the 2D position and 2D velocity of the ob-
ject at to respectively. In the prototype system,
(Poyj(to), Topj(to)) is defined by the centroid of
a region detected by the background subtrac-
tion, and (dP"ZC’l]i(to), dT"(”i’i(to)) by the centroid
displacement in a pair of consecutive video
frame images.

Then, to capture the
target at tg + t4, the current camera view di-
rection (Pegm (t0), Team (to)) should be changed
by (AP.m(to + ;f\d), ATam(to + %\d))5

AP (to + ta) = Papj(to + ta) — Peam(to) (14)
ATcam(tO + td) = Tobj (tO + td) - Tcam(tO) (15)

4.2.3.2 Estimation of Camera Motion
Dynamics

Although several uncertain factors are involved
in the time spent by the image capturing and
processing, their exact timing can be mea-
sured by the system clock (i.e. t, in Figure
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22). In order to estimate t4, therefore, we
have to estimate the dynamics of the camera
action. Here we model the camera dynam-
ics by T(APeqm,AT¢am), which denotes the
time required to change pan and tilt angles by
(APeym, ATeqm) and almost stop the motion.
Using this model, t4 can be represented by

ta = T(APeum(to +ta), ATeam(to + ta)) +tp
(16)
We conducted extensive experiments to model
the dynamics of our FV-PTZ camera and ob-
tained the following linear model:

4.2.3.4 Coping with Uncertainties by
Dynamic Zoom Control

The task of the prototype system is to track the
target object keeping its silhouette captured at
the center of observed images. Many uncertain
factors are involved in this task:

e Target Object Motion: Since the target
object moves freely, its motion cannot be
estimated precisely. Moreover, the system
can measure only 2D object motion.

e Camera Motion: Whereas the camera dy-
namics is modeled a priori, its physical
motion can vary depending on its internal
mechanical and electronic states.

e Image Analysis: The computed position of
the target object can fluctuate due to noise
and varying photographing conditions.

The system controls the zoom to cope with
these uncertainties. That is, when the degree
of uncertainties is low, it zooms in to acquire
high resolution object images. On the other
hand, when some unexpected events happen
and the prediction deviates largely from ob-
served data, the system zooms out not to loose
the target. In what follows, we describe this
zoom control method.

t = T(APeam, ATeam) = 0.007745xmaz{AP.gm, Mﬂaﬁmam(jmentioned uncertainties are re-

(17)
where AP,,,, and AT, are measured in °
and ¢ in second.

4.2.3.3 Determining Next View Direc-
tion and Timing

By solving equations (12)~(16), we can esti-
mate both (AP.gm, ATem) to guide the cam-
era toward the next view direction and %y
the next image acquisition timing. Suppose
ATeom < AP.qpm. Figure 23 graphically illus-
trates the dynamics represented by equations
(12)~(16). That is, 4 is determined by the in-
tersection point between the straight line rep-
resenting the predicted target object trajectory
and the bent line representing the camera dy-
namics.
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flected into the prediction error of the target
position, i.e. the distance between the ob-
served target centroid and the image center.
The system records such prediction errors to
learn the degree of uncertainties involved in the
task. To evaluate the uncertainty degree, the
prediction errors should be normalized; they
depend on 1) observation interval: the error
becomes larger if the observation interval gets
longer, and 2) target silhouette size: since the
error is measured on the image plane, it gets
larger when the target itself is large and/or
when large zooming factor is used.

We define the instantaneous uncertainty degree
at the ith observation time ¢;, AUD(t;), as fol-
lows:

— POSerror (tz)

T(tz) X 4/ AREA(tZ) ’

AUD(t;)

(18)



where POS¢;ror(t;) denotes the positional pre-
diction error at t;, T'(t;) the time interval be-
tween t;_1 and ¢;, and AREA(t;) the area size
of the target observed at t;. Then, the system
records the maximum possible uncertainty de-
gree

AU Doz = maz{AUD(t;)}. (19)

The system determines the zooming fac-
tor «(t;+1) for the mnext observation so
that the maximum possible position error,

POSTT (tiy1), defined by the following equa-
tion becomes less than the prefixed threshold.
POSG or(tiv1) = AUDma (20)
X (tix1 — ti)\/AREA(t;11)
AREA(t;
(3

We got the following observations from the ex-
periments to model the dynamics of the zoom
control mechanism of our FV-PTZ camera:

e The zoom control can be done indepen-
dently of the pan-tilt control.

e After the latency of about 0.05 sec, the
zooming factor changes almost linearly.

Considering these observations and equation
(17), which represents the dynamics of the pan-
tilt control, the following zoom control method
is implemented. 1) The pan-tilt control should
have higher priority than the zoom control. 2)
The former requires at least 0.2986 sec. Conse-
quently, 3) the zoom can be changed in paral-
lel with the pan-tilt control if the zoom control
time is less than 0.2986 sec (see the bottom of
Figure 23). That is, after computing a(t;+1),
the system modifies the zooming factor only
by such an amount that satisfies this temporal
constraint.

4.3 Performance Evaluation

To demonstrate the effectiveness of the pro-
posed dynamic coordination method between
perception and action, we conducted experi-
ments to detect and track a radio controlled
toy car. The car is manually controlled by a
human; it moves around the 4m x 4m flat floor
avoiding several obstacles and sometimes stops
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and changes directions. The FV-PTZ camera
is placed at about 2.5m above the floor corner
looking downward obliquely. Figure 24 shows a
sequence of observed images and detected tar-
get silhouettes. Figures 25 and 26 illustrate
the histories of pan-tilt and pan-zoom controls
during the tracking, respectively. The number
1 in the figures means the ith observation. The
vertical axis of Figure 26 denotes the horizon-
tal view angle, which is inversely proportional
to the zooming factor.

The entire tracking period is 13.77 seconds (i.e.
about 2.1 image-observation/second in aver-
age). Figure 27 illustrates the dynamics of the
image acquisition timing control. The solid
line denotes the timing error, i.e. the differ-
ence between the predicted and practical im-
age acquisition times. It almost stayed less
than £0.05 sec, the inevitable temporal fluctu-
ation involved in the mechanical camera mo-
tion. The dotted line shows the time interval
between a pair of consecutive image acquisi-
tions, where O denotes the average. These re-
sults verify that the adaptive system dynamics
is realized depending on the target motion and
the camera action.

To evaluate the effectiveness of the proposed
dynamic control method, we conducted the
following comparative study. The car is con-
trolled to move continuously along almost the
same circular track. Three FV-PTZ cameras,
placed at almost the same position and with
almost the same viewing direction, simultane-
ously track the car. The following three control
methods are employed respectively.

Method 1 : Control the view direction to
(Pobj(to), Topj(to)) without taking into ac-
count the object motion and the camera
dynamics. The next image acquisition is
done when the camera almost stops.

Method 2 : Control the camera view direc-
tion by predicting the object motion while
assuming the camera dynamics is con-
stant. In the experiment, the camera mo-
tion is assumed to complete in 0.5 sec.

Method 3 : The proposed method.



g !.E

No.10

---.
--
No.15 No. No.17 No.18 No.19
.

No.26 No.27 No.28

@

No.11 No.12 No.13 No.14

|_|

No.20

»

l
g
% |

7
“\

.!
L
H'

f\ L]
\

g
oE B

No.21

No.

)
%)
Z
e

)
Y

No.24

Z,
°

o
ot

No.29 No.30

=

Figure 24: Images observed during tracking(Upper:input images, lower:detected object silhou-
ette).

15

&
°
2

) a 5

Tilt Angle(degree)

&
S

281,27

1

Hor\zogntal Vle'&\gv Angleg(degre%)
T
3

»
8

Tracking Mode “*- -

Start

Search Mode ~—

time (second)

0.08 [~

0.06 [~

0.04

0.02 [

002

0.04

0.06 [

0.08

a0 -20 -10 0
Pan Angle(degree)

10

@

-10 o bL
Pan Angle(degree)

5 10 15 20 25
frame number

Figure 26: History of pan-zoom Figure 27: Dynamics of the
control. system (see text).
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control.

Note that all these three methods share the
same zoom control method described before.

perception and action modules is effective in
moving object tracking.

5 Cooperative Object Track-
Figure 28 illustrates the histories of the tilt- . p ‘] .
zoom controls by these three methods. As mg by Communlcatlng Ac-
is obvious from the figure, the more sophis- tive Vision Agents
ticated control is employed, the larger zoom- 5.1 Introduction

ing factor is attained; the average horizontal
view angles (the vertical axis of the figure) are
35.7 °, 34.4 °, and 31.2 ° respectively. Con-
sidering the zoom control method, the larger
zooming factor implies the less estimation er-
ror. This quantitatively verifies that the pro-
posed dynamic coordination method between

This section addresses a multi-AVA system (i.e.
a group of communicating AVAs) which co-
operatively detects and tracks a focused tar-
get object. The task of the system is speci-
fied as follows: 1) Each AVA is equipped with
the FV-PTZ camera and mutually connected
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via the communication network. 2) Initially, it
searches for a moving object independently of
the others. 3) When an AVA detects an ob-
ject, it navigates the gazes of the other AVAs
toward that object (Figure 29). 4) All AVAs
keep tracking the focused target cooperatively
without being disturbed by obstacles or other
moving objects (Figure 30). 5) When the tar-
get goes out of the scene, the system returns
back to the initial search mode.

The object detection and tracking by each AVA
is realized by the same method as described
in Section 4. We assume that while all FV-
PTZ cameras are calibrated, 3D geometric con-
figurations of the scene and obstacles are not
known a priori. This is because the widely dis-
tributed camera arrangement makes it hard to
employ stereo matching.

In what follows, we design and implement a
prototype system, where a major emphasis is
put on how we can dynamically integrate visual
perception, action, and communication. In the
prototype system, the communication module
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in each AVA dynamically coordinates its per-
ception and action modules to realize coopera-
tive object tracking. Based on this scheme, co-
operation protocols named Agency Formation
and Role Assignment are proposed and realized
by a state transition network. The network
specifies event driven asynchronous interac-
tions among the three modules as well as com-
munication protocols among AVAs, through
which behaviors of an AVA emerge. In this
sense, this network representation can be con-
sidered as an augmentation of the dynamic
memory proposed in Section 4.1. Some pre-
liminary experimental results demonstrate the
robustness and flexibility of the system.

5.2 Integrating Visual Perception,
Action, and Communication for
Cooperative Object Tracking

As illustrated in Figure 2, there are two fun-
damental flows of information in a multi-AVA
system: perception-action cycle and communi-
cation cycle. Since our knowledge and expe-
rience is limited, it is difficult to discuss gen-
eral principles of integrating these information
flows. So we took a task-oriented approach.

In the cooperative object tracking, the follow-
ing interactions among perception, action, and
communication modules should be realized:

1. When no object appears in the scene,
each AVA should search for an ob-
ject autonomously by repeating its own
perception-action cycle.

. To realize the gaze navigation (Figure 29),
the camera actions of those AVAs which
have not detected the target should be



controlled by the information transmit-
ted from the AVA that detected the tar-
get. This implies that the communication
module in an AVA should be able to con-
trol its action module directly.

. To realize the cooperative gazing (Figure
30), the object identification should be es-
tablished across multiple AVAs. Since all
cameras are calibrated, if multiple AVAs
capture object images simultaneously, the
3D location of the object can be com-
puted, based on which the object can be
identified. That is, for the object iden-
tification, the perception module of each
AVA should be synchronized. Such syn-
chronization is to be realized by commu-
nication among AVAs. Thus, the commu-
nication module in an AVA should be able
to control its perception module directly.

Note that the above mentioned action and per-
ception controls by the communication mod-
ule are triggered asynchronously with the au-
tonomous perception-action cycle in an AVA.

Based on these considerations, we took the
integration scheme where the communication
module subordinates the perception and action
modules.

5.3 Cooperative
Protocol

Object Tracking

In the above mentioned scheme, the design of
the communication protocol becomes of the
first importance in the system development. In
designing the protocol, in turn, the ontology
used for describing messages should be deter-
mined. Here we first propose a novel represen-
tation of the target object in the multi-AVA
system, Agency, and then describe a cooper-
ative object tracking protocol in terms of the
agency.

5.3.1 Target Object Representation

The most important ontological issue in the co-
operative object tracking is how to represent
the target object being tracked. In our multi-
AVA system, “agent” means an AVA with vi-
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sual perception, action, and communication ca-
pabilities. The target object is tracked by a
group of such AVAs, whose perceptions and ac-
tions are tightly coupled (e.g. synchronized) by
inter-AVAs communications.

Based on this consideration, we represent the
target object by an agency, a group of those
AVAs that are observing the target at the cur-
rent moment. With this object representa-
tion, specialized communication methods can
be employed in the intra-agency communica-
tion: high-speed and low-latency communica-
tion methods to realize real-time synchronized
behaviors of the member AVAs in the agency.

The above definition of the agency implies that
the agency is not a static data structure but
a dynamic entity with its own dynamics. We
define its dynamics by the following two pro-
tocols:

Agency Formation Protocol:
when the agency is formed.

Role Assignment Protocol: what roles the
member AVAs in the agency take to cooperate.

how and

5.3.2 Agency Formation Protocol

Specifically speaking, the task of the prototype
system is to track cooperatively by all AVAs
such object that is first detected. That is,
while multiple moving objects can appear in
the scene, the system tracks just one of them
without paying any attention to the others.



This task specification greatly simplifies the
agency formation protocol.

5.3.2.1 Agency Generation

Suppose no agency is generated yet. Note that
as will be explained below, all AVAs know
whether or not an agency is formed already.
When AVA; detects an object, it broadcasts
the object detection message. If no other
AVAs detect objects, then AVA; generates an
agency consisting of itself alone (Figure 31).
When multiple object detection messages are
broadcast simultaneously, AVA; can generate
an agency only if it has the highest priority
among those AVAs that have detected objects.
That is, even if multiple AVAs detect objects
simultaneously, which may or may not be the
same, only one of them is allowed to generate
an agency.

5.3.2.2 Joining into the Agency

Once AVA; has generated an agency, the other
AVAs can know it by receiving the object de-
tection message broadcast from AVA;. Then
they stop the autonomous object search and
try to join into the agency.

Gaze Navigation :After gener-
ating an agency, AVA,; broadcasts the 3D
line, L;, defined by the projection center of
its camera and the object centroid in the
observed image. Then, the other AVAs
search for the object along this 3D line
by controlling their cameras respectively
(Figure 31).

Object Identification : Those AVAs which
can successfully detect the same object as
AVA; are allowed to join into the agency.
This object identification is done by the
following method. Suppose AVA; de-
tects an object and let L; denote the 3D
view line directed toward that object from
AVA;. AVA; reports L; to AVA;, which
then examines the nearest 3D distance be-
tween L; and L;. If the distance is less
than the threshold, a pair of detected ob-
jects by AVA; and AVA; are considered as
the same object and AVA; is allowed to
join the agency.
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Object Tracking in 3D : Once multiple
AVAs join the agency and their percep-
tion modules are synchronized, the 3D ob-
ject location can be estimated by comput-
ing the intersection point among 3D view
lines emanating from the member AVAs.
Then, the 3D object location is broadcast
to the other AVAs which have not detected
the object. The communication protocol
among the member AVAs in the agency
will be described in the next section.

5.3.2.3 Exit from the Agency

When the object goes behind an obstacle, some
AVA in the agency may fail to track it. Then,
such AVA exits from the agency and again
searches for the object guided by the infor-
mation broadcast from the agency. When all
AVAs in the agency loose the object (e.g. when
the object goes out of the scene), the agency
dies out.

5.3.3 Role Assignment Protocol

Once the agency is formed, its member AVAs
works cooperatively to track the target ob-
ject. To realize efficient cooperation among
the member AVAs, we assign them different
roles depending on situations. Here we address
the role assignment protocol by which the role
of each member AVA is specified. Note that
since situations change dynamically, the roles
of member AVAs are to be changed dynami-
cally through mutual communications.



Since the agency represents the target object
being tracked, it has to maintain the object
motion history, which is used to guide the
search of non-member AVAs. Such object his-
tory maintenance should be done exclusively
by a single AVA in the agency to guarantee the
consistency. We call the right of maintaining
the object history the master authority and the
AVA with this right the master AVA. The other
member AVAs in the agency without the mas-
ter authority are called worker AVAs and AVAs
outside the agency non-worker AVAs (Figure
32).

The transition from/to worker to/from non-
worker is defined before in the agency forma-
tion protocol. So what we have to specify here
is the protocol to transfer the master author-

ity.

When an AVA first generates the agency, it
immediately becomes the master. The mas-
ter AVA conducts the object identification de-
scribed before to allow other AVAs to join the
agency, and maintains the object history. All
these processings are done based on the ob-
ject information observed by the master AVA.
Thus, the reliability of the information ob-
served by the master AVA is crucial to real-
ize robust and stable object tracking. In the
real world, however, no single AVA can keep
tracking the object persistently due to occlud-
ing obstacles and interfering moving objects.

The above discussion leads us to introducing
the dynamic master authority transfer proto-
col. That is, the master AVA always checks the
reliability of the object information observed
by each member, and transfers the master au-
thority to such AVA that gives the most reli-
able object information (Figure 32).

The reliability can be measured depending on
observed object characteristics (size, speed),
scene situations (occluding objects, local light-
ings), AVA’s visual perception capabilities (size
of view field, view direction) and action charac-
teristics (camera head speed), and so on. The
prototype system employs a simple method:
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the master AVA transfers the authority to such
member AVA whose object observation time is
the latest in a predefined time period, since
the latest object information may be the most
reliable. Note that using this role assignment
protocol, the master authority is continuously
transfered around among member AVAs.

5.4 Implementation by a State Tran-
sition Network

Figure 33 illustrates the state transition net-
work designed to implement the above men-
tioned cooperative object tracking protocols.
The network specifies event driven asyn-
chronous interactions among perception, ac-
tion, and communication modules as well as
communication protocols with other AVAs,
through which behaviors of an AVA emerge.
In this sense, this network representation can
be considered as an augmentation of the dy-
namic memory proposed in Section 4.1. This
network, however, was designed based on the
current task specification and we have not yet
established any formal method to prove its dy-
namics. What we want to show here is the
feasibility of cooperative object tracking by a
multi-AVA system, which is an important step
toward cooperative distributed vision.

In Figure 33, state ¢ in the double circles de-
notes the initial state. Basically the states
in rectangular boxes represent the roles of an
AVA: master, worker, and non-worker. Since
the master AVA conducts several different
types of processing depending on situations, its
state is subdivided into many substates. Those
states in the shaded area show the states with
the master authority. Each arrow connecting a
pair of states is associated with the condition
under which that state transition is incurred.
€ means the unconditional state transition.

The right side of the figure shows what kind
of processing, i.e. perception, action, receive,
or send, is executed at each state. Those state
in double rectangular boxes denote the states
where perception is executed, while at those
states in triple rectangular boxes, the camera
action is executed. Thus, each state has its own
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Figure 33: State transition network for the cooperative object tracking.

dynamics and dynamic behaviors of an AVA
are fabricated by state transitions. The net-
work specifies the following behaviors.

[Becoming the master]

1. Starting at state 7, AVA; first executes
perception at Perception.

2. If an object is not detected, its state is
changed
to Nonworker(A) via NonWorker(R),
where the message buffer is checked to
see if any object information has been
broadcast. At Nonworker(A), the cam-
era action is executed according to the ob-
ject information received or the prespeci-
fied search method. Then it goes back to
Perception.

3. If an object is detected, the state is
changed to Worker(A) via Worker(SR),
where the 3D view line toward the ob-
ject is broadcast and the message buffer is
checked to see if other AVAs have detected
objects already. After executing the cam-
era action at Worker(A), the state is
changed to Worker(E), where the mes-
sage buffer is checked.
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(a) If the existing master AVA nominates
AVA; as the successor or no master
AVA exists, then AVA; takes over the
master authority or tries to gener-
ate the agency representing the de-
tected object by changing its state
to Master(Ex). Then it waits for a
prespecified period to check if other
AVAs declare 'BeingMaster.” When
time is out, it takes the master au-
thority to move to Master or goes
back to Perception via Master(Fin)
depending on its priority.

(b) Otherwise, go back to Perception.

Note that a pair of dotted loops starting
from Perception represent the perception —
communication — action cycles performed by
worker and nonworker AVAs.

[Working as the master]

At Master, AVA; first checks the message
buffer.

1.

If other AVA(s) have declared 'BeingMas-
ter’, then go back to Master(Ez) for the
conflict resolution based on the priority.

If other AVAs have detected objects and



their 3D view line data have been received,
then AVA; executes the object identifica-
tion procedure at Master(3D).

(a) If the object is identified, AVA; in-
cludes such AVAs into the agency
that detected the identified object,
and computes the 3D position of
the object, which then is broadcast
at Master(In). Then, AVA; tries
to transfer the master authority to
other member AVAs.

i. If the more reliable AVA exists,
then AVA; transfers the mas-
ter authority at Master(Nom)
and goes back to Perception via
Master(Fin).

Otherwise, AVA; returns back to
Master again.

(b) Otherwise, AVA; returns back to
Master via Master(Out).

ii.

3. Otherwise, AVA; moves to Master(P) via
Master(2D), and executes perception to
find the object by itself.

(a) If it is detected, AVA; goes back to
Master via Master(A), where the
camera, action is executed according
to the perceived object data.

(b) Otherwise,
AVA; moves to NonWorker(A) via
Master(Miss).

Note that the dotted loop starting from
Master represent the communication — per-

ception — action cycle performed by the mas-
ter AVA.

As is obvious from the above description, the
prototype system assumes that the communi-
cation network is free from failures and delays.
More robust and real time communication pro-
tocols should be developed for real world ap-
plications.

5.5 Experimental Results

While the prototype system is far from com-
plete, we conducted experiments to verify its
potential performance. Two persons walked
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around a large box located at the center of the
room (5m x 6m). Four FV-PTZ cameras are
placed at the four corners of the room respec-
tively, looking downward obliquely from about
2.5m above the floor. The person who first
entered in the scene was regarded as the tar-
get. He crawled around the box not to be
detected by the cameras. The other person
walked around the box to interfere the camera
views to the target person. Then, both went
out from the scene and after a while, a new
person came into the scene.

Figure 34 illustrates partial image sequences
observed by the four cameras, where the verti-
cal axis represents the time when each image is
captured. Each detected object is enclosed by
a rectangle. Note that while some images in-
clude two objects and others nothing, the gaze
of each camera is directed toward the crawl-
ing target person. Note also that the image
acquisition timings of the four cameras are al-
most synchronized. This is because the master
AVA broadcasts the 3D view line to or the 3D
position of the target to the other AVAs, by
which their perception processes are activated.
This synchronized image acquisition by multi-
ple cameras enables the computation of the 3D
target motion trajectory (Figure 35).

Figure 36 illustrates the dynamics of the sys-
tem, the state transition histories of the four
AVAs. We can see that the system exhibits well
coordinated behaviors as designed. That is,
the entire system works in the following three
modes:

Mode 1: All AVAs are searching for an object.
Mode 2: The master AVA itself tracks the ob-
ject since the others are still searching for the
object.

Mode 3: All AVAs form the agency to track
the object under the master’s guidance.

The zigzag shape in the figure shows the con-
tinuous master authority transfer is conducted
inside the agency.
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5.6 Discussions

In the prototype system, we introduced several
timeout facilities to avoid deadlocks and real-
ize real time object tracking. Moreover, the
priority based conflict resolution was incorpo-
rated to guarantee the uniqueness of the mas-
ter authority. The experimental results demon-
strated that these functions worked well. We
are now studying the following improvements:

e We should introduce a more systematic de-
sign method to specify the dynamics of com-
municating AVAs.

e Multiple AVAs should be ’synchronized’ at
1) the state level for mutual cooperation (i.e.
dynamic role assignment) and 2) the percep-
tion level for simultaneous object observation.
To implement these synchronizations, we need
to develop a wide spectrum of communication
methods including high speed networks, real
time communication methods, and cooperation
protocols.

e The system should be augmented to be able
to track multiple objects simultaneously. To
realize this multi-target tracking, we have to
augment the agency formation protocol and in-
troduce a negotiation protocol between multi-
ple agencies.

6 Concluding Remarks

This paper describes the idea and goal of our
five years project on cooperative distributed
vision and shows technical research results so
far obtained on moving object detection and
tracking by cooperative observation stations:
1) Fixed-Viewpoint Pan-Tilt-Zoom (FV-PTZ)
camera for wide-area active imaging, 2) Real
time object detection and tracking by an FV-
PTZ camera, and 3) Cooperative object track-



ing by communicating active vision agents.

To improve the performance of these systems,
we are now studying

1) Robust background subtraction method
which can work in non-stationary indoor and
outdoor scenes[20].

2) Implementation of the dynamic memory
proposed in Section 4.1 using a, SIMD real time
video image processor, with which flexible and
real time event driven asynchronous interac-
tions between visual perception and camera, ac-
tion can be realized.

3) Representation and analysis methods of real
time cooperation protocols among active vision
agents.

In addition to the topics addressed in this pa-

per, the project has done and is studying a

wide spectrum of researches:

e Multi-focus camera for real time 3D range
sensing[21]

e Multi-target motion analysis by cooperative
agents[22]

e Human behavior recognition by multiple
cameras|23]

e Scenario-based camera work design for intel-

ligent TV studio[24]

e Remote lecturing systems by cooperative
distributed vision[25]

e Visual behavior learning for cooperative soc-

cer robots[26]

The project holds annual international work-
shops, where research results are presented
with working demo systems. All research re-
sults and activities of the project are shown in
the homepage (URL: http://vision.kuee.kyoto-
u.ac.jp/CDVPRJ).

This work was supported by the Research
for the Future Program of the Japan So-
ciety for the Promotion of Science (JSPS-
RFTF96P00501). Research efforts by all mem-
bers of our laboratory and the assistance of Ms.
H. Taguchi in preparing figures are gratefully
acknowledged.
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