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Abstract. We believe intelligence does not dwell solely in brain but
emerges from active interactions with environments through perception,
action, and communication. This paper give an overview of our five years
project on Cooperative Distributed Vision (CDV, in short). From a prac-
tical point of view, the goal of CDV is summarized as follows: Embed in
the real world a group of network-connected Observation Stations (real-
time image processor with active camera(s)) and mobile robots with
vision. And realize 1) wide area dynamic scene understanding and 2)
versatile scene visualization. Applications of CDV include real-time wide
area surveillance, remote conference and lecturing systems, navigation
of (non-intelligent) mobile robots and disabled people. In this paper, we
first define the framework of CDV and then present technical research
results so far obtained: 1) fixed viewpoint pan-tilt-zoom camera for wide
area active imaging, 2) active vision system for real-time moving object
tracking and, 3) cooperative moving object tracking by communicating
active vision agents.

1 Introduction

This paper gives an overview of our five years project on Cooperative Distributed
Vision (CDV, in short). From a practical point of view, the goal of CDV is
summarized as follows (Fig. 1):

Embed in the real world a group of network-connected Observation Stations
(real-time image processor with active camera(s)) and mobile robots with vision,
and realize

1. Wide area dynamic scene understanding and

2. Versatile scene visualization.

Applications of CDV include real-time wide area surveillance and traffic mon-
itoring systems, remote conference and lecturing systems, interactive 3D TV and
intelligent TV studio, navigation and guidance of (non-intelligent) mobile robots
and disabled people, and cooperative mobile robots.

From a scientific point of view, we put our focus upon dynamic integration
of visual perception, action, and communication. That is, the scientific goal of
the project is to investigate how the dynamics of these three functions can be
characterized and how they should be integrated dynamically to realize intelligent
systems.



Fig. 1. Cooperative distributed vision.

In this paper, we first discuss functionalities of and mutual dependencies
among perception, action, and communication to formally clarify the meaning
of their integration. Then we present technical research results so far obtained
on moving target detection and tracking by cooperative observation stations:
Visual Perception:

Fixed Viewpoint Pan-Tilt-Zoom (FV-PTZ) camera for wide area active imaging
Visual Perception & Action' :

Real-time object detection and tracking by an FV-PTZ camera

Visual Perception @ Action & Communication:

Cooperative object tracking by communicating active vision agents.

2 Integrating Perception, Action, and Communication

2.1 Modeling Intelligence by Dynamic Interactions
To model intelligence, (classic) Artificial Intelligence employs the scheme
Intelligence = Knowledge + Reasoning

and puts its major focus upon symbolic knowledge representation and symbolic
computation. In this sense, it may be called Computational Intelligence[1].

In the CDV project, on the other hand, we propose an idea of modeling
intelligence by dynamic interactions, which can be represented by the following
scheme:

Intelligence = Perception & Action ® Communication,

where @ implies dynamic interactions among the functional modules.

! The meaning of © will be explained later.
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Fig. 2. Model of an Active Vision Agent.

That is, we define an agent as an intelligent system with perception, action,
and communication capabilities and regard these three functions as fundamental
modules to realize dynamic interactions between the agent and its outer world
(i-e. scene and other agents):

Function From To
Perception : World — Self
Action : Self — World

Communication : Self <+ Others
By integrating perception, action, and communication, various dynamic in-
formation flows are formed. In our model, reasoning implies the function which
dynamically controls such flows of information. We believe intelligence does not
dwell solely in brain but emerges from active interactions with environments
through perception, action, and communication.

2.2 Model of Active Vision Agent

First we define Active Vision Agent (AVA, in short) as a rational agent with
visual perception, action, and communication capabilities. Let Sate; denote the
internal state of ith AVA, AVA,;, and Env the state of the world. Then, funda-
mental functions of AVA; can be defined as follows (Fig. 2):

Perception; : Env x Sate; — Percept, (1)
Action; : Sate; — Sate; x Env, (2)
Reasoning; : Percept; x Sate; — Sate;, (3)

where Percept,; stands for entities perceived by AVA;.
The communication by AVA; can be defined by the following pair of message
exchange functions:

Send; : Sate; — Message; 4)
Receive; : Message,; x Sate; — Sate;, (5)



where Message; and Message; denote messages sent out to AVA; and AVA;
via the communication network, respectively.

Based on the functional definitions given above, we can derive the following
observations:
1. Action; in (2) can be decomposed into

Internal Action; : Sate; — Sate;, (6)
ActionToW orld; : (Sate; — Sate;) — Env. (7

The former implies pure internal state changes, such as pan-tilt-zoom controls
of an active camera, while the latter means those state transitions whose side-
effects incur state changes of Env, e.g. mechanical body-arm controls of a robot.
2. The internal state transition is caused by the (internal) action, the perception
followed by the reasoning, and/or the message acception. Thus we can summarize
these processes into

StateTransition; : Percept; x Message, x Sate; — Sate;. (8)

3. The above described model merely represents static functional dependencies
and no dynamic properties are taken into account. A straightforward way to
introduce dynamics into the model would be to incorporate time variable ¢ into
the formulae. For example, equation (8) can be augmented to

StateTransition;(Percept;(t), Message;(t), Sate;(t)) = Sate;(t + At). (9)

This type of formulation is widely used in control systems. In fact, Asada[2] used
linearized state equations to model vision-based behaviors of a mobile robot. We
believe, however, that more flexible models are required to implement the dy-
namics of an AVA;
1) Asynchronous Dynamics: Communications between AVAs are asynchronous
in their nature.
2) Conditional Dynamics: Cooperations among AVAs require conditional reac-
tions.

In what follows,
1. we first introduce Fized Viewpoint Pan-Tilt-Zoom (FV-PTZ) camera, with
which camera actions can be easily correlated with perceived images. (Section
3).
2. Then, a real-time object tracking system with an FV-PTZ camera is pre-
sented, where a novel dynamic interaction mechanism between perception and
action is proposed (Section 4).
3. Finally, we present a cooperative object tracking system, where a state tran-
sition network is employed to realize asynchronous and conditional dynamics of
an AVA | i.e. dynamic interactions among perception, action, and communication
modules. (Section 5).
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3 Fixed Viewpoint Pan-Tilt-Zoom Camera for Wide
Area Active Imaging

The pan-tilt-zoom camera control can be modeled by InternalAction; in (6),
which transforms AVA;’s internal state from State;(before) to State;(after).
This state change is reflected on Percept; by Perception; in (1). As is well know
in Computer Vision, however, it is very hard to find the correlation between
State;(before) — State;(after) and Percept,(before) — Percept;(after);
complicated 3D — 2D geometric and photometric projection processes are in-
volved in Perception; even if Env is fixed.

We devised a sophisticated pan-tilt-zoom camera, with which camera actions
can be easily correlated with perceived images.

3.1 Fixed Viewpoint Pan-Tilt-Zoom Camera

In general, a pan-tilt camera includes a pair of geometric singularities: 1) the
projection center of the imaging system and 2) the rotation axes. In ordinary
active camera systems, no deliberate design about these singularities is incorpo-
rated and the discordance of the singularities causes photometric and geometric
appearance variations during the camera rotation: varying highlights and mo-
tion parallax. In other words, 2D appearances of a scene change dynamically
depending on the (unknown) 3D scene geometry.

Our idea to overcome the above problem is simple but effective:
1. Make pan and tilt axes intersect with each other.
2. Place the projection center at the intersecting point.
3. Design such a zoom lens system whose projection center is fixed irrespectively
of zooming.
We call the above designed active camera the Fized Viewpoint Pan-Tilt-Zoom
camera (in short, FV-PTZ camera)[3].

3.2 Image Representation for the FV-PTZ Camera

While images observed by an FV-PTZ camera do not include any geometric
and photometric variations depending on the 3D scene geometry, object shapes
in the images vary with the camera motion. These variations are caused by
the movement of the image plane, which can be rectified by projecting observed



(=30°,—10°) (0°,—10°)  (30°,—10°)

Fig. 4. Observed images with (pan, tilt). Fig. 5. Generated APP image.

images onto a common virtual screen. On the virtual screen, the projected images
form a seamless wide panoramic image.

For the rectification, we can use arbitrarily shaped virtual screens:

APS: When we can observe the 360° panoramic view, a spherical screen can
be used (Fig. 3 (a)). We call the omnidirectional image on the spherical screen
APpearance Sphere (APS in short).

APP: When the rotation angle of the camera is limited, we can use a planar
screen (Fig. 3 (b)). The panoramic image on the planar screen is called APpear-
ance Plane (APP in short).

As illustrated in the right sides of Figs. 3(a)(b), once an APS or an APP is
obtained, images taken with arbitrary combinations of pan-tilt-zoom parameters
can be generated by re-projecting the APS or APP onto the corresponding image
planes. This enables the virtual look around of the scene.

We developed a sophisticated camera calibration method for an off-the-shelf
active video camera, SONY EVI G20, which we found is a good approximation
of an FV-PTZ camera ( —30° < pan < 30°, —15° < tilt < 15°, and zoom: 15° <
horizontal view angle < 44°) [4]. Figs. 4 and 5 show a group of observed images
and the APP panoramic image synthesized.

4 Dynamic Integration of Visual Perception and Action
for Real-Time Moving Object Tracking

As shown in (1), (2), and (3), Perception; and Action; are mutually dependent
on each other and their integration has been studied in Active Vision and Visual
Servo[5]. To implement an AVA system, moreover, we have to integrate three
modules with different intrinsic dynamics:

Visual Perception : video rate periodic cycle

Action : mechanical motions involving variable (large) delays

Communication : asynchronous message exchanges, in which variable

delays are incurred depending on network activities.



Phisical Camera

Dynamic Memory

Video signal /\ o r, r,
t

N~}
e
zoom o0

WhentoLook —~  ~_"%_ >~ conwol 11 [T "

How to Look : :
oy T prededv
‘ ¥ [ 2 \ now

Perception Module

Image Image Action In Action
Capture Analysis Comman
\

] Wl

‘‘‘‘‘‘‘‘‘‘

Perception Where to Look Action

Fig. 6. Information flows in dy-
namic vision. Fig. 7. Dynamic memory architecture.

4.1 Dynamic Memory

We are proposing a novel scheme named Dynamic Vision, whose distinguishing
characteristics are as follows.

1. In a dynamic vision system, complicated information flows are formed between
perception and action modules to solve When to Look and How to Look problems
as well as ordinary Where to Look problem (Fig. 6):

Where to Look : Geometric camera motion planning based on image analysis

When to Look : Image acquisition timing should be determined depending on
the camera motion as well as the target object motion, because quick camera
motion can degrade observed images (i.e. motion blur).

How to Look : Depending on camera parameters (e.g. motion speed, iris, and
shutter speed), different algorithms and/or parameter values should be used
to realize robust image processing, because the quality of observed images is
heavily dependent on the camera parameters.

2. The system dynamics is represented by a pair of parallel time axes, on which
the dynamics of perception and action modules are represented respectively (See
the lower diagram in Fig. 7). That is, the modules run in parallel dynamically
exchanging data.

To implement a dynamic vision system, the dynamic memory architecture
illustrated in Fig. 7 has been proposed, where perception and action modules
share what we call the dynamic memory. It records temporal histories of state
variables such as pan-tilt angles of the camera and the target object location.
In addition, it stores their predicted values in the future (dotted lines in the
figure). Perception and action modules are implemented as parallel processes
which dynamically read from and write into the memory according to their own
intrinsic dynamics.

While the above architecture looks similar to the ”whiteboard architecture”
proposed in [6], the critical difference rests in that the dynamic memory main-
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tains dynamically varying variables whose temporal periods are continuously
spanning from the past to the future. That is, each entity in the dynamic memory
is associated with the following temporal interpolation and prediction functions
(Fig. 8):

1. Temporal Interpolation: Since the perception and action modules can write
data only intermittently, the dynamic memory interpolates such discrete
data. With this function, a module can read a value at any temporal moment,
for example at T3 in Fig. 8.

2. Future Prediction: Some module runs fast and may require data which are
not written yet by another module (for example, the value at T3 in Fig. 8).
The dynamic memory generates predicted values based on those data so far
recorded. Note that multiple values may be defined by the interpolation and
prediction functions, for example, at NOW and T, in Fig. 8. We have to
define the functions to avoid such multiple value generation.

With these two functions, each module can get any data along the time axis
freely without waiting (i.e. wasting time) for synchronization with others. That
is, the dynamic memory integrates parallel processes into a unified system while
decoupling their dynamics; each module can run according to its own dynamics
without being disturbed by the others. Moreover, prediction-based processing
can be easily realized to cope with various delays involved in image processing
and physical camera motion.

4.2 Prototype System Development

To embody the idea of Dynamic Vision, we developed a prototype system for
real-time moving object detection and tracking with the FV-PTZ camera [7].
Fig. 9 illustrates its basic scheme:
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Fig. 10. Partial image sequence of tracking (Upper: captured images, Lower:
detected target regions).

1. Generate the APP image of the scene.

2. Extract a window image from the APP according to the current pan-tilt-zoom
parameters and regard it as the background image.

3. Compute difference between the background image and an observed image.
4. If anomalous regions are detected in the difference image, select one and
control the camera parameters to track the selected target.

5. Otherwise, move the camera along the predefined trajectory to search for an
object.

Fig. 10 illustrates a partial sequence of human tracking by the system. Fig.
11 illustrates object and camera motion dynamics which were written into and
read from the dynamic memory:

1. The action module reads pan-tilt angles (P’,T°) from the camera and writes
them as CAM data into the dynamic memory.

2. When necessary, the perception module reads the CAM data from the dynamic
memory: i.e. (Cp(t),Ct(t)) in the figure. Note that since the latter module runs
faster, the frequency of reading operations of (Cp(t),Ct(t)) is much higher than
that of writing operations of (P’,T’) by the former. (Compare two upper graphs.)
3. Then, the perception module conducts the object detection as illustrated in
Fig. 9, whose output, i.e. the detected object centroid (Op(t),0t(t)), is written
back to the dynamic memory as OBJ data.

4. The action module, in turn, reads the OBJ data to control the camera.

Fig. 12 shows the read/write access timing to the dynamic memory by the
perception and action modules. Note that both modules work asynchronously
keeping their own intrinsic dynamics. Note also that the perception module runs
almost twice faster than the action module (about 66msec/cycle).

These figures verify that the smooth real-time dynamic interactions between
the perception and action modules are realized without introducing any inter-
ruption or idle time for synchronization.

5 Cooperative Object Tracking by Communicating
Active Vision Agents

5.1 Task Specification

This section addresses a multi-AVA system which cooperatively detects and
tracks a focused target object. The task of the system is as follows: 1) Each AVA
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is equipped with the FV-PTZ camera and mutually connected via the communi-
cation network. 2) Initially, it searches for a moving object independently of the
others. 3) When an AVA detects an object, it navigates the gazes of the other
AVAs toward that object (Fig. 13). 4) All AVAs keep tracking the focused tar-
get cooperatively without being disturbed by obstacles or other moving objects
(Fig. 14). 5) When the target goes out of the scene, the system returns back to
the initial search mode.

All FV-PTZ cameras are calibrated and the object detection and tracking
by each AVA is realized by the same method as described in Section 4.

5.2 Cooperative Object Tracking Protocol

Target Object Representation The most important ontological issue in the
cooperative object tracking is how to represent the target object being tracked.
In our multi-AVA system, “agent” means an AVA with visual perception, action,
and communication capabilities. The target object is tracked by a group of such
AVAs. Thus, we represent the target object by an agency, a group of those AVAs
that are observing the target at the current moment.

Agency Formation Protocol When AVA; detects an object, it broadcasts the
object detection message. If no other AVAs detect objects, then AVA; generates
an agency consisting of itself alone (Fig. 13). When multiple object detection
messages are broadcast simultaneously, AVA; can generate an agency only if it
has the highest priority among those AVAs that have detected objects.
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Suppose AVA; has generated an agency.

Gaze Navigation :First, AVA; broadcasts the 3D line, L;, defined by the pro-
jection center of its camera and the object centroid in the observed image.
Then, the other AVAs search for the object along this 3D line by controlling
their cameras respectively (Fig. 13).

Object Identification : Those AVAs which can successfully detect the same
object as AVA; are allowed to join into the agency. This object identification
is done by the following method. Suppose AVA; detects an object and let
L; denote the 3D view line directed toward that object from AVA;. AVA;
reports L to AVA;, which then examines the nearest 3D distance between L;
and L;. If the distance is less than the threshold, a pair of detected objects
by AVA; and AVA; are considered as the same object and AVA; is allowed
to join the agency.

Object Tracking in 3D : Once multiple AVAs join the agency and their per-
ception modules are synchronized, the 3D object location can be estimated
by computing the intersection point among 3D view lines emanating from
the member AVAs. Then, the 3D object location is broadcast to the other
AVAs which have not detected the object.

Role Assignment Protocol Since the agency represents the target object
being tracked, it has to maintain the object motion history, which is used to
guide the search of non-member AVAs. Such object history maintenance should
be done exclusively by a single AVA in the agency to guarantee the consistency.
We call the right of maintaining the object history the master authority and the
AVA with this right the master AVA. The other member AVAs are called worker
AVAs and AVAs outside the agency non-worker AVAs (Fig. 14).

When an AVA first generates the agency, it immediately becomes the mas-
ter. The master AVA conducts the object identification described before to allow
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other AVAs to join the agency, and maintains the object history. All these pro-
cessings are done based on the object information observed by the master AVA.
Thus, the reliability of the information observed by the master AVA is crucial to
realize robust and stable object tracking. In the real world, however, no single
AVA can keep tracking the object persistently due to occluding obstacles and
interfering moving objects.

The above discussion leads us to introducing the dynamic master authority
transfer protocol. That is, the master AVA always checks the reliability of the
object information observed by each member, and transfers the master authority
to such AVA that gives the most reliable object information (Fig. 14).

The prototype system employs a simple method: the master AVA transfers
the authority to such member AVA whose object observation time is the latest,
since the latest object information may be the most reliable.

5.3 Prototype System Development

Fig. 15 illustrates the state transition network designed to implement the above
mentioned cooperative object tracking protocols. The network specifies event
driven asynchronous interactions among perception, action, and communication
modules as well as communication protocols with other AVAs, through which
behaviors of an AVA emerge.

State ¢ in the double circles denotes the initial state. Basically the states in
rectangular boxes represent the roles of an AVA: master, worker, and non-worker.
Since the master AVA conducts several different types of processing depending
on situations, its state is subdivided into many substates. Those states in the
shaded area show the states with the master authority. Each arrow connecting a
pair of states is associated with the condition under which that state transition
is incurred. € means the unconditional state transition.
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The right side of the figure shows what kind of processing, i.e. perception,
action, receive, or send, is executed at each state. Double rectangular boxes
denote states where perception is executed, while in triple rectangular boxes,
camera action is executed. Thus, each state has its own dynamics and dynamic
behaviors of an AVA are fabricated by state transitions.

We conducted experiments to verify the system performance. Two persons
walked around a large box located at the center of the room (5m x 6m). Four
FV-PTZ cameras (i.e. four AVAs) are placed at the four corners of the room
respectively, looking downward obliquely from about 2.5m above the floor. The
person who first entered in the scene was regarded as the target. He crawled
around the box not to be detected by the cameras. The other person walked
around the box to interfere the camera views to the target person. Then, both
went out from the scene and after a while, a new person came into the scene.

Fig. 16 illustrates partial image sequences observed by the cameras, where
the vertical axis represents the time when each image is captured. Each detected
object is enclosed by a rectangle. Note that while some images include two ob-



jects and others nothing, the gaze of each camera is directed toward the crawling
target person. Note also that the image acquisition timings of the cameras are
almost synchronized. This is because the master AVA broadcasts the 3D view
line or the 3D position of the target to the other AVAs, by which their percep-
tion processes are activated. This synchronized image acquisition by multiple
cameras enables the computation of the 3D target motion trajectory (Fig. 17).
Fig. 18 illustrates the state transition histories of the four AVAs. We can see
that the system exhibits well coordinated behaviors as designed:
Mode 1: All AVAs are searching for an object.

Mode 2: The master AVA itself tracks the object since the others are still
searching for the object.

Mode 3: All AVAs form the agency to track the object under the master’s
guidance.

The zigzag shape in the figure shows the continuous master authority transfer
is conducted inside the agency.

6 Concluding Remarks

This paper describes the idea and goal of our five years project on cooperative
distributed vision and shows technical research results so far obtained on moving
object detection and tracking by cooperative active vision agents. Currently, we
are studying
1. Robust object detection in complex natural scenes
2. Communication protocols for cooperative multi targets tracking
3. Application system developments such as remote lecturing and intelligent TV
studio systems.

For detailed activities of the CDV project, see our homepage at
URL: http://vision.kuee kyoto-u.ac.jp/CDVPRJ/.

This work was supported by the Research for the Future Program of the
Japan Society for the Promotion of Science (JSPS-RFTF96P00501).
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