Dynamic Memory: Architecture for Real Time Integration of Visual
Perception, Camera Action, and Network Communication

T. Matsuyama S. Hiura

T. Wada

K. Murase A. Yoshioka

Dept. of Intelligent Science and Technology
Graduate School of Informatics, Kyoto University
Sakyo, Kyoto, JAPAN 606-8501
e-mail: tm@i.kyoto-u.ac.jp

Abstract

In o Cooperative Distributed Vision system, a
group of communicating Active Vision Agents (AVA,
in short, i.e. real time image processor with an ac-
tive video camera and high speed network interface)
cooperate to fulfill a meaningful task such as moving
object tracking and dynamic scene visualization. A
key issue to design and implement an AVA rests in
the dynamic integration of Visual Perception, Cam-
era Action, and Network Communication. This paper
proposes a novel dynamic system architecture named
Dynamic Memory Architecture, where perception, ac-
tion, and communication modules share what we call
the Dynamic Memory. It maintains not only temporal
histories of state variables such as pan-tilt angles of
the camera and the target object location but also their
predicted values in the future. Perception, action,
and communication modules are implemented as par-
allel processes which dynamically read from and write
into the memory according to their own individual dy-
namics. The dynamic memory supports such asyn-
chronous dynamic interactions (i.e. data exchanges
between the modules) without wasting time for syn-
chronization. This no-wait asynchronous module in-
teraction capability greatly facilitates the implementa-
tion of real time reactive systems such as moving object
tracking. Moreover, the dynamic memory supports the
virtual synchronization between multiple AVAs, which
facilitates the cooperative object tracking by communi-
cating AVAs. A prototype system for real time moving
object tracking demonstrated the effectiveness of the
proposed idea.

1 Introduction

In our last paper[1], we proposed the concept of Co-
operative Distributed Vision (CDV, in short), where a
group of communicating Active Vision Agents (AVA,
in short, i.e. real time image processor with an active
video camera and high speed network interface) coop-

|nput |mage CameraAction
3 —
[— o — | [

@ Appearance Plane
(Background Image Database)
enerated Image -

=

Figure 1: Active background subtraction with a fixed-
viewpoint pan-tilt-zoom (FV-PTZ) camera.

erate to fulfill a meaningful task such as moving object
tracking and dynamic scene visualization. A key issue
to design and implement an AVA rests in the dynamic
integration of Visual Perception, Camera Action, and
Network Communication (Figure 3).

This paper proposes a novel dynamic system archi-
tecture named Dynamic Memory Architecture, where
multiple parallel processes share what we call the
Dynamic Memory. We design and implement an
AVA based on the dynamic memory architecture and
demonstrate its effectiveness in real time moving ob-
ject tracking.

Real time moving object tracking by an active video
camera(s) is a key technology for visual surveillance
and dynamics scene visualization. In [1], we devel-
oped a real time active object tracking system with a
fized-viewpoint pan-tilt-zoom (FV-PTZ, in short) cam-
era: its projection center stays fixed irrespectively of
any camera rotations and zoomings. The system uses
an off-the-shelf active video camera SONY EVI-G20,
which can be well modeled as an FV-PTZ camera.

T [P [... [on
Action
K B t W perception
% 5 % 5 &\ (background subtraction)
. 7 perception
% (background image generation)
I:l perception (misc)

Perception e "

Figure 2: Dynamics of the prototype system[1]

Figure 1 illustrates the basic scheme of the active
background subtraction for object tracking[1]:

1. Generate the APpearance Plane (APP) image
of the scene; with an FV-PTZ camera, a wide
panoramic image (i.e. APP image) can be easily
generated by mosaicing multiple images observed
by changing pan, tilt, and zoom parameters.

2. Extract a window image from the APP image ac-
cording to the current pan-tilt-zoom parameters
and regard it as the background image; with the
FV-PTZ camera, there exists the direct mapping
between the position in the APP image and pan-
tilt-zoom parameters of the camera.

3. Compute difference between the background im-
age and an observed image.

4. If anomalous regions are detected in the difference
image, select one and control the camera param-
eters to track the selected target.

To cope with dynamically changing situations in
the real world, we have to augment the basic scheme
in the following two points:

1. Robust background subtraction which can work
stably under varying geometric and photometric
environments.

2. Flexible system dynamics to control visual per-
ception and camera action adaptively to unpre-
dictable object behaviors.

This paper mainly addresses the latter problem, since
various robust background subtraction methods have
been developed [2].

Figure 2 shows the dynamics of the system de-
veloped in [1]. While it employs a sophisticated
prediction-based camera control, its fundamental dy-
namics is very simple; the activations of the percep-
tion and action modules are just interleaved on the
temporal axis. That is, one module stays idle while
the other is activated. To realize real time reactive
systems, we have to make the modules run in parallel
and develop a flexible dynamic interaction mechanism

,‘,-—‘NETWORK-N.\

- \
\.‘% ~
~

Cd

Communication
7 N,

Figure 3: Module organization of an AVA and infor-
mation flows among the modules.

between the modules. The dynamic memory architec-
ture proposed in this paper supports such real time
inter-module interactions.

In this paper, we first introduce the general concept
and functionalities of the dynamic memory. Then, we
describe an active vision system for real time moving
object tracking, where perception and action modules
are dynamically integrated with the dynamic mem-
ory. In the last part of the paper, we show utilities of
the dynamic memory for cooperative moving object
tracking by communicating AVAs, where perception,
action, and communication modules are integrated
with the dynamic memory and the wirtual synchro-
nization between multiple AVAs is realized. Quanti-
tative dynamic characteristics of the systems are given
to demonstrate their performance.

2 Dynamic Memory
In general, an intelligent system such as an AVA can
be modeled as consisting of multiple modules with dif-
ferent functionalities and dynamics. Thus, a key issue
to design and implement an intelligent system rests in
the functional and dynamic integrations of the mod-
ules. Here we put our focus on the dynamic integration
of the modules, since the functional decomposition of
an AVA is rather straightforward: visual perception,
camera action, and network communication modules.
To implement an AVA, we have to integrate three
modules with different intrinsic dynamics:
Visual Perception: video rate periodic cycle
Camera Action: mechanical motions involving vary-
ing rather large delays
Network Communication: asynchronous message
exchanges, where varying delays are incurred depend-
ing on communication activities over the network.
Figure 3 illustrates information flows among these
modules. The problem we study here is how we can
design and implement flexible dynamic information
flows, i.e. dynamic interactions among the modules.
In the Dynamic Memory Architecture, multiple par-
allel processes such as perception, action, and com-
munication modules, share what we call the Dynamic

Memory. The read / write operations from / to the
dynamic memory are defined as follows (Figure 4):

Write Operation:

When a process computes a value v of a vari-
able at a certain moment ¢, it writes (v,t) into
the dynamic memory. Since such computation is
done repeatedly according to the dynamics of the
process, a discrete temporal sequence of values is
recorded for each variable in the dynamic memory
(a sequence of black dots in Figure 4). Note that
since the speed of the computation varies depend-
ing on input data, the temporal interval between
a pair of consecutive values becomes irregular.

Read Operation:

Temporal Interpolation: A reader process runs in
parallel to the writer process and tries to read
from the dynamic memory the value of the vari-
able at a certain moment according to its own
dynamics: for example, the value at T; in Fig-
ure 4. When no value is recorded at the spec-
ified moment, the dynamic memory interpolates
it from its neighboring recorded discrete values.
With this function, the reader process can read a
value at any temporal moment along the contin-
uous temporal axis.

Future Prediction: A reader process may run fast
and require data which are not written yet by
the writer process (for example, the value at T3
in Figure 4). In such case, the dynamic memory
predicts an expected value in the future based on
those data so far recorded and returns it to the
reader process. Note that as illustrated in Figure
4, multiple values may be defined by the interpo-
lation and prediction functions, for example, at
NOW and 75 in Figure 4. We have to define the
functions to avoid such multiple value generation.

With the above described functions, each process
can get any data along the temporal axis freely with-
out waiting (i.e. wasting time) for synchronization
with others. That is, the dynamic memory integrates
parallel processes into a unified system while decou-
pling their dynamics; each module can run according
to its own dynamics without being disturbed by the
others. This no-wait asynchronous module interac-
tion capability greatly facilitates the implementation
of real time reactive systems. As will be shown later,
moreover, the dynamic memory supports the wvirtual
synchronization between multiple network-connected
intelligent systems (i.e. AVAs), which facilitates the
dynamic cooperation among the systems.

value
interpolated
predicted
V(Tl) /'
3 [} ,/
* .
ot G Lt tyI I I time
T, NOW T, Ts

Figure 4: Representation of a time varying variable in
the dynamic memory.

While the system architecture consisting of mul-
tiple parallel processes with a common shared mem-
ory looks similar to the ”whiteboard architecture”[3],
the critical difference rests in that the dynamic mem-
ory maintains variables whose values change dynam-
ically along the temporal axis spanning continuously
from the past to the future. Little and Kam[4] pro-
posed an idea of the smart buffer, where virtual val-
ues are synthesized to dynamically coordinate parallel
processes with different processing speeds. However,
their idea did not include variables with dynamically
changing values or their temporal interpolation and
prediction. Zhang and Mackworth[5], on the other
hand, proposed constraint nets, where variables with
dynamically changing values were introduced. Their
major interest, however, was in designing dynamic sys-
tems and did not refer to the dynamic integration of
multiple parallel modules like the whiteboard system.
Thus, the dynamic memory architecture can be re-
garded as an advanced dynamic system architecture
integrating the whiteboard, the smart buffer, and the
constraint nets.

3 Dynamic Integration of Perception
and Action Modules for Real Time
Object Tracking

To demonstrate the effectiveness of the above pro-
posed idea, we developed a real time object tracking
system using the dynamic memory. Figure 5 illus-
trates the organization of the system, where pan-tilt
angles of the camera and the target object location are
dynamically exchanged between the perception and
action modules through the dynamic memory:

Information Writer Reader
Pan-Tilt Angles Action Module — Perception Module
Object Location Perception Module — Action Module

Phisical Camera

control

Dynamic Memory

/ Vieo S | phom e

tilt e
zoom —————" N ..
conrol 111 [3

Figure 5: Real time object tracking system using the
dynamic memory.

3.1 Specifications of the System

Task: The system detects and tracks the object that
first comes into the scene. The gaze of the camera
(i-e. the center of an observed image) is controlled to
follow the centroid of the observed moving object.
Active Camera: The system employs an FV-PT
camera: i.e. SONY EVI-G20 with a fixed zooming
factor.

Processors: The system includes a pair of proces-
sors: PC (Pentium II 266MHz, FreeBSD) and RVS-
10G (SIMD parallel video image processor with 1D
array of 256 PEs). The perception and action mod-
ules are implemented by UNIX processes on PC and
the dynamic memory by a shared memory between
the processes. The perception process controls RVS-
10G for video image capturing and processing and the
action process the FV-PT camera for the gaze control.

3.2 Active Background Subtraction

Figure 6 illustrates the implementation of the real
time active background subtraction. Its scheme is ba-
sically the same as the one illustrated in Figure 1.

To make this background subtraction work well, it
is required to align the synthesized background image
exactly with the observed image. To attain the ac-
curate alignment, in turn, the perception module has
to obtain current pan-tilt angles since the camera is
moving continuously. This is exactly the place where
the dynamic memory plays a crucial role; pan-tilt an-
gles are measured by the action module and recorded
into the dynamic memory, based on which the cur-
rent pan-tilt angles are interpolated or predicted by
the dynamic memory to answer the read request from
the perception module.

Note that even with the dynamic memory, the
pixel-wise exact alignment between the background
and observed images is hard to attain. The percep-
tion module compensates for such small misalignments
(the left column in Figure 6): several shifted versions

CameraAction

RVS-10G

Input Image Generated Image}

é / J
shifted images

o

E

Appearance Plane
(Background Image Database)

Anomalous Regions l

Generated Image

Figure 6: Real time active background subtraction.

of the observed image are generated and their differ-
ences from the background image are computed. The
image with the least overall gray level difference is re-
garded as the result of the background subtraction.
3.3 Camera Control Method

The action module controls the FV-PT camera
based on the following PID method.

1. Suppose the action module reads from the camera
pan-tilt angles at t,,, (Peam (tn), Team (tn)), Wwhere
n denotes the nth control cycle.

2. Then, the module reads from the dynamic mem-
ory the location of the target object at t,,
(Pobj(tn), Tob;(tn))! In what follows, we will de-
scribe mathematical equations for the camera
control and the dynamic memory management
methods (Section 4) just about the pan angle,
since the same descriptions apply to the tilt due
to the ’symmetric’ dynamics of the FV-PT cam-
era.

3. Compute the displacement:
Pdis(tn) = Pobj(tn) - Pcam(tn) (1)

4. Determine the camera velocity control command
(Ve(n), Vr(n)) by the following equations and is-

1 With the FV-PT camera, the object location can be de-
scribed in the same coordinate system as (Pcam (tn), Team (tn))-

sue it to the camera.

Vi (n) = K{sz(f") + (age (Pais (ta) = Pais (tn-1))
+3 > Pau(t) @)

where At = t,, — t,_1 and the gains were experi-
mentally determined: K = 0.32,a = 50, 8 = 50.

Here again, the dynamic memory plays crucial roles
in realizing stable physical camera control. Firstly,
whereas the control timing ¢,, is determined accord-
ing to the autonomous dynamics of the action mod-
ule, the target object location at that specific timing
can be obtained from the dynamic memory. Secondly,
while the gains for the PID control were determined by
purely off-line stand-alone experiments without taking
into account of the dynamics of the perception module,
the same stable camera control can be realized even
after integrating the perception and action modules.
This is because the dynamic memory guarantees that
the autonomous dynamics of a module is not disturbed
even if the module is integrated with other modules.

4 TImplementation of the
Memory
4.1 Describing Time Varying Information
Based on the idea illustrated in Figure 4, the fol-
lowing descriptive method is employed in the system.
Suppose a module has observed data about informa-
tion INFO at ¢; (i = 1,---,n) and the n + 1th data is
obtained at t,,41. The module writes it into the dy-
namic memory to modify the content of the dynamic
memory as follows:

Dynamic

INFO; : [ti, tit1) INFO; : [tj, tj+1)

fi(t) 9;(t)
(i=1,--,n-1 = (j=1,---,n)
INFO,, : [ts, 00) INFOp41 : [tn+1, 00)
fa(t) gn+1(t),

where [t;,ti+1) denotes the temporal period during
which INFO; is valid, f;(t) ({ = 1,---,n — 1) and
9;(t) (j =1,---,n) interpolation functions, and f,(t)
and gn41(t) prediction functions.

4.2 Describing the Target Object Motion

The information about the target object observed
by the perception module, i.e. OBJ;, is described
in terms of its centroid position at ¢t (t € [ti,tit1):
(Pobj; (t), Topj;(t)). Since we have no knowledge
about the object motion, we model it by the con-
stant velocity motion. Suppose observations at ¢; (i =
1,---,n) have been done and a new data at t,1,

(Pobjntrs Tobjnsy) is written in the dynamic memory.

Then, the memory rewrites the data as follows (Figure
7):
OBJ,, : [tn,00) = OBJy : [tn, tnt1)

Pobjn (t) Pobjn (t) = Pobjn (tn) + (t — tn)wp
OBJp41: [tn+1, OO)
Pobjn+1(t) = 1:’\)obj»,ﬁ-l + (t - tn+1)wp
where A
Pobjnia — Pobjn (tn)
wp = + . (3)

tn+1 —1in
The same descriptions as above apply to the tilt.
4.3 Describing the Camera Motion
The updating process of the camera motion history
in the dynamic memory involves some complications,
because the action module controls the camera speed

as well as measures the pan-tilt angles of the camera.

First of all we conducted experiments to model the
dynamics of the FV-PT camera and found that it can
be well described by the following equation in both

pan and tilt controls:
(t) = 8o + tho o<t<T) (4

i . X (t—7)
9(t) = 0o + the + (Be — Bo)Te T

—(7 +T)(6e - o)

where 6 denotes pan or tilt angle positions, and 6y and
o means the angle position and the angular speed
at t = 0, respectively. 6. denotes the camera speed
control command issued at ¢ = 0, which is computed
by equation (2). The latency 7(= 70msec) and the
time constant T'(= 50msec) were determined by ex-

periments.
Suppose we have the following information about
the camera motion in the dynamic memory (Figure

8A):

(1<) (5)

CAM,, : [tn, o)
Peamn, (t)
Pcamn (t)a

where Pogm, (t) and P.upm, (t) denote the angle posi-

tion and angular speed respectively.
When the camera speed control command

(PC"+1,TCn+1) is issued at t,41, CAM is changed as
follows using the camera dynamics in equations (4)
and (5) (Figure 8B):

CAM, : [tn,tn+1)
Peaman, (t)
Peam., (1)
CAMp41 [tn+1, OO)
Peamy, (t)
Pcamn (tn+1 + 7')
t—tpiq—T
Peampi1(t) = (otng1om)

+(Pcn+1 - Pcam_n+1(tn+1 +7))Te”
+(t —tlny1 — T)PC"+1 (t)

*T(Pcn+1 — Peampyq(tnt1 + 7)) (tnt1 +7 < t)

(tn+1 -

frame:120

frame:80 frame:100 frame:140

Figure 9: Partial sequence of the human tracking

frame:0 frame:20 frame:40 frame:60
anmn (t) i
A Pe,.1 — Peamn(tn+1 +7
Peam (t) = (ot (if‘::zn 1(—7"?;’_))
n41 _ +177)
x(l—e T

+Pcamn (tn+1 + 7') (tn+1 +7< t)

After issuing the command, the action module
reads from the camera the current pan-tilt angles (P,
T') at t'(> tp41). Then, some discrepancies (Pepr,
Terr,.,) may be found between the predicted and the
observed pan-tilt angles (Figure 8B):

Pe'r'rn_H =P — Pcamn+1(t’)y Te’rrn_H =T - Tcamn_H (t;))
6
To solve this conflict and generate a smooth camera
motion trajectory in the dynamic memory, we modify
CAM,,;1 as follows (Figure 8C):

CAMp41 ¢ [tn+1, OO)
t—tn41

Poamp i1 (t) = Peamy 4y () + Pepr,yy (1 —e 2@ =int1))

Pcamn_H = Pcam"+1,
where a(= 1.25) denotes the time constant.

5 Experiments

We conducted experiments of real time human
tracking in a computer room. Figure 9 illustrates a
partial sequence of the tracking: upper: observed im-
ages and lower: detected object regions. Figure 10
shows the read/write access timing from/to the dy-
namic memory by the perception and action modules.
Each vertical line denotes the read/write timing. The
upper graph is about the object location data, which
were written by the perception module and read by
the action module. The lower one is about the pan-
tilt camera position data, written by the action mod-
ule and read by the perception module. We can get
the following observations:
(1) Both modules work asynchronously keeping their
own intrinsic dynamics.
(2) The perception module runs almost twice faster
than the action module (about 66msec/cycle).
(3) Irrespectively of these mutually independent
dynamics, the smooth dynamic information flows
through the dynamic memory are realized without in-
troducing any idle time for synchronization.

(tn+1 <t <tnt1+7) Figure 11 illustrates object and camera motion tra-

jectory data written into and read from the dynamic
memory, where graphl (upper right): pan-tilt camera

RaEjtions mpasured from the ety SLaRh2 JURRST .
memory, graph3 (lower left): object locations detected
from observed images, and graph4 (lower right): ob-
ject locations read from the dynamic memory.

Each graph includes a pair of trajectories: larger
amplitude is about pan and smaller amplitude tilt.
Note that object locations as well as camera positions
are described in terms of (pan, tilt).

We can get the following observations:
(a) Comparing graphl with graph2, the data density
of the latter is higher than that of the former. This is
because the perception module runs faster and hence
reads pan-tilt camera position data more frequently.
This holds also for graph3 and graph4.
(b) The smooth camera motion is realized irrespec-
tively of the rather noisy tilt trajectory of the observed
object.
(¢) The camera control is well synchronized with the
object motion.
(d) By overlaying graphl (camera motion) and graph3
(object motion), we can see that the former is de-
layed by about 440msec from the latter. This is due
to the PID control, which does not take into account
delays involved in image processing and physical cam-
era motion. To reduce the delay, we should introduce
a prediction-based camera control method[6].

6 Virtual Synchronization between
Multiple AVAs

In a CDV system, there exist two levels of dynamic
interactions: (1) Intra-AVA Interactions among visual
perception, camera action, and network communica-
tion modules in an AVA, (2) Inter-AVA Interactions
among multiple communicating AVAs in a CDV sys-
tem. Here we show the dynamic memory plays an
important role in the inter-AVA interaction as well as
the intra-AVA interaction.

Pan,

detected object ~ detpoted object neyvly dete_c_ted
posiion postion object position

{poig, 0

Poti, , (1) 4

toa [[t
now

OBJ2:[trz to1) OBJya:[tr1.tn) OB:[6 ,00)
Pobj,., (O Poif, (O Pobj, ()

@ renewal of object trajectory

Pan,

detected object detpcted object detected object
position position position

modi fi ed predicted
obj ect trajectory

¢ Pobi (©

N Py
| TR0
Pobi, , () | ;
toy tn ton t
OBJ2:[trz.tn1) OB 1:[tn1.t1) OB ftn tes) OBes ftaer ,00)
Pobj,, (0 Poiy (0 Pobj,(0) POl ()

Figure 7: Updating the object motion trajectory.

(Penr Tean)
camera - meswred | new camera
commend value

; | command

®

Peam, (1)
..
ta CAM,tn, 00) t
Pam, () 1}
now
g AP —
Pan

new

measured Peam.; ()

camera measured
command value

n o
UM) I CAMua: [t 00)
Peam, (1) Peam,_, (1)
¢
now
iy
Pan

Peam,.; (O Perr,., (1-e~ 210)

camera measured
command value

CAM, :[tn taes) " CAM,; [tra , 00) "
Peam, (1) Pcam,,, (t)+ Perro. (l-e’%‘—ﬁ)r)

Figure 8: Updating the camera motion history.

T T Action module

read ﬁ © Pobi(t), Tobi(t)

OBJ
Action module

\

00 02 04 06 08 10 12 14 16 1.8 2.0(sec)

write ﬁ © o8
write @ ®cam

Perception module
CAM

read @ ®Pcam(t), Tcam(t)

Perception module

Figure 10: Access timing to the dynamic memory by
the perception and action modules: Upper: object
information, Lower: camera information

6.1 Synchronized Image Acquisition for
Object Identification

In [1], we developed a cooperative object tracking
system, where a group of communicating AVAs co-
operatively track a single target object without being
interfered by occluding obstacles or other moving ob-
jects (Figure 12).

To realize such cooperative gazing, the object iden-
tification should be established across multiple AVAs.
In [1], we used the following method for the object
identification (Figure 12). Suppose AVA; is tracking
the target object and let L; denote the 3D view line
directed toward the object. Then, suppose AVA; de-
tects an object and let L; denote the 3D view line
directed toward that object from AVA;. AVA; re-
ports L; to AVA;, which then examines the nearest
3D distance between L; and L;. If the distance is
less than the threshold, a pair of detected objects by
AVA; and AVA; are considered as the same object,
and AVA; and AVA; forms what we call agency. The
agency denotes a group of AVAs which are coopera-
tively tracking the same object. The agency consists
of the master AVA and worker AVA(s): the master
AVA is tracking the target object and maintains the
object data. In the above example, AVA; is the master
and AVA; a worker.

For the above mentioned object identification
method to work properly, the following two conditions
should be satisfied:

Geometric Calibration: 3D locations of multiple
cameras should be well calibrated.

Temporal Synchronization: Image acquisitions by
multiple cameras should be well synchronized.

While the geometric calibration can be done a priori

Camera

| measured camera position |

EVI parameter \

{2 (cpw.ciy) 10000 P
EVI parameter | Camera trajectry | 5000 :WX x%
10000 %

- M x 5%
cp() o P
ﬂ P of™*%, x '3
5000 - % % A
£ g s000[% x F
o, ¥ 3 A M
A
H
3 %

X -10000 X X X
-5000 % x F x
-10000 H
% -20000,
15000 3 o 2 4 6 8 10] 12 14(sec)

15000 e
20000 N
- 0 2 4 6 8 10 12 1(seo) @ CAM,

®cpm.ci)

3. (0p'0r)
I parameter. . Detected object position!

(GeT Yol N——— A

©oe {4 0p().0t) |
EVI parameter i Object trajectry |

10000 w o)
3 75 Pp(t)*
5000 £ % £ %

o=, L

-5000(¥, . &

-10000 “ ¥

-15000 P %
< X
Op(t) ,Ot(t)) -> OBJ
[(S=0] ())‘ 20005 5 4 6 8 10 12 1a(eec)

Figure 11: Dynamic data exchanged between the per-
ception and action modules. Large amplitude: pan,
Small amplitude: tilt. (O,(t), O(t)) and (C,(t),
Ci(t)) in the figure denote object location (FPpp;(t),
Top;(t)) and camera gaze direction (Pogm(t), Team(t))
in the text, respectively.

t
t

by off-line processing, the temporal synchronization
should be attained on-line and has much to do with
dynamics of AVAs. Assuming the geometric calibra-
tion has been done, here we will discuss the temporal
synchronization among AVAs.

We could realize the synchronized image acquisi-
tion by the following methods:
Introduction of special hardware / software for
synchronization: Although the synchronized image
acquisition is guaranteed, the autonomy of each AVA
is damaged; an AVA is forced to capture and process
an image irrespectively of its own intention? .

AVA;
LJ
Another Object. \%

Target,
Object,

Ll
igure-12: Cooperative gazing
2 In [1], we used this method; the master AVA broadcasts a

O

Write /‘/

i b
Read
i o bery
tilt T | w
Object rite
pan &P(Perception Module
2&1}5:{ P S Read Video
Camera,——
pan —————————————————t Activecamaa
Camera _——— . T Control
= ——STEEE Signal
Camerar - Action Module
zoom =— || Read

Figure 13: Virtual synchronization between multiple
AVAs using the dynamic memory

Verification of the synchronization between ob-
served images: In the above mentioned object iden-
tification method, for example, we can introduce time-
stamps for L; and L; respectively. If the difference
between the time-stamps is less than a certain thresh-
old, we regard the image acquisitions as synchronized.
In this method, while the autonomy of each AVA is
preserved, the chance of the object identification de-
creases considerably; the object identification often
fails because the image acquisition timing varies de-
pending on the activity of each AVA.

What we want to realize is the synchronized obser-
vation among autonomous AVAs with asynchronous
activities. With the dynamic memory, we can easily
attain this rather conflicting goal.

Basically we employ the same object identification
method as described before. The differences are as
follows. (1) AVA; stores into its internal dynamic
memory L; associated with its observation timing. (2)
AVA; reports to AVA; L; associated with its observa-
tion timing. (3) Then, AVA; stores L; into its dynamic
memory to record the dynamics of the object tracked
by AVA; (shaded graphs in Figure 13). (4) When
AVA; wants to establish the object identification, it
reads from the dynamic memory the values of L; and
L; at the specified moment and computes the nearest
3D distance between the pair of 3D view lines based
on the read-out values.

Thus, the dynamic memory enables the virtual syn-
chronization between AVAs without disturbing their
autonomous dynamics. Note that here also no wait-
ing time is required for the synchronization and the
timing of the object identification is determined solely
by AVA,

6.2 Performance Evaluation

A computer-controlled mobile robot moves along
an L-shaped track on the floor and four FV-PT cam-
eras (i.e. AVAs) are placed 2m high above at the four
corners of the room (Figure 14(a)). To introduce par-

message for image acquisition to all worker AVAs.

Spatial Error | Temporal Error
12.9518 (cm) -
21.9445 (cm) 1.5593 (sec)

System 1
System 2

Table 1: Errors in the object identification.

tial view interferences from the cameras, a rather large
box is placed at the center of the L-shaped track. The
same communication protocol as used in [1] was em-
ployed for the cooperative tracking by communicating
AVAs.

The white and black squares in Figure 14(a) illus-
trate object locations identified by Prototype system1
(with virtual synchronization) and Prototype system2
(without virtual synchronization) respectively. In
both systems, when the nearest distance between 3D
view lines is less than v/500cm, the object is identified.
In systeml, when AVA; observes a new object loca-
tion, it tries to identify the object by reading L; and L;
from the dynamic memory. In system2, on the other
hand, when L; is reported from AVA;, AVA; conducts
the object identification using the most lately observed
L;. The spatial error in Table 1 denotes the average
value of the nearest distance between L; and L; when
the object identification is established. The temporal
error for system2 denotes the average temporal differ-
ence between observation timings of L; and Lj;.

We can get the following observations:

(a) The virtual synchronization reduces the spatial er-
ror significantly, which hence increases the accuracy of
the object localization.

(b) The above advantage is also verified in Figure
14(a): while the white squares in the figure are al-
most located on the object motion track, locations of
the black squares deviate considerably from the track.
(c) We have more white squares than black ones in
Figure 14(a), which implies the chance of the object
identification is increased by the virtual synchroniza-
tion.

(d) Figure 14(b) shows the success rate of the object
identification when the threshold for the distance be-
tween L; and L; is changed. This also proves the
effectiveness of the virtual synchronization.

7 Concluding Remarks

This paper proposes a novel dynamic system archi-
tecture named Dynamic Memory Architecture, where
parallel processes and autonomous agents can interact
asynchronously without disturbing their own intrinsic
dynamics. The practical effectiveness of our idea has
been demonstrated by the real time object tracking
system using the dynamic memory.

This work was supported by the Research for the

4 Iy 100
200 g 1 90

Ol Obstacle 80
70
60
50
40
1 30
PROTOTYPE 1-[1- 20

. | 10
/No.1, . . No2 0

- - - 0 5 10 15 20 25 30 35 40 45 50
0 50 100 150 200 250 300 350 400 threshold (cm)

(a) (b)

Figure 14: Accuracy of the object identification. (a)
Identified object locations (b) Rate of the object iden-
tification.

PROTOTYPE 2 —

success rate (%)

Future Program of the Japan Society for the Promo-
tion of Science (JSPS-RFTF96P00501).

References

[1] Matsuyama, T.: “Cooperative Distributed Vision —
Dynamic Integration of Visual Perception, Action,
and Communication —” Proc. of Image Understand-
ing Workshop, pp. 365-384, 1998

[2] Toyama, K. et al: “Wallflower: Principles and Practice
of Background Maintenance,” Proc. of ICCV, pp. 255-
261, 1999

[3] Shafer, S.A., Stentz, A., and Thorpe, C.E.: “An Ar-
chitecture for Sensor Fusion in a Mobile Robot,” Proc.
of IEEE Conf. on Robotics and Automation, pp.2002-

2011, 1986
[4] Little, J.J. and Kam, J.: “A Smart Buffer for Tracking

Using Motion Data,” Proc. of Computer Architecture

for Machine Perception, pp.257-266, 1993
[5] Zhang, Y. and Mackworth, A.: “Constraint Nets: A

Sematic Model for a Hybrid Dynamic Systems,” The-
oretical Computer Science, Vo0l.138, pp.211-239, 1995

[6] Brown, C.M.: “Gaze Control with Interactions and
Delays,” IEEE Trans., Vol.SMC-20, No.1, pp.518-527,
1990

