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Abstract Target detection and tracking is one of the most important and fundamental tech-
nologies to develop real world computer vision systems such as security and traffic monitoring
systems. This paper presents a real-time cooperative multi-target tracking system. The system
consists of a group of Active Vision Agents (AVAs), where an AVA is a logical model of a
network-connected computer with an active camera. All AVAs cooperatively track their target
objects by dynamically exchanging object information with each other. With this cooperative
tracking capability, the system as a whole can track multiple moving objects persistently even
under complicated dynamic environments in the real world.

1 Introduction
Target detection and tracking is one of the
most important and fundamental technologies
to develop real world computer vision systems:
e.g. visual surveillance systems, ITS (Intelli-
gent Transport Systems) and so on.

To realize real-time flexible tracking in
a wide-spread area, we proposed the idea
of Cooperative Distributed Vision (CDV, in
short)[1]. The goal of CDV is summarized as
follows (Fig. 1):

Embed in the real world a group of Active
Vision Agents (AVA, in short: a network-
connected computer with an active camera),
and realize
1. wide area dynamic scene understanding and
2. versatile scene visualization.

Applications of CDV include real-time wide
area surveillance and traffic monitoring, re-
mote conference and lecturing, 3D video[2]
and intelligent TV studio, and navigation of
mobile robots and disabled people.

While the idea of CDV shares much with
those of DVMT (Distributed Vehicle Monitor-
ing Testbed)[3] and the VSAM (Video Surveil-
lance And Monitoring) project by DARPA[4],
our primary interest rests in how we can real-
ize intelligent systems which work adaptively
in the real world. And we put our focus upon
dynamic interactions among perception, ac-

Figure 1: Cooperative distributed vision.

tion, and communication. That is, we believe
that intelligence does not dwell solely in brain
but emerges from active interactions with en-
vironments through perception, action, and
communication.

With this scientific motivation in mind, we
designed a real-time cooperative multi-target
tracking system, where we developed
Visual Sensor: a Fixed-Viewpoint Pan-Tilt-
Zoom Camera[5] for wide area active imaging
Visual Perception: Active Background Sub-
traction for target detection and tracking[1]
Dynamic Integration of Visual Percep-
tion and Camera Action: Dynamic Mem-
ory Architecture[6] for real-time reactive track-
ing
Network Communication for Coopera-
tion: a three-layered dynamic interaction ar-



chitecture for real-time communication among
AVAs.

In this paper1 , we address the key ideas of
the above mentioned technologies and demon-
strate their effectiveness in real-time multi-
target tracking.

2 Fixed-Viewpoint Pan-Tilt-

Zoom Camera for Wide-

Area Active Imaging
To develop wide-area video surveillance sys-
tems, we first of all should study methods of
expanding the visual field of a video camera:
1. Omnidirectional cameras using fish-eye
lenses or curved mirrors[8][9][10], or
2. Active cameras mounted on computer con-
trolled camera heads[5][7][11].

In the former optical methods, while om-
nidirectional images can be acquired at video
rate, their resolution is limited. In the latter
mechanical methods, on the other hand, high
resolution image acquisition is attained at the
cost of limited instantaneous visual field.

In our tracking system, we took the active
camera method;
(a) High resolution images are of the first im-
portance for object identification and scene vi-
sualization.
(b) Dynamic visual field and image resolution
control can be realized by active zooming.
(c) The limited instantaneous visual field
problem can be solved by incorporating a
group of distributed cameras.

The next problem is how to design an active
camera. Suppose we design a pan-tilt camera.
This active camera system includes a pair of
geometric singularities: 1) the projection cen-
ter of the imaging system and 2) the pan and
tilt rotation axes. In ordinary pan-tilt cam-
era systems, no deliberate design about these
singularities is incorporated, which introduces
difficult problems in image analysis. That is,
the discordance of the singularities causes pho-
tometric and geometric appearance variations
during the camera rotation: varying highlights
and motion parallax. To cope with these

1 The original version of this paper will appear in
IEEE Proceedings.
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Figure 2: Fixed viewpoint pan-tilt camera.
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Figure 3: Panoramic image taken by the de-
veloped FV-PTZ camera.

appearance variations, consequently, sophisti-
cated image processing should be employed[7].

Our idea to solve this appearance variation
problem is very simple but effective[5][11]:
1. Make pan and tilt axes intersect with each
other.
2. Place the projection center at the intersect-
ing point.
We call the above designed active camera the
Fixed Viewpoint Pan-Tilt Camera. With this
camera, all images taken with different pan-
tilt angles can be mapped seamlessly onto a
common virtual screen (Appearance Sphere in
Fig. 2) to generate a wide panoramic image.
Note that once the panoramic image is ob-
tained, images taken with arbitrary combina-



tions of pan-tilt parameters can be generated
by back-projecting the panoramic image onto
the corresponding image planes.

Usually, zooming can be modeled by the
shift of the projection center along the optical
axis[12]. Thus to realize the Fixed Viewpoint
Pan-Tilt-Zoom Camera (FV-PTZ camera, in
short), either of the following additional mech-
anisms should be employed:
(a) Design such a zoom lens system whose pro-
jection center is fixed irrespectively of zoom-
ing.
(b) Introduce a slide stage to align the projec-
tion center depending on zooming.

We found SONY EVI G20, an off-the-shelf
active video camera, is a good approximation
of an FV-PTZ camera ( −30◦ ≤ pan ≤ 30◦,
−15◦ ≤ tilt ≤ 15◦, and zoom: 15◦ ≤ hori-
zontal view angle ≤ 44◦); its projection center
stays almost fixed irrespectively of zooming.
Then, we developed a sophisticated internal-
camera-parameter calibration method for this
camera, with which we can use the camera as
an FV-PTZ camera[1]. Fig. 3(a) illustrates
a set of observed images taken by changing
pan-tilt angles with the smallest zooming fac-
tor. Fig. 3(b) shows the panoramic image
generated from the observed images.

3 Active Background Sub-

traction for Target Detec-

tion and Tracking
With an FV-PTZ camera, we can easily re-
alize an active target tracking system. Fig. 4
illustrates the basic scheme of the active back-
ground subtraction for target detection and
tracking we developed[1]:
STEP 1 Generate the panoramic image of the
scene without any objects: Appearance Plane
in the figure.
STEP 2 Extract a window image from the ap-
pearance plane according to the current pan-
tilt-zoom parameters and regard it as the cur-
rent background image.
STEP 3 Compute difference between the gen-
erated background image and the observed im-
age.
STEP 4 If anomalous regions are detected in
the difference image, select one and control the

Anomalous Regions

Generated Image

Input Image
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Pan, Tilt, Zoom

(Background Image Database)

Camera Action

Figure 4: Active background subtraction with
an FV-PTZ camera.

camera parameters to track the selected tar-
get.
STEP 5 Go back to STEP 2.

To cope with dynamically changing situa-
tions in the real world, we have to augment the
above scheme in the following three points:
(a) Robust background subtraction which can
work stably under non-stationary environ-
ments.
(b) Flexible system dynamics to control the
camera reactively to unpredictable object be-
haviors.
(c) Multi-target tracking in cluttered environ-
ments.

We do not address the first problem here,
since various robust background subtraction
methods have been developed [13][14]. As for
the system dynamics, we will present a novel
real-time system architecture in the next sec-
tion and then, propose a cooperative multi-
target tracking system in Section 6.

4 Dynamic Integration of Vi-

sual Perception and Cam-

era Action for Real-Time

Reactive Target Tracking
The active tracking system described in Fig. 4
can be decomposed into visual perception and
camera action modules. The former includes
image capturing, background image genera-
tion, image subtraction, and object region de-
tection. The latter performs camera control
and camera state (i.e. pan-tilt angles and
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Figure 5: Dynamic interaction between visual
perception and camera action modules.

zooming factor) monitoring.

Here we discuss the dynamics of this system.
Fig. 5(a) illustrates the information flow be-
tween the perception and action modules: the
former obtains the current camera parameters
from the latter to generate the background im-
age and the latter the current target location
from the former to control the camera. Fig.
5(b) shows the dynamics of the system, where
the two modules are activated sequentially.

While this system worked stably[1], the
camera motion was not so smooth nor could
follow abrupt changes of target motion;
(a) The frequency of image observations is lim-
ited due to the sequential system dynamics.
That is, the perception module should wait for
the termination of the slow mechanical camera
motion.
(b) Due to delays involved in image process-
ing, camera state monitoring, and mechani-
cal camera motion, the perception and action
modules cannot obtain accurate current cam-
era state or target location respectively.

To solve these problems and realize real-
time reactive target tracking, we proposed a
novel dynamic system architecture named Dy-
namic Memory Architecture[6], where the vi-
sual perception and camera action modules
run in parallel and dynamically exchange in-
formation via a specialized shared memory
named the Dynamic Memory (Fig. 6).

4.1 Access Methods for the Dy-

namic Memory
While the system architecture consisting
of multiple parallel processes with a com-
mon shared memory looks similar to the
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Figure 6: Real-time reactive target tracking
system with the dynamic memory.
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variable in the dynamic memory.

”whiteboard architecture”[15] and the ”smart
buffer”[16], the critical difference rests in that
each variable in the dynamic memory stores
a discrete temporal sequence of values and is
associated with the following temporal inter-
polation and prediction functions (Fig. 7).

The write and read operations to/from the
dynamic memory are defined as follows:

(a) Write Operation

When a process computes a value val of a
variable v at a certain moment t, it writes
(val, t) into the dynamic memory. Since such
computation is done repeatedly according to
the dynamics of the process, a discrete tem-
poral sequence of values is recorded for each
variable in the dynamic memory (a sequence
of black dots in Fig. 7).

(b) Read Operation

Temporal Interpolation: A reader process
runs in parallel to the writer process and tries
to read from the dynamic memory the value
of the variable v at a certain moment: e.g.
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Figure 8: Observed image sequence taken by
the system. Upper: input images, Lower: de-
tected object regions.

the value at T1 in Fig. 7. When no value
is recorded at the specified moment, the dy-
namic memory interpolates it from recorded
data. With this function, the reader process
can read a value at any temporal moment
along the continuous temporal axis without
making any synchronization with the writer
process.

Future Prediction: A reader process may
run fast and require data which are not writ-
ten yet by the writer process (for example, the
value at T3 in Fig. 7). In such case, the dy-
namic memory predicts an expected value in
the future based on those data so far recorded
and returns it to the reader process.

With the above described functions, each
process can get any data along the tempo-
ral axis freely without waiting (i.e. wasting
time) for synchronization with others. This
no-wait asynchronous module interaction ca-
pability greatly facilitates the implementation
of real-time reactive systems. As will be shown
later in Section 5.2.3, moreover, the dynamic
memory supports the virtual synchronization
between multiple network-connected systems
(i.e. AVAs), which facilitates the real-time dy-
namic cooperation among the systems.

4.2 Effectiveness of the Dynamic

Memory
To verify the effectiveness of the dynamic
memory, we developed a real-time single-
target tracking system and conducted exper-
iments of tracking a radio-controlled car in
a computer room. The system employed
the parallel active background subtraction
method with the FV-PTZ camera, where the

rate of image deviation of target region

observations the target size

location from

the image center

System A 1.83 [ftp] 44.0 [pixel] 5083 [pixel]

System B 11.04 [ftp] 16.7 [pixel] 5825 [pixel]

Table 1: Performance evaluation

perception and action modules were imple-
mented as UNIX processes sharing the dy-
namic memory. Fig. 8 illustrates a partial se-
quence of observed images and detected object
regions. Note that the accurate calibration of
the FV-PTZ camera enabled the stable back-
ground subtraction even while changing pan,
tilt, and zooming.

Table 1 compares the performance between
System A: sequential dynamics and System B:
parallel dynamics with the dynamic memory.
Both systems tracked a computer-controlled
toy car under the same experimental settings
and performance factors were averaged over
about 30 sec. The left column of the table
shows that the dynamic memory greatly im-
proved the rate of image observations owing
to the no-wait asynchronous execution of the
perception module. The other two columns
verify the improvements in the camera control.
That is, with the dynamic memory, the cam-
era was directed toward the target more accu-
rately (the middle column) and hence could
observe the target in higher resolution (the
right column). Note that our system controls
pan-tilt angles to observe the target at the im-
age center and adjusts the zooming factor de-
pending on deviations of the former from the
latter: smaller deviations lead to zooming in to
capture higher resolution target images, while
larger deviations to zooming out not to miss
the target[1].

5 Cooperative Multi-Target

Tracking
Now we address cooperative multi-target
tracking by communicating active vision
agents (AVAs), where an AVA denotes an
augmented target tracking system described
in the previous section. The augmentation
means that an AVA consists of visual percep-
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tion, camera action, and network communica-
tion modules, which run in parallel exchanging
information via the dynamic memory.

5.1 Basic Scheme for Cooperative

Tracking
Our multi-target tracking system consists of
a group of AVAs embedded in the real world
(Fig. 1). The system assumes that the cam-
eras are calibrated and densely distributed
over the scene so that their visual fields are
well overlapping with each other.

Followings are the basic tasks of the system:
1. Initially, each AVA independently searches
for a target that comes into its observable area.
Such AVA that is searching for a target is
called a freelancer.
2. If an AVA detects a target, it navigates the
gazes of the other AVAs towards that target
(Fig.9 (a)).
3. A group of AVAs which gaze at the same
target form what we call an Agency and keep
measuring the 3D information of the target
from multi-view images (Fig.9 (b)).
4. Depending on target locations in the
scene, each AVA dynamically changes its tar-
get (Fig.9 (c)).

To realize the above cooperative tracking,
we have to solve the following problems:
Multi-target identification: To gaze at
each target, the system has to distinguish mul-
tiple targets.
Real-time and reactive processing: To
adapt itself to dynamic changes in the scene,
the system has to execute processing in real-
time and quickly react to the changes.
Adaptive resource allocation: We have to
implement two types of dynamic resource al-
location (i.e. grouping AVAs into agencies):
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Figure 10: Three layered dynamic interaction
architecture.

(1) To perform both target search and track-
ing simultaneously, the system has to preserve
AVAs that search for new targets even while
tracking targets, (2) To track each moving tar-
get persistently, the system has to adaptively
determine which AVAs should track which tar-
gets.

In what follows, we address how these prob-
lems can be solved by real-time cooperative
communications among AVAs.

5.2 Three Layered Dynamic Inter-

actions for Cooperative Track-

ing
We designed and implemented the three lay-
ered dynamic interaction architecture illus-
trated in Fig. 10 to realize real-time coop-
erative multi-target tracking.

5.2.1. Intra-AVA layer
In the lowest layer in Fig.10, perception, ac-
tion and communication modules that com-
pose an AVA interact with each other via the
dynamic memory.

An AVA is an augmented target tracking
system described in Section 5, where the aug-
mentation is threefold:

(1) Multi-target detection while single-
target tracking

When the perception module detects N ob-
jects at t + 1, it computes and records into
the dynamic memory the 3D view lines toward
the objects2 (i.e. L1(t + 1), · · · , LN (t + 1)).
Then, the module compares them with the 3D

2 The 3D line determined by the projection center
of the camera and an object region centroid.



view line toward its currently tracking target
at t + 1, L̂(t + 1). Note that L̂(t + 1) can be
read from the dynamic memory whatever tem-
poral moment t+1 specifies. Suppose Lx(t+1)
is closest to L̂(t + 1), where x ∈ {1, · · · , N}.
Then, the module regards Lx(t + 1) as denot-
ing the newest target view line and records it
into the dynamic memory.

(2) Gaze control based on the 3D target
position

When the FV-PTZ camera is ready to ac-
cept a control command, the action module
reads the 3D view line toward the target (i.e.
L̂(now)) from the dynamic memory and con-
trols the camera to gaze at the target. As will
be described later, when an agency with mul-
tiple AVAs tracks the target, it measures the
3D position of the target (denoted by P̂ (t))
and sends it to all member AVAs, which then
is written into the dynamic memory by the
communication module. If such information is
available, the action module controls the cam-
era based on P̂ (now) in stead of L̂(now).

(3) Incorporation of the communication
module

Data exchanged by the communication
module over the network can be classified into
two types: detected object data and messages
for cooperations among AVAs. The former in-
clude 3D view lines toward detected objects:
AVA → other AVAs and agencies, and 3D tar-
get position: agency → member AVAs. The
latter realize various communication proto-
cols, which will be described later.

5.2.2. Intra-Agency layer
As defined before, a group of AVAs which
track the same target form an Agency. The
agency formation means the generation of
an agency manager, which is an indepen-
dent parallel process to coordinate interac-
tions among its member AVAs. The middle
layer in Fig.10 specifies dynamic interactions
between an agency manager and its member
AVAs.

In our system, an agency should correspond
one-to-one to a target. To make this corre-
spondence dynamically established and persis-
tently maintained, the following two kinds of
object identification are required in the intra-

agency layer.

(a) Spatial object identification

The agency manager has to establish the ob-
ject identification between the groups of the
3D view lines detected and transmitted by its
member AVAs. The agency manager checks
distances between those 3D view lines detected
by different member AVAs and computes the
3D target position from a set of nearly inter-
secting 3D view lines. The manager employs
what we call the Virtual Synchronization to
virtually adjust observation timings of the 3D
view lines (see 5.2.3 for details). Note that
the manager may find none or multiple sets
of such nearly intersecting 3D view lines. To
cope with these situations, the manager con-
ducts the following temporal object identifica-
tion.

(b) Temporal object identification

The manager records the 3D trajectory of
its target, with which the 3D object posi-
tion(s) computed by the spatial object iden-
tification is compared. That is, when multiple
3D locations are obtained by the spatial ob-
ject identification, the manager selects the one
closest to the target trajectory. When the spa-
tial object identification failed and no 3D ob-
ject location was obtained, on the other hand,
the manager selects such 3D view line that is
closest to the latest recorded target 3D posi-
tion. Then the manager projects the target
3D position onto the selected view line to es-
timate the new 3D target position.

5.2.3. Virtual Synchronization
Here we discuss dynamic aspects of the above
identification processes.

(a) Spatial object identification

Since AVAs capture images autonomously,
member AVAs in an agency observe the tar-
get at different moments. Furthermore, the
message transmission over the network intro-
duces unpredictable delay between the obser-
vation timing by a member AVA and the ob-
ject identification timing by the agency man-
ager. These asynchronous activities can sig-
nificantly damage the reliability of the spatial
object identification.

To solve this problem, we introduce the
dynamic memory into an agency man-
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ager, which enables the manager to vir-
tually synchronize any asynchronously ob-
served/transmitted data. We call this func-
tion Virtual Synchronization by the dynamic
memory.

Fig.11 shows the mechanism of the virtual
synchronization. All 3D view lines computed
by each member AVA are transmitted to the
agency manager, which then records them into
its internal dynamic memory. Fig.11, for ex-
ample, shows a pair of temporal sequences of
3D view line data transmitted from member
AVA1 and member AVA2, respectively. When
the manager wants to establish the spatial ob-
ject identification at T , it can read the pair
of the synchronized 3D view line data at T

from the dynamic memory (i.e. L̄1(T ) and
L̄2(T ) in Fig.11). That is, the values of the 3D
view lines used for the identification are com-
pletely synchronized with that identification
timing even if their measurements are con-
ducted asynchronously.

(b) Temporal object identification

The virtual synchronization is also effec-
tive in the temporal object identification. Let
P̂ (t) denote the 3D target trajectory recorded
in the dynamic memory and {Pi(T )|i =
1, · · · ,M} the 3D positions of the objects iden-
tified at T . Then the manager 1) reads P̂ (T )
(i.e. the estimated target position at T ) from
the dynamic memory, 2) selects the one among
{Pi(T )|i = 1, · · · ,M} closest to P̂ (T ), and 3)
records it into the dynamic memory as the new
target position.
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5.2.4. Communications at Intra-Agency
Layer

The above mentioned temporal object identifi-
cation fails if the closest distance between the
estimated and observed 3D target locations
exceeds a threshold. The following three com-
munication protocols are activated depending
on the success or failure of the object identifi-
cation. They materialize dynamic interactions
at the intra-agency layer.

(a) Agency formation protocol

This protocol defines (1) the new agency
generation procedure by a freelancer AVA and
(2) the participation procedure of a freelancer
AVA into an existing agency.

When a freelancer AVA detects an object, it
requests the existing agency managers to ex-
amine the identification between the detected
object and the target object of each agency
(Fig.12, (1)). Depending on the result of this
object identification, the freelancer AVA works
as follows:
No agency established the object iden-
tification: The freelancer AVA generates a
new agency manager to track the newly de-
tected object and joins into that agency as its
member AVA (Fig.12, (2-a)).
An agency established the object iden-



tification: The freelancer-AVA joins into the
agency that has made successful object iden-
tification, if requested (Fig.12, (2-b)).

(b) Agency maintenance protocol

This protocol defines procedures for the con-
tinuous maintenance of an agency and the
elimination of an agency.

After an agency is generated, the agency
manager repeats the spatial and temporal
object identifications for cooperative track-
ing (Fig.13 (1)). Following the spatial ob-
ject identification, the manager transmits the
newest 3D target location to each member
AVA (Fig.13 (2)), which then is recorded into
the dynamic memory of the member AVA.

Suppose a member AVAm cannot detect the
target object due to an obstacle or process-
ing errors (Fig.13 (3)). Even in this case,
the manager informs AVAm the 3D position
of the target observed by the other member
AVAs. This information navigates the gaze
of AVAm towards the (invisible) target. How-
ever, if such mis-detection continues for a long
time, the agency manager forces AVAm out of
the agency to be a freelancer.

If all member AVAs cannot observe the tar-
get being tracked so far, the agency manager
destroys the agency and makes all its member
AVAs become freelancers.

(c) Agency spawning protocol

This protocol defines a new agency genera-
tion procedure from an existing agency.

After the spatial and temporal object iden-
tifications, the agency manager may find such
a 3D view line(s) that does not correspond to
the target. This means the detection of a new
object by its member AVA. Let Ln denote such
3D view line detected by AVAn (Fig.14 (1)).
Then, the manager broadcasts Ln to other
agency managers to examine the identification
between Ln and their tracking targets.

If none of the identification is successful,
the agency manager makes AVAn quit from
the current agency and generate a new agency
(Fig.14 (2)). AVAn then joins into the new
agency (Fig.14 (3)).

5.2.5. Inter-Agency layer
In multi-target tracking, the system should
adaptively allocate resources: the system has
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to adaptively determine which AVAs should
track which targets. To realize this adaptive
resource allocation, the information about tar-
gets and member AVAs is exchanged between
agency managers (the top layer in Fig. 10).

The dynamic interactions between agency
managers are triggered based on the object
identification across agencies. That is, when
a new target 3D location is obtained, agency
manager AMi broadcasts it to the others.
Agency manager AMj , which receives this in-
formation, compares it with the 3D position of
its own target to check the object identifica-
tion. Note that here also the virtual synchro-
nization between a pair of 3D target locations
is employed to increase the reliability of the
object identification.

Depending on the result of this inter-agency
object identification, either of the following
two protocols are activated.

(a) Agency unification protocol

This protocol is activated when the inter-
agency object identification is successful and
defines a merging procedure of the agencies
which happen to track the same object.

In principle, the system should keep the one-
to-one correspondence between agencies and
target objects. However, this correspondence
sometimes is violated due to failures of object
identification and discrimination:
(a) asynchronous observations and/or errors
in object detection by individual AVAs or
(b) multiple targets which come too close to
separate.

Fig.15 shows an example. When agency



manager AMA of agencyA establishes the iden-
tification between its own target and the one
tracked by AMB , AMA asks AMB to be
merged into AMA (Fig.15(1)). Then, AMB

asks its member AVAs to join into agencyA

(Fig.15(2)). After copying the target informa-
tion recorded in the dynamic memory into the
object trajectory database, AMB eliminates
itself (Fig.15(3)).

As noted above, agencies corresponding to
multiple different targets may be unified if
they are very close. However, this heteroge-
neously unified agency can be separated back
by the agency spawning protocol when the dis-
tance between the targets get larger. In such
case, characteristics of the newly detected tar-
get are compared with those recorded in the
object trajectory database to check if the new
target corresponds to a target that had been
tracked before. If so, the corresponding target
trajectory data is moved from the database
into the dynamic memory of the newly gener-
ated agency.

(b) Agency restructuring protocol

When the inter-agency object identification
fails, agency manager AMj checks if it can ac-
tivate the agency restructuring protocol tak-
ing into account the numbers of member AVAs
in agencyj and agencyi and their target loca-
tions.

Fig.16 illustrates an example. agency man-
ager AMC of agencyC sends its target informa-
tion to AMD, which fails in the object identi-
fication. Then, AMD asks AMC to trade its
member AVA into AMD (Fig.16(a)). When
requested, AMC selects its member AVA and
asks it to move to agencyD (Fig.16(b) (c)).

5.2.6. Communication with Freelancer
AVAs

An agency manager communicates with free-
lancer AVAs as well as with other managers
(the top row of Fig. 10). As described in the
agency formation protocol in Section 5.2.4, a
freelancer activates the communication with
agency managers when it detects an object.
An agency manager, on the other hand, sends
to freelancers its target position when the new
data are obtained. Then, each freelancer de-
cides whether it continues to be a freelancer or

joins into the agency depending on the target
position and the current number of freelancers
in the system. Note that in our system a user
can specify the number of freelancers to be
preserved while tracking targets.

6 Experiments

To verify the effectiveness of the proposed sys-
tem, we conducted experiments of multiple hu-
man tracking in a room (about 5m×5m). The
system consists of ten AVAs. Each AVA is im-
plemented on a network-connected PC (Pen-
tiumIII 600MHz × 2) with an FV-PTZ camera
(SONY EVI-G20), where the perception, ac-
tion, and communication modules as well as
agency managers are realized as UNIX pro-
cesses. Fig.18 (a) illustrates the camera lay-
out: camera9 and camera10 are on the walls,
while the others on the ceiling. The exter-
nal camera parameters are calibrated. Note
that the internal clocks of all the PCs are syn-
chronized by the Network Time Protocol to
realize the virtual synchronization. With this
architecture, the perception module of each
AVA can capture images and detect objects
at about 10 frames per second on average.

In the experiment, the system tracked two
people. Target1 first came into the scene and
after a while, target2 came into the scene.
Both targets then moved freely. The upper
part of Fig. 17 shows the partial image se-
quences observed by AVA2, AVA5 and AVA9.
The images on the same row were taken by
the same AVA. The images on the same col-
umn were taken at almost the same time. The
regions enclosed by black and gray lines in the
images show the detected regions correspond-
ing to target1 and target2 respectively.

Each figure in the bottom of Fig.17 shows
the role of each AVA and the agency orga-
nization at such a moment when the same
column of images in the upper part were ob-
served. White circles denote freelancer AVAs,
while black and gray circles indicate member
AVAs belonging to agency1 and agency2, re-
spectively. Black and gray squares indicate
computed locations of target1 and target2 re-
spectively.

The system worked as follows.



AVA2: 2-a 2-b 2-c 2-d 2-e 2-f 2-g 2-h 2-i

AVA5: 5-a 5-b 5-c 5-d 5-e 5-f 5-g 5-h 5-i

AVA9: 9-a 9-b 9-c 9-d 9-e 9-f 9-g 9-h 9-i

AVA1

AVA2 AVA3

AVA4

(a) (b) (c) (d) (e) (f) (g) (h) (i)

time

Figure 17: Experimental results.

a: Initially, each AVA searched for an object
independently.
b: AVA5 first detected target1, and agency1

was formed.
c: All AVAs except for AVA5 were tracking
target1, while AVA5 was searching for a new
object as a freelancer.
d: Then, AVA5 detected target2 and gener-
ated agency2.
e: The agency restructuring protocol balanced
the numbers of member AVAs in agency1 and
agency2. Note that AVA9 and AVA10 were
working as freelancers.
f: Since two targets came very close to each
other and no AVA could distinguish them, the
agency unification protocol merged agency2

into agency1.
g: When the targets got apart, agency1 de-
tected a ’new’ target. Then, it activated the
agency spawning protocol to generate agency2

again for target2.
h: Target1 was going out of the scene.
i: After agency1 was eliminated, all the AVAs
except AVA4 tracked target2.

Fig.18 (a) shows the trajectories of the
targets computed by the agency managers.
Fig.18 (b) shows the dynamic population
changes of freelancer AVAs, AVAs tracking
target1 and those tracking target2.

As we can see, the dynamic cooperations
among AVAs and agency managers worked

very well and enabled the system to persis-
tently track multiple targets.
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Figure 18: Experimental results: (a) Trajec-
tories of the targets, (b) The number of AVAs
that performed each role

7 Concluding Remarks
This paper presented a real-time active multi-
target tracking system, which is the most pow-
erful and flexible but difficult to realize among



various types of target tracking systems.
To implement the system, we developed 1)

a Fixed-Viewpoint Pan-Tilt-Zoom Camera for
wide area active imaging, 2) Active Back-
ground Subtraction for target detection and
tracking, 3) Dynamic Memory Architecture
for real-time reactive tracking, and 4) a three-
layered dynamic interaction architecture for
real-time communication among AVAs.

In our system, parallel processes (i.e. AVAs
and its constituent perception, action, and
communication modules) cooperatively work
interacting with each other. As a result, the
system as a whole works as a very flexible
real-time reactive multi-target tracking sys-
tem. We believe that this cooperative dis-
tributed processing greatly increases the flex-
ibility and adaptability of the system, which
has been verified by experiments of multiple
human tracking.
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ciety for the Promotion of Science (JSPS-
RFTF96P00501). Research efforts by all for-
mer and current members of our laboratory
are gratefully acknowledged.

References

[1] T. Matsuyama: Cooperative Distributed
Vision - Dynamic Integration of Visual
Perception, Action and Communication -,
Proc. of Image Understanding Workshop,
pp.365–384, 1998.

[2] S.Moezzi, L.Tai, and P.Gerard: Virtual
View Generation for 3D Digital Video,
IEEE Multimedia, pp.18-26, 1997.

[3] V. R. Lesser and D. D. Corkill: The Dis-
tributed Vehicle Monitoring Testbed: a
Tool for Investigating Distributed Prob-
lem Solving Networks, AI Magazine, Vol.
4, No. 3, pp.15–33, 1983.

[4] Video Surveillance and Monitoring,
Proc. of Image Understanding Workshop,
Vol.1, pp.3-400, 1998

[5] T. Wada and T. Matsuyama: Appear-
ance Sphere: Background Model for Pan-
Tilt-Zoom Camera, Proc. of ICPR, Vol.
A, pp. 718-722, 1996.

[6] T. Matsuyama, et al: Dynamic Mem-
ory: Architecture for Real Time Integra-
tion of Visual Perception, Camera Ac-
tion, and Network Communication, Proc.
of CVPR, pp.728–735, 2000.

[7] D. Murray and A. Basu: Motion Tracking
with an Active Camera, IEEE Trans. of
PAMI, Vol. 16, No. 5, pp. 449-459, 1994.

[8] Y. Yagi and M. Yachida : Real-Time
Generation of Environmental Map and
Obstacle Avoidance Using Omnidirec-
tional Image Sensor with Conic Mirror,
Prof. of CVPR, pp. 160-165, 1991.

[9] K. Yamazawa, Y. Yagi, and M. Yachida:
Obstacle Detection with Omnidirectional
Image Sensor HyperOmni Vision, Proc.
of ICRA, pp.1062 - 1067, 1995.

[10] V.N. Peri and S.K. Nayar: Generation of
Perspective and Panoramic Video from
Omnidirectional Video, Proc. of IUW,
pp.243 - 245, 1997.

[11] S. Coorg and S. Teller: Spherical Mosaics
with Quaternions and Dense Correlation,
Int’l J. of Computer Vision, Vol.37, No.3,
pp.259-273, 2000.

[12] J.M. Lavest, C. Delherm, B. Peuchot,
and N. Daucher: Implicit Reconstruction
by Zooming, Computer Vision and Image
Understanding, Vol.66, No.3, pp.301-315,
1997.

[13] K. Toyama, et al: Wallflower: Princi-
ples and Practice of Background Mainte-
nance, Proc. of ICCV, pp. 255-261, 1999

[14] T. Matsuyama, T. Ohya, and H.
Habe: Background Subtraction for Non-
Stationary Scenes, Proc. of 4th Asian
Conference on Computer Vision, pp.662-
667, 2000

[15] C. Thorpe, M.H. Herbert, T. Kanade,
and S.A. Shafer: Vision and Navigation
for the Carnegie-Mellon Navlab, IEEE
Trans., Vol.PAMI-10, No.3, pp.362-373,
1988

[16] J.J. Little and J. Kam: A Smart Buffer
for Tracking Using Motion Data, Proc. of
Computer Architecture for Machine Per-
ception, pp.257-266, 1993


