
Generation, Visualization, and Editing of 3D Video

Takashi Matsuyama and Takeshi Takai
Graduate School of Informatics, Kyoto University

Yoshidahonmachi, Sakyo-ku, Kyoto, 606-8501, Japan
tm@i.kyoto-u.ac.jp, takesi-t@vision.kuee.kyoto-u.ac.jp

Abstract

3D video is the ultimate image medium recording
dynamic visual events in the real world as is. Recorded
object behaviors can be observed from any viewpoint,
because 3D video records the object’s full 3D shape,
motion, and precise surface properties (i.e. color
and texture). In our last paper[1], we presented a
method of reconstructing dynamic 3D object shape
from multi-view video images, by which a temporal se-
ries of 3D voxel representations of the object behavior
can be obtained in real-time. In this paper, follow-
ing an overview of the real-time 3D shape reconstruc-
tion method, we present 1) an algorithm of generating
texture on the 3D object surface from the multi-view
video images, and 2) an editing system for visualizing
3D video with an omnidirectional background image
using versatile 3D camera works. This paper mainly
discusses how we can generate high fidelity object im-
ages from arbitrary viewpoints based on the 3D object
shape of limited accuracy. We propose a novel texture
mapping algorithm which maps textures onto the 3D
object surface depending on a viewpoint. Experimen-
tal results demonstrate its effectiveness in generating
high fidelity object images from arbitrary viewpoints.

1. Introduction

3D video is the ultimate image medium record-
ing dynamic visual events in the real world as is:
time varying 3D object shape with high fidelity sur-
face properties (i.e. color and texture). Its applica-
tions cover wide varieties of personal and social hu-
man activities: entertainment (e.g. 3D game and 3D

TV), education (e.g. 3D animal picture books), sports
(e.g. sport performance analysis), medicine (e.g. 3D
surgery monitoring), culture (e.g. 3D archive of tradi-
tional dance) and so on.

In recent years, several research groups developed
real-time 3D shape reconstruction systems for 3D
video and have opened up the new world of image
media [1] [2] [3] [4] [5]. All these systems focus on
capturing human body actions and share a group of
distributed video cameras for real-time synchronized
multi-viewpoint action observation. While the real-
timeness of the earlier systems[4] [5] was confined to
the synchronized multi-viewpoint video observation,
parallel volume intersection on a PC cluster has en-
abled the real-time 3D shape reconstruction [1] [2] [3].
Our PC cluster system[1], for example, can reconstruct
dynamic human 3D shape at about 10 frame per sec-
ond in 2cm × 2cm × 2cm voxel resolution without
using any special hardwares or MMX instructions.

To cultivate the 3D video world and make it usable
in everyday life, we have to solve the following tech-
nical problems:

Computation Speed : We have to develop both faster
machines and algorithms, because near frame-
rate 3D shape reconstruction has been attained
only in coarse resolution and moreover texture
mapping onto the reconstructed 3D shape is still
done off-line.

High Fidelity : To obtain realistic 3D video in the
same quality as ordinary video images, we have
to develop high fidelity texture mapping methods
as well as increase the resolution.

Wide Area Observation : 3D areas observable by
the systems developed so far are confined to about

2m×2m×2m, which should be extended consid-
erably to capture human actions like sports play-
ing.

Data Compression : Since naive representation of
3D video results in huge data, effective compres-
sion methods are required to store and transmit
3D video data.

Editing and Visualization : Since editing and visu-
alization of 3D video are conducted in the 4D
space (3D geometric + 1D temporal), we have to
develop human-friendly 3D video editors and vi-
sualizers that help a user to understand dynamic
events in the 4D space.

In this paper, following an overview of the real-
time 3D shape reconstruction method proposed in our
last paper[1], we present 1) an algorithm of generating
texture on the 3D object surface from the multi-view
video images, and 2) an editing system for visualizing
3D video with an omnidirectional background image
using versatile 3D camera works. This paper mainly
discusses how we can generate high fidelity object im-
ages from arbitrary viewpoints based on the 3D object
shape of limited accuracy. We propose a novel texture
mapping algorithm which maps textures onto the 3D
object surface depending on a viewpoint. Experimen-
tal results demonstrate its effectiveness in generating
high fidelity object images from arbitrary viewpoints.

2. Real-Time 3D Object Behavior Reconstruc-
tion System

2.1. System Organization

Figure 1 illustrates the hardware organization of our
real-time active 3D object behavior reconstruction sys-
tem. It consists of

• PC cluster: 16 node PCs (dual Pentium III
600MHz) are connected through Myrinet, an ul-
tra high speed network (full duplex 1.28Gbps).
PM library for Myrinet PC clusters[6] allows very
low latency and high speed data transfer, based
on which we can implement efficient parallel pro-
cessing on the PC cluster.

Myrinet

Figure 1. PC cluster for real-time active 3D
object behavior reconstruction system.

• Distributed active video cameras: Among 16,
12 PCs have fixed-viewpoint pan-tilt-zoom (FV-
PTZ) cameras[7], respectively, for active object
tracking and image capturing. In the FV-PTZ
camera, the projection center stays fixed irre-
spectively of any camera rotations and zoomings,
which greatly facilitates real-time active object
tracking and 3D shape reconstruction.

2.2. Basic Method of 3D Video Generation

Figure 2 illustrates the basic process of generating a
3D video frame in our system:

1. Synchronized Multi-Angle Image Acquisition:
A set of multi-viewpoint object images are taken
simultaneously by a group of distributed video
cameras (Figure 2 top row).

2. Silhouette Extraction: Background subtraction
is applied to each captured image to generate a
set of multi-viewpoint object silhouettes (Figure
2 second top row).

3. Silhouette Volume Intersection: Each silhouette
is back-projected into the common 3D space to
generate a visual cone encasing the 3D object.
Then, such 3D cones are intersected with each
other to generate the voxel representation of the
object shape (Figure 2 middle).

�����
el data

Marching Cubes

Method
T�
���

ure Mapping

Patch data

3D video

......

......

����	
ume Intersection

Silhouette Extraction

Figure 2. 3D video capturing process

4. Surface Shape Computation: The discrete
marching cubes method[8] is applied to convert
the voxel representation to the surface patch rep-
resentation (Figure 2 second bottom).

5. Texture Mapping: Color and texture on each
patch are computed from the observed images
(Figure 2 bottom).

By repeating the above process for each video
frame, we have a live 3D motion picture.

2.3. Parallel Volume Intersection Algorithm Using
Plane-to-Plane Perspective Projection

The back-projection is the most expensive computa-
tion in the above volume intersection method, because
it involves a considerable amount of arithmetic oper-
ations. To accelerate the computation, we first devel-
oped the plane-to-plane perspective projection (PPPP)
algorithm, where the 3D voxel space is partitioned into
a group of parallel planes and the cross-section of the
3D object volume on each plane is reconstructed.

Figure 3 shows the basic algorithm, where the back-
projection process is divided into the following two
stages:

1. First an object silhouette in the image plane is
back-projected on the base plane in the 3D space.

11

22

Base Slice

Base Silhouette

Figure 3. Plane-to-plane perspective projec-
tion algorithm

2. Then the back-projected base silhouette is pro-
jected onto each of the parallel planes.

Finally, back-projected silhouettes on each plane are
intersected with each other to generate an object cross-
section on that plane. By stacking up such cross-
sections, we have the voxel representation of the 3D
object shape.

From a computational viewpoint, the plane-to-plane
perspective projection is much less computationally
expensive than general 3D perspective projection.

The next step to realize real-time 3D shape recon-
struction is to introduce parallel processing by the PC
cluster. Figure 4 illustrates the processing flow of the
parallel pipelined PPPP algorithm:

1. Image Capture : Triggered by a capturing com-
mand, each PC with a camera captures a
video frame, by which 12 synchronized multi-
viewpoint images are acquired (Figure 4 top row).

2. Silhouette Extraction : Each PC extracts an ob-
ject silhouette from the video frame (Figure 4 sec-
ond top row).

3. Projection to the Base-PlaneEach PC projects
the silhouette onto the common base-plane in the
3D space (Figure 4 third top row).

4. Base-Plane Silhouette Duplication: All base-
plane silhouettes are duplicated across 16 PCs
over the network so that each PC has the full set
of 12 base-plane silhouettes (Figure 4 forth top
row).

5. Object Cross Section Computation: Each of 16
PCs computes object cross sections on specified
parallel planes in parallel (Figure 4 three bottom
rows).

Communication

Silhouette
Image

Base Plane
Silhouette
Image

Final Result

node1 node2 node3

Captured
Image

Silhouette
on a slice

Loop Loop Loop

Object Area
on a slice

SIP

PPP

BPP

INT

SIP SIP

BPPBPP

PPP PPP

INT INT

Figure 4. Processing flow of the parallel
pipelined 3D shape reconstruction.

The above processing is implemented as the 5 stage
pipeline process as well as stages 1, 2, 3, and 5 are
executed in parallel by the PCs. Note that although
stage 4 involves communications among 16 PCs, its
overhead time is limited because the transmitted data
are just bit maps of small size representing the base-
plane silhouettes and the speed of the network is very
high.

2.4. Performance Evaluation

In the experiments of the 3D volume reconstruction,
we used just 9 PCs with 9 active cameras placed at the
ceiling (Figure 1). This is because the floor, which is
regarded as the base-plane, can be commonly observed
from all the cameras.

Table 1 shows the performance of the real-time
3D object behavior reconstruction. Since we employ
pipeline processing, the throughput time is shorter than
the total elapsed time. The pipeline effect is shown as
“Pipeline Factor” and the average volume reconstruc-
tion rate as “Volume/sec.”. While the pipeline factor
can be regarded as constant, the volume reconstruc-
tion rate increases gradually as the voxel resolution
decreases. Note that the volume reconstruction rate
is saturating. This is because the image capture and
silhouette extraction stages spend constant processing
time irrespectively of the voxel resolution.

Voxel

Size

Total

Elapsed

time

Throughput

Time

Volume

/sec.

Pipeline

Factor

1cm 651.019ms 564.413ms 1.77 1.15

2cm 145.127ms 114.065ms 8.77 1.27

3cm 107.031ms 80.873ms 12.37 1.32

5cm 80.484ms 64.013ms 15.62 1.25

Table 1. Processing speed. (Total Elapsed

Time: sum of the elapsed times at all stages, Throughput Time:

time interval between the outputs, Volume/sec.: number of vol-

umes reconstructed per second, Pipeline Factor=(Total Elapsed

Time)/(Throughput Time).)

Figure 5. Voxel representations of a 3D object
behavior

3. High Fidelity Texture Mapping Algorithm

Figure 5 illustrates a partial sequence of 3D voxel
data of a dancing person at the resolution of1cm ×
1cm × 1cm. Then we apply to each voxel data the
discrete marching cubes method[8] to convert the 3D
object shape into the triangular patch representation.
And finally we map textures extracted from the ob-
served multi-viewpoint video onto the patches to gen-
erate a frame of 3D video. These processes are applied
as a post-process after generating the 3D voxel data.

In this section, we propose a novel texture map-
ping algorithm to generate high fidelity 3D video. The
problem we are going to solve here is how we can gen-
erate high fidelity object images from arbitrary view-
points based on the 3D object shape of limited accu-
racy. That is, computed 3D voxel data are just ap-
proximation of real 3D object shape (i.e. all concavi-
ties cannot be reconstructed) and include considerable
amount of noise. Moreover, outward normals of tri-
angular patches computed by the discrete matching
cubes method are roughly quantized at the resolution
of 45 degree.

3.1. Naive Algorithm: Viewpoint Independent
Patch-Based Method

We first implemented a naive texture mapping al-
gorithm, which selects the most ”appropriate” camera
for each patch and then maps onto the patch the tex-
ture extracted from the image observed by the selected
camera. Since this texture mapping is conducted in-
dependently of the viewer’s viewpoint of 3D video,
we call it as the Viewpoint Independent Patch-Based
Method (VIPBM in short).
Algorithm (Figure 6)

1. For each patchpi, do the following processing.

2. Compute the locally averaged normal vector
Vlmn using normals ofpi and its neighboring
patches.

3. For each cameracj , compute viewline vectorVcj

directing toward the centroid ofpi.

4. Select such camerac∗ that the angle between
Vlmn andVcj becomes maximum.

5. Extract the texture ofpi from the image captured
by camerac∗.

Vlmn

pi

ck cl

cj

Figure 6. Viewpoint independent patch-based
method

This method generates fully textured 3D object
shape, which can be viewed from arbitrary viewpoints
with ordinary 3D graphic display systems. Moreover,
its data size is very compact compared with that of the
original multi-viewpoint video data.

From the viewpoint of fidelity, however, the dis-
played image quality is not satisfiable;

1. Due to the rough quantization of patch normals,
the best camerac∗ for a patch varies from patch to

patch even if they are neighboring. Thus, textures
on neighboring patches are often extracted from
those images captured by different cameras (i.e.
viewpoints), which introduces jitters in displayed
images.

2. Since the texture mapping is conducted patch by
patch and their normals are not accurate, textures
of neighboring patches may not be smoothly con-
nected. This introduces jitters at patch boundaries
in displayed images.

To overcome these quality problems, we developed
a viewpoint dependent vertex-based texture mapping
algorithm. In this algorithm, the color (i.e. RGB val-
ues) of each vertex of patches is computed taking into
account of the viewpoint of a viewer and then the tex-
ture of each patch is generated by interpolating color
values of its three vertices. In what follows, we first
define words and symbols to describe the algorithm
and then present the computation process, followed by
experimental results.

3.2. Viewpoint Dependent Vertex-Based Texture
Mapping Algorithm

(1) Definitions
First of all, we define words and symbols as follows
(Figure 7), where bold face symbols denote 3D posi-
tion/directive vectors:

• a group of cameras:C = {c1, c2, . . . , cn}

• a viewpoint for visualization:eye

• a set of surface patches:P = {p1, p2, . . . , pm}

• outward normal vector of patchpi: npi

• a viewing direction fromeyetoward the centroid
of pi: veye→pi

• a viewing direction fromcj toward the centroid
of pi: vcj→pi

• vertices ofpi: vk
pi

(k = 1, 2, 3)

• vertex visible fromcj (defined later):vk
pi,cj

• RGB values ofvk
pi,cj

(defined later):I(vk
pi,cj

)

Veye -> pi

Npi Vcj -> pi

Vcn -> piVc1 -> pi

Vc2 -> pi

objectpi

cj

cn

c1

c2

Figure 7. Viewpoint and camera position

• a depth buffer ofcj : Bcj

Geometrically this buffer is the same as the image
plane of cameracj . Each pixel ofBcj records
such patch ID that is nearest fromcj as well as the
distance to that patch fromcj (Figure 8). When a
vertex of a patch is mapped onto a pixel, its vertex
ID is also recorded in that pixel.

cj

p
i p

k
i
i
i
i
i
i
i
i

i

i

i
i
i
i
i
i

i
i
i
i
i

i
i
i
i

i
i i

k
k

k
k
k
k
k

k k

k
k

k
k k

jk k
i
i
i
i
i
i
i

i
i
ii
i

depth

Figure 8. Depth buffer
(2) Visible Vertex from Camera cj

The vertex visible fromcj vk
pi,cj

is defined as follows.

1. The face of patchpi can be observed from camera
cj , if the following condition is satisfied.

npi · vcj→pi < 0 (1)

2. vk
pi

is not occluded by any other patches.

Then, we can determinevk
pi,cj

by the following pro-
cess:

1. First, project all the patches that satisfy equation
(1) onto the depth bufferBcj .

2. Then, check the visibility of each vertex using the
buffer. Figure 9 illustrates possible spatial config-
urations between a pair of patches: all the vertices

in type (1) and (2) are visible, while in type (5)
three vertices of the occluded patch are not vis-
ible. In type (3) and (4), only some vertices are
visible.

�����
e (1)

�����
e (2)

�����
e (3)

�����
e (4)

�����
e (5)

Figure 9. Relations between patches

RGB valuesI(vk
pi,cj

) of the visible vertexvk
pi,cj

are
computed by

I(vk
pi,cj

) = Icj (v̂pi,cj), (2)

whereIcj (v) shows RGB values of pixelv on the im-
age captured by cameracj , andv̂k

pi,cj
denotes the pixel

position onto which the vertexvk
pi,cj

is mapped by the
imaging process of cameracj .

(3) Algorithm

1. Compute RGB values of all vertices visible from
each camera inC = {c1, c2, . . . , cn}.

2. Specify the viewpointeye.
3. For each surface patchpi ∈ P , do 4 to 9.

4. If veye→pi · npi < 0, then do 5 to 9.

5. Compute weightwcj = (vcj→pi · veye→pi)
m,

wherem is a weighting factor to be specified a
priori.

6. For each vertexvk
pi

(k = 1, 2, 3) of patchpi, do
7 to 8.

7. Compute the normalized weight forvk
pi

by

w̄k
cj

=
wk

cj∑
l w

k
cl

. (3)

Here, ifvk
pi

is visible from cameracj , thenwk
cj

=
wcj , elsewk

cj
= 0.

8. Compute the RGB valuesI(vk
pi

) of vk
pi

by

I(vk
pi

) =
n∑

j=1

w̄k
cj

I(vk
pi,cj

) (4)

9. Generate the texture of patchpi by linearly inter-
polating RGB values of its vertices. To be more
precise, depending on the number of vertices with
non-zero RGB values, the following processing is
conducted:

• 3.
Generate RGB values at each point on the
patch by linearly interpolating the RGB val-
ues of 3 vertices .

• 2.
Compute mean values of the RGB values of
the 2 vertices, which is regarded as those of
the other vertex. Then apply the linear in-
terpolation on the patch.

• 1.
Paint the patch by the RGB values of the
vertex.

• 0.
Texture of the patch is not generated:
painted by black for example.

By the above process, an image representing an ar-
bitrary view (i.e fromeye) of the 3D object is gener-
ated.

3.3. Performance Evaluation

To evaluate the performance of the proposed view-
point dependent vertex-based method (VDVBM), we
first compare it with the viewpoint independent patch-
based method (VIPBM) qualitatively. Figures 10 and
11 show images generated by VIPBM and VDVBM,
respectively, for the same 3D patch data. We can ob-
serve that VIPBM introduces many jitters in images,
which are considerably reduced by VDVBM.

Figure 10. Images generated by the Viewpoint
Independent Patch-Based Method

Then, we conducted quantitative performance eval-
uations. That is, we calculate RGB root-mean-square

Figure 11. Images generated by the Viewpoint
Dependent Vertex-Based Method

(rms) errors between a real image captured by camera
cj and its corresponding images generated by VIPBM
and VDVBM, respectively: in generating the images,
the position and direction of cameracj are used as
those of the viewpoint for the 3D video (i.e.eye in
VDVBM). To evaluate the performance of VDVBM,
we employed two methods: VDVBM–1 generates im-
ages including real images captured by cameracj it-
self, while VDVBM–2 excludes such real images cap-
tured by cameracj . The experiments were conducted
under the following settings:

• camera configuration: Figure 12

• image size: 640×480[pixel] 24 bit RGB color

• viewpoint: camera 5

• weighting factor in VDVBM:m = 5

450 cm

400 cm
250 cm

#1 #5

#8

#7

#6

#12#12

#11#11

#10

#9

#2

#3

#4

Figure 12. Camera Setting
Figure 13 illustrates the experimental results, where

rms errors for frame 95 to 145 are computed. This fig-
ure proves that VDVBM performs better than VIPBM.
The superiority of VDVBM and its high fidelity image
generation capability can be easily observed in Figure
14, where real and generated images for frame 110 and
120 are illustrated.

Finally, we tested how we can improve the perfor-
mance of VDVBM by increasing the spatial resolution

VDVBM–1

VIPBM

Original sequence
frame # 110 frame # 120

Figure 14. Sample images of generated 3D video

30

35

40

45

50

55

60

65

70

75

95 100 105 110 115 120 125 130 135 140 145

R
o

o
t-

m
ea

n
-s

q
u

ar
e

er
ro

r

Frame number

’Method(I)-1’

’Method(I)-2’

’Method(II)’

Figure 13. Root-mean-square error of RGB
value (1)

of patch data. Figure 15 shows the method of subdi-
viding a patch into three (S3) and six (S6) sub-patches
to increase the spatial resolution.

Then, we examine the average side length of a patch
on the image plane of each camera by projecting origi-
nal and subdivided patches onto the image plane. Fig-

ure 16 shows the mean side length in pixel on the im-
age plane of each camera. Note that since camera 9 is
located closer to the 3D object (see Figure 12), object
images captured by it become larger than those by the
other cameras, which caused bumps (i.e. larger side
length in pixel) in the graphs in Figure 16.

We can observe that the spatial resolution of S6 is
approximately the same as that of an observed image
(i.e. 1 pixel). That is, S6 attains the finest resolution,
which physically represents about 5mm on the object
surface. To put this in another way, we can increase the
spatial resolution up to the six sub-division, which can
improve the quality of images generated by VDVBM.

An original patch A patch subdivided A patch subdivided
into three (S3) into six (S6)

Figure 15. Subdivision of a surface patch

1

1.5

2

2.5

3

3.5

4

4.5

5

cam1 cam2 cam3 cam4 cam5 cam6 cam7 cam8 cam9 cam10 cam11 cam12

p
ix

el

camera

’Original’
’Subdivided into 3’
’Subdivided into 6’

Figure 16. Mean side length in pixel on image
planes of cameras

To quantitatively evaluate the quality archived by
using subdivided patches, we calculated root-mean-
square errors between real images and images gener-
ated by VDVBM-1 with original, S3, and S6, respec-
tively. The root-mean-square errors are shown in Fig-
ure 17.

31

32

33

34

35

36

37

38

95 100 105 110 115 120 125 130 135 140 145

R
o
o
t-

m
ea

n
-s

q
u
ar

e
er

ro
r

Frame number

’Original’
’Subdivided into 3’
’Subdivided into 6’

Figure 17. Root-mean-square errors of RGB
value (2)

Figure 17 shows that subdividing patches does not
numerically reduce the errors. The reasons of this ob-
servation can be considered as follows. We see that
most of the errors arise around the contour of the ob-
ject and edges of texture (e.g. an edge between skin
and clothes, etc.) (Figure 18), and they are difficult to
be reduced by subdividing patches because they come
from motion blur or asynchronization, i.e. capturing
the images is not perfectly synchronized. The errors
are thus not reduced in total even if they may be in
some parts. Fidelity of generated images using sub-
divided patches, however, is definitely improved (Fig-
ure 19). Accordingly, subdividing patches is effective
from fidelity point of view.

Figure 18. Subtraction between a real image
and a generated image (frame #106)

Original Subdivided (S6)

Figure 19. Example images visualized with
original and subdivided patches (frame #106)

Finally, we show examples generated by VDVBM–
1 with subdivided patches (S6) viewed from camera
5, 11, and an intermediate point between them (Figure
20). Figure 20 shows that the images generated by
VDVBM look almost real even when they are viewed
from the intermediate point of the cameras.

4. Editing and Visualization System of 3D
Video

To visualize 3D video, we should introduce virtual
cameras into the virtual scene where the reconstructed
object is placed. A virtual background1 should be also
introduced for discriminating between camera action
and object motion.

In this situation, we have to specify many parame-
ters to generate a camera-work that is utilized for visu-
alization of 3D video:

• virtual camera parameters: viewpointx, y, z;
view directionψ, φ; angle of viewθ; focal length
f , and so on.

1In our system, we use a dome-shaped omnidirectional back-
ground image as a virtual background. This image is generated by
mosaicing multiple images taken by our FV-PTZ camera.

cam 5 an intermediate image (cam 5 to cam 11) cam 11

Figure 20. Visualized 3D video with subdivided patches (frame#103)

• object position, pose, and scale:xo, yo, zo,
ψo, φo, ρo, so.

• background position, pose, and scale:xb, yb, zb,
ψb, φb, ρb, sb.

Furthermore, these parameters must be specified at
each time, and they should be continuously changed
for smooth visualization and natural camera-works.

To satisfy these requirements, we have devised two
methods to generate camera-works as follows.

1. Key Frame Method: generating camera-works
by temporal interpolation of parameters specified
for arbitrary key frames.

2. Automatic Camera-Work Generation
Method: generating camera-works by uti-
lizing an object’s parameters (e.g. height,
direction).

These parameters are specified in the scene coordinate
systems (Figure 21).

scene

virtual camera

background

object

x

y

z

Figure 21. Virtual Scene Setup

4.1. Key Frame Method (KFM)

This method is often used in the ordinary computer
graphics animation. Specifying the parameters (posi-
tions, rotations of a virtual camera, object, etc.) for ar-
bitrary key frames allows us to temporally interpolate

them to generate camera-works realizing such param-
eters (Figure 22).

timet0 t1 t2 tn-1 tn

p(0)
p(1)

p(2)
p(n-1)

p(n)

Figure 22. Temporal interpolation of parame-
ters

4.2. Automatic Camera-Work Generation Method
(ACGM)

To utilize KFM, a user has to consider framing of
generated images while specifying parameters. For
example, to generate a camera-work that keeps tak-
ing pictures of the object’s front view, the user has to
consider relations between the virtual camera and the
object at each frame; this enforces a mount of effort
upon the user.

To easily obtain camera-works such as described
above, we propose a method for utilizing the object’s
parameters. The object generated by our volume inter-
section algorithm has the following parameters:
• position: the centroid of a group of voxels that

form the object.
• height: length of the object along the z axis.
• direction: direction representing the front of the

object. (This can be estimated from the voxel rep-
resentation of the object. In this paper, we specify
this beforehand.)

We remark that these parameters are defined under the
assumption that the object is a standing human. Uti-
lizing the object’s parameters enables a user to obtain

arbitrary camera-works. That is, the user has only to
specify

1. framing of a picture : close up, middle shot, full
shot, etc., and

2. appearance of the object from the virtual cam-
era: front, back, etc.

Once the framing of a picture and the appearance of
the object are specified, the parameters of the virtual
camera are computed as follows:

• distance between the virtual camera and the
object d (Figure 23):

d =
r · h

2 tan θ
2

, (5)

whereh is the height of the object.θ is an angle of
view, which is arbitrarily specified.r is the ratio
of a size of an image to a size of the rendered
object, and it is defined as follows:

– r = 1.0: full shot,
– r = 0.7: knee shot,
– r = 0.5: middle shot,
– r = 0.3: close shot, and
– r = 0.2: close up.

(1-r)h

h
r h

d

θ

Figure 23. Relation between a virtual camera
and an object (I)

• position of the virtual camera (xc, yc, zc) :




xc = d cosφ cos(ψ + δ) + xp

yc = d cosφ sin(ψ + δ) + yp

zc = d sinφ + zp

, (6)

whered is given by Equation(5), andδ is an an-
gle between the direction of the object and the x
axis in the scene (Figure 24).φ and ψ are ar-
bitrarily specified (Figure 25). For example, to
visualize the object’s front view,ψ andφ are set
to be 0, and an angle that a user desires, respec-
tively. (xp, yp, zp) is, on the other hand, a gazing

point of the virtual camera, wherexp andyp are
the same as the position of the object, andzp is
given by

zp = h− h · r
2

(0 ≤ r ≤ 1). (7)

δ

Figure 24. Relation between object and scene
coordinate systems

ψ

φ

Figure 25. Relation between a virtual camera
and an object (II)

4.3. GUI

We have also developed a GUI for specifying pa-
rameters, which is shown in Figure 26. In this inter-
face, a user can specify the positions, rotations, and
scales of the three coordinate systems: the object coor-
dinate system, the background coordinate system, and
the virtual camera’s. The top, front, and side views of
these coordinate systems and the obtained image are
displayed in the left top of the window (Figure 26). By
specifying the parameters for KFM or ACGM, users
can view 2D image sequences that they desire where
the background scene as well as a foreground object
are represented in a natural way (Figure 27).

Figure 26. a GUI for 3D video editing and vi-
sualization.

frame #135 frame #180 frame #195 frame #210 frame #225

Figure 27. Visualized 3D video with an omnidirectional background

5. Conclusion

We are proposing 3D video as new image media: it
records the object’s full 3D shape, motion, and surface
properties (i.e. color and texture). In this paper, fol-
lowing an overview of the real-time 3D object behav-
ior reconstruction system, we proposed a high fidelity
texture mapping method and a versatile editing system
for 3D video.

The qualitative and quantitative performance eval-
uations demonstrated that the proposed texture map-
ping method can produce object images from arbitrary
viewpoints in almost the same quality as real video
data. With the editing system, moreover, we can gen-
erate attractive image contents by employing versatile
object and background arrangements in the 3D scene
and completely free 3D camera-works.

Based on these novel technologies, we will be able
to open up new image media world and promote per-
sonal and social activities in education, culture, enter-
tainment, sport, and so on.

To make 3D video usable in everyday life, we still
have to develop methods of

• effective data compression

• more natural image generation

• higher speed and more accurate 3D behavior re-
construction

• editing 3D video for artistic image contents.

This work was supported by the grant-in-aid for sci-
entific research (A) 13308017. We are grateful to Real
World Computing Partnership, Japan for allowing us
to use their multi-viewpoint video data. We also thank
Mr. Xiaojun Wu and members of Matsuyama labora-
tory for their helps and insightful suggestions.

References

[1] T.Wada, X.Wu, S.Tokai, T.Matsuyama: Homog-
raphy Based Parallel Volume Intersection: To-

ward Real-Time Reconstruction Using Active
Camera: CAMP2000 Computer Architectures
for Machine Perception, pp.331–339.

[2] E. Borovikov and L. Davis: A Distributed Sys-
tem for Real-Time Volume Reconstruction, Proc.
of Computer Architectures for Machine Percep-
tion, pp.183-189, 2000.

[3] G.Cheung and T.Kanade: A Real Time System
for Robust 3D Voxel Reconstruction of Human
Motions, Proc. of CVPR, pp.714-720, 2000.

[4] T.Kanade, P.Rander, S.Vedula, and H.Saito: Vir-
tualized Reality: Digitizing a 3D Time-Varying
Event as is and in Real Time, in Mixed Reality
(Y.Ohta and H.Tamura eds.), pp.41-57, Ohmsha,
1999.

[5] S.Moezzi, L.Tai, and P.Gerard: Virtual View
Generation for 3D Digital Video, IEEE Multime-
dia, pp.18-26, 1997.

[6] H.Tezuka, A.Hori, Y.Ishikawa, and M.Sato:
PM: An Operating System Coordinated High
Performance Communication Library,High-
Performance Computing and Networking(P.
Sloot and B. Hertzberger, eds.), Lecture Notes
in Computer Science, Vol.1225, pp.708-717.
Springer-Verlag, 1997.

[7] Matsuyama, T.: “Cooperative Distributed Vision
– Dynamic Integration of Visual Perception, Ac-
tion, and Communication –,” Proc. of Image Un-
derstanding Workshop, pp. 365-384, 1998

[8] Y.Kenmochi, K.Kotani, A.Imiya: Marching
Cubes Method with Connectivity Consideration:
PRMU–98–218, pp.197–204, 1999.

