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Abstract

This paper presents a novel shape descriptor for
topology-based segmentation of 3D video sequence. 3D
video is a series of 3D meshes without temporal corre-
spondences which benefit for applications including com-
pression, motion analysis, and kinematic editing. In 3D
video, both 3D mesh connectivities and the global surface
topology can change frame by frame. This characteristic
prevents from making accurate temporal correspondences
through the entire 3D mesh series. To overcome this dif-
ficulty, we propose a two-step strategy which decomposes
the entire sequence into a series of topologically coherent
segments using our new shape descriptor, and then esti-
mates temporal correspondences on a per-segment basis.
We demonstrate the robustness and accuracy of the shape
descriptor on real data which consist of large non-rigid mo-
tion and reconstruction errors.

1. Introduction

3D surface reconstruction from multi-view videos i.e.,
3D video, has become a popular technique in computer vi-
sion and graphics communities [13] [6]. 3D video con-
sists of a temporal series of 3D surfaces reconstructed on a
frame-by-frame basis from multi-view videos of real-world
objects. The captured 3D surface meshes are unstructured,
i.e., are not semantically labeled, and can have different
numbers of vertices and mesh connectivities. This fact indi-
cates that no vertex-to-vertex correspondences between dif-
ferent meshes are available in general. Moreover 3D video
can only capture surfaces that are visible from the cameras,
i.e., the envelopes. That is, not only the local mesh structure
but the global surface topology also can change through the
entire 3D video sequence (Fig.1).

On the other hand, once a time-invariant structure, e.g.,
kinematic structure describing the object motion is ob-
tained, a wide variety of 3D video applications such as mo-
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Figure 1. The global topology change of surface. Left is a genus-0
surface while Right is a genus-1 due to the body contact.

tion analysis of dance or sports activities, kinematic editing
of captured data, inter-frame mesh data compression, etc.
will be realized.

To obtain a time-invariant structure, it is desirable that
the captured 3D surfaces are converted to a temporally co-
herent mesh sequence such that all the meshes share a same
number of vertices and their connectivities.. Various tech-
niques have been investigated to acquire a temporally co-
herent structure in mesh sequence [5] [2] [16] .However,
[2] does not explicitly account for global topology changes
caused by the invisibility in the 3D video production pro-
cess. Although [5] learns fixed mesh topology from an un-
structured mesh sequence, there is a possibility to be dis-
turbed by deficits and artifacts (See Fig.11) which are in-
evitable in real data reconstruction. [16] acquires tempo-
rally coherent segmentations of a mesh sequence. As it was
mainly based on ICP algorithm in Euclidean space, its capa-
bility was limited to small displacements. Hence applying
such techniques to long sequences involving complex mo-
tions can fail in theory.

Based on these observations, we propose a two-step
scheme that segments the original 3D mesh sequences into
time intervals in which the global topology is unchanged,
and then applies a remeshing process which converts each
segment so as to be represented by a single deforming mesh.
To this end, this paper proposes a novel shape descriptor for
the 3D surface sequence segmentation that is robust against
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apparent global surface topology changes falsely caused by
observation noise.

The rest of the paper is organized as follows. Section
2 discusses the work related to our technique. Section 3
describes the our topology-based shape descriptor. Section
4 shows experimental results. Final section concludes with
a discussion on our contribution.

2. Related Work

In the context of computer vision and computer graph-
ics, various types of 3D shape descriptors has been investi-
gated in the recent years.. They are roughly classified into
two groups, one is for static shapes and the other for dy-
namic shapes. The former is mainly designed for shape re-
trieval, and is optimized for finding similar 3D shapes that
are not necessarily a same object of different postures [10]
[4]. In general, these descriptors aim to discriminate differ-
ent objects. On the other hand, the latter considers the shape
matching problem of a same object in motion described as
a temporal sequence, i.e., 3D video. That is, given a time-
series of 3D surfaces, they try to describe a similarity of
frame pairs. Our contribution belongs to the latter ones.

Shape descriptors for 3D video are also broadly classi-
fied by means of how it handles the global topology change
of surface meshes. Huang et al. proposed Shape Histogram
[1] [3] which aims to retrieve similar poses in the sequence
for smooth motion transitions of 3D video. Shape His-
togram is designed to be robust to global topology change
by utilizing a volumetric occupancy of the shape.

In contrast, Mukasa et al. have proposed a shape
descriptor designed to detect global topology changes
for kinematic structure estimation while ignoring shape
deformations[9]. Their descriptor is a histogram of distri-
bution of µ values defined as the sum of geodesic distances
from a vertex to all the others, and their similarity is defined
as the correlations of the histograms.

This method shares the same motivation with this paper,
but it is not discriminative enough to handle global topol-
ogy changes in real data with small holes and loops due
to observation noise and reconstruction errors. This is be-
cause it integrates the geodesic distances over the surface,
and smoothes out changes of vertex-wise geodesic distances
caused by a global topology change.

Based on this observation, we introduce a part-wise
geodesic histogram description of 3D mesh. The key idea is
to identify body parts having a prominent geometric char-
acteristic first, and then define the geodesic histogram on a
part-wise basis in order to avoid mixing them up. The evalu-
ations in Section 4 demonstrates that our part-wise geodesic
histogram successfully account for noisy inputs while the
conventional method cannot.

3. Part-wise Geodesic Histogram Shape De-
scriptor

As described in Section 2, our descriptor requires identi-
fying body regions having prominent geometric properties
first. The key point here is how we can identify a position
on a surface in another surface of a different frame. Our
algorithm utilizes extreme points of the 3D surfaces. That
is, our strategy is first extracts extreme points from a pair
of 3D surfaces in question, and then tries to establish corre-
spondences between them. Intuitively this part returns a set
of sparse corresponding points between two surfaces.

Once obtained such sparse corresponding points, then
the next step is to decompose the surface into disjoint sub-
surfaces each of which includes a corresponding point as an
anchor point.

Finally we compute a histogram of geodesic distances
for each subsurface and integrate them to be a single de-
scriptor named part-wise geodesic histogram shape descrip-
tor (PGH-SD).

In what follows, we introduce these three steps, and then
provide the definition of the similarity between PGH-SDs.

3.1. Sparse Corresponding Points Estimation

As described above, our descriptor utilizes surface ex-
treme points, i.e. tips, to obtain 3D points which appear sta-
bly on surfaces under deformation. In particular, we utilize
the integral of geodesic distances µ and Morse theory.

3.1.1 µ Computation

Let us denote a 3D surface mesh sequence by
M(t) = {V (t), E(t)} where V (t) and E(t) denote
the set of vertices and edges at frame t respectively. We
define a continuous function µ : M(t) → R as the sum of
geodesic distances from a vertex to all the others :

µ(v) =
∑

u∈V (t)

g(v, u), (1)

where v, u ∈ V (t), and g(v, u) is the geodesic distance
between v and u. If the global surface topology changes,
the distribution of µ changes drastically because topolog-
ical changes introduce or remove shortest paths on M(t)
(Fig.2). On the other hand, since we define µ as an integral
over the surface, its distribution is robust to local surface
deformations caused by object motions or per-vertex recon-
struction errors.

3.1.2 Tip Detection and Correspondence Estimation

According to the Morse theory[8], a continuous function
µ defined on a surface can characterize the surface topol-
ogy using its critical points. As we choose the integral of
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Figure 2. µ distribution on surface mesh. Warm color indicates a
higher µ value.

geodesic distance as µ, critical points coincide to highly
concave or convex regions [7] [15].

Tips of body extremities, e.g., fingertips, appear in µ(v)
distribution on the surface as its local maxima. By assum-
ing the frame rate of 3D video is high enough for capturing
the object’s motion, these points can be tracked based on
Euclidean distance over time in each pair of successive 3D
video frames.

We find tips as local surface feature points vtip
n (t) ∈

L(t)(n = 1, . . . , N(L(t))) at local maxima of µ(v) at each
time frame t, and take L(t) as the tips. Here we introduce a
function E(v, L) which returns a tip vtip

n ∈ L nearest to v
in Euclidean space. We then find mapping Ft,t+1 between
L(t) and L(t + 1) as follows:

Ft,t+1 = { < vtip
n ∈ L(t), vtip

m ∈ L(t + 1) > |
vtip

n = E(vtip
m , L(t)),

vtip
m = E(vtip

n , L(t + 1)),
n(vtip

n (t)) · n(vtip
m (t + 1)) > 0}, (2)

where n(v) stands for the normal vector of v. As the result,
we find a number of tips Li in each pair of 3D video frames,
and establish their correspondences.

3.2. Surface Segmentation

Up to this point, we have obtained a set of correspond-
ing tips for a given pair of 3D surfaces. The goal of this
section is to decompose each surface into a set of disjoint
subsurfaces each of which includes a corresponding point
as an anchor. Here, the point is to make the subsurfaces
having corresponding tips to be identical to each other even
under deformations. We realize this by assuming that (1)
subsurfaces including tips can be modeled as a generalized
cone, and (2) the entire surface can be modeled as a union
of subsurfaces including tips and the other regions called
stems.

For the preparation of geodesic histogram computation,
the entire surface mesh is segmented into sub-surfaces
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Figure 3. Segmentation results. Note that left hand is merged to
stem area as a tip of left hand was not found in frame 16 because
of body contact.

which correspond to body extremities and body stem.
We first apply Voronoi segmentation to entire surface us-

ing tips as seed points. As the result, we have a set of sub-
surfaces {Sn(t)} corresponding to tips {vtip

n (t)}. Secondly,
in each Sn(t), we find point pn(t) which is geodesically
nearest to vtip

n (t) on the border lines between sub-surfaces.
Then we define geodesic range gmax

n as follows:

gmax
n = min{gtip

n (pn(t)), gtip
n (pn(t + 1))} (3)

where gtip
n (pn(t)) = g(vtip

n (t), pn(t)). (4)

We remove vertices from each sub-surface if the vertex
v(t) ∈ Sn(t) meet the following condition:

gtip
n (v(t)) > gmax

n . (5)

We merge these removed vertices into a sub-surface
Sn+1(t) which is corresponding to body stem. Fig.3 shows
the example of our surface segmentation.

3.3. Definition of PGH­SD

To define our PGH-SD using the subsurfaces, this sec-
tion introduces a geodesic coordinates based on the tips, and
then combines them as histograms.

As we have made correspondences between tips vtip
n be-

tween frames in the last section, we can define a geodesic
coordinate xgeo

i (v(t)) whose element is the geodesic dis-
tances to the tips as follows:

xgeo
i (v(t)) = (gtip

1 (v(t)), ..., gtip
N(L)(v(t))). (6)

When the global topology does not change between frames,
the distance between each vertex v(t) ∈ V (t) and each of
tips vtip

n (t) does not change even if the object has deformed.
Therefore geodesic coordinate is invariant against mesh de-
formations between frames if there are no global topology
changes [14].
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Figure 4. Distributions of geodesic distance to left leg tip on left
leg sub-surfaces and their histograms. The vertical axis indicates
the number of vertices whose geodesic distance is in a range cor-
related to a bin.

Our shape descriptor is a set of geodesic histograms
{Hgeo

n,m(t)} where m = {1, ..., n} denotes geodesic coor-
dinate corresponding to a tip. We call the shape descriptor
as Part-wise Geodesic Histogram Shape Descriptor (PGH-
SD). For each sub-surface Sn(t) and tip m, we compute
histograms {Hgeo

n,m(t)} of distribution of m-th geodesic co-
ordinate value of vertices in Sn(t) (Fig. 4, 5).

3.4. Similarity Computation

We employ Earth Mover’s Distance (EMD) [17] for
computing distance between 3D video frames. EMD is de-
fined as the minimum amount of work to transform one his-
togram into the other, and robust to outliers and small shifts
of values among histogram bins. Given two histograms
H1 = (h1

1, ..., h
1
l ) and H2 = (h2

1, ..., h
2
l ), each having l

bins, a flow matrix F, where fi,j indicates flow to move
from h1

i to h2
j , and a cost matrix C, where ci,j models cost

of moving flow from the i-th bin to the j-th bin, EMD can
be defined as follows:

EMD(H1,H2) = min
F

l∑
i=1

l∑
j=1

fi,jci,j . (7)

We define the distance D(t, t+1) between 3D video frames
as a weighted sum of EMD of corresponding geodesic his-
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Figure 5. Distributions of geodesic distance to right hand tip on
body stem sub-surfaces and their histograms.

tograms as follows:

D(t, t + 1) =
∑

n

wn

∑
m

EMD(Hgeo
n,m(t),Hgeo

n,m(t + 1)), (8)

where wn is a weight factor for sub-surface Sn(t) which
is size ratio of Sn(t) to the entire surface area. In Fig.4,
the histograms are similar and EMD is small. In contrast,
EMD is large as the distribution of geodesic distance is sig-
nificantly affected by the contact between the left hand and
body stem in Fig.5.

We segment entire 3D video sequence at each pair of
frames if their distance D(t, t+1) is larger than a threshold
τ .

4. Experiments
This section evaluates the performance of the proposed

method using a real dataset called free [12] in which a sub-
ject wearing a loose cloth performs a break dance. The se-
quence contains 291 frames of unstructured meshes each of
which consists of around 3,000 vertices.

4.1. Comparison to Existing Methods

We implemented following methods for comparison:

1. µ-histogram shape descriptor (µ-SD) [9]

2. Geodesic histogram shape descriptor without surface
segmentation (GH-SD).
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Figure 6. Comparison of three methods. Circles on the top figure
indicate body contacts.

µ-SD is given by the following correlation coefficient in-
dex defined by covariance Cov and standard deviation σ to
measure the surface-to-surface topological difference:

C(Hµ(t),Hµ(t + 1)) =
Cov(Hµ(t),Hµ(t + 1))
σ(Hµ(t))σ(Hµ(t + 1))

, (9)

where Hµ(t) denotes the histogram of µ distribution on sur-
face mesh M(t). Then, distance Dµ(t, t + 1) between 3D
video frames can be defined as follows:

Dµ(t, t + 1) = 1 − C(Hµ(t),Hµ(t + 1)). (10)

Another method for comparison, GH-SD is a simplified
version of the proposed method to evaluate the importance
of the surface segmentation in our method. GH-SD is the
set of geodesic histograms {Hgeo

m (t)} defined on the entire
surface mesh. Therefore, based on GH-SD, we can define
the distance DGH(t, t + 1) between 3D video frames as
follows:

DGH(t, t + 1) =
∑
m

EMD(Hgeo
m (t),Hgeo

m (t + 1)). (11)

All algorithms were implemented in C++ using an Intel
Core-i7 2.3GHz computer.

Figure 6 reports the frame-by-frame distances returned
by the three methods from frame 0 to 30 for illustration. The
vertical lines indicate the segmentation boundaries where
global topology changes occur. These boundaries are given
by hand as the ground truth. The rendered 3D shapes
on top of the plots illustrate a typical pose of each seg-
ments, and the red circles show where the body parts con-
tacted and made global topology changes. the free sequence
is segmented based on a thresholding for Dµ(t, t + 1),
DGH(t, t + 1) and D(t, t + 1). The detection results of
segment points are shown in Fig.7 and summarized in Ta-
ble 1 and Fig.8. Evaluation of Receiver Operator Character-
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Figure 8. Evaluation of ROC performance of three methods.

istics (Fig.8) for segmentation against ground truth, shows
that the proposed method most correctly reflects the global
topology change in the sequence. In Table 1, the proposed
method returns no false negatives which is crucial require-
ment for further mesh alignment relying on the global topol-
ogy consistency.

4.2. Segment­wise Coherent Mesh Series

Based on the criteria D(t, t + 1) described in above sec-
tions, the entire 3D video sequence is segmented into a set
of intervals {Ii}. Here, we apply tracking-by-matching ap-
proach to acquire segment-wise coherent mesh series from
each mesh interval. In particular, we used the geodesic
mapping[14] since the geodesic coordinate required in [14]
has already been computed for our shape descriptor.

Once obtained vertex-wise correspondences between
frames, we deformed the mesh of a reference frame so as
to fit to the others. We choose a 3D video frame in the mid-
dle of each interval as the reference mesh Mref

i because
it is likely to represent an average posture of the object in
the interval and hence is likely to minimize the deformation
artifacts.

Then we establish per-vertex correspondences between
successive frames fgeo

t→t+1 : v(t) ∈ V (t) → v(t + 1) ∈
V (t + 1) by finding a point v(t + 1) such that:

v(t + 1) = arg min
v′∈V (t+1)

(d(v(t), v′)), (12)

where d(v(t), v′) denotes the geodesic distance between
vertices in different frames in the same interval as follows:

d(v ∈ V (t1 ∈ Ii), v′ ∈ V (t2 ∈ Ii)) = ||xgeo
i (v)−xgeo

i (v′)||.
(13)

If we move each vertex of Mt∈Ii
according to fgeo

t→t+1, it
can introduce self-intersections because Eq.(12) returns the
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Figure 7. Segmentation results using a typical threshold for each method. The blue vertical lines indicates ground truth segmentation
boundaries . The green horizontal ones shows thresholds for each method.



method threshold True Positive True Negative False Positive False Negative
µ-SD 0.87 3 243 14 31

GH-SD 7.50 26 221 37 7
PGH-SD 16.0 36 247 9 0

Table 1. Detection result of temporal segments.

frame10 frame11 frame12 frame13
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original
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Figure 9. Segment-wise coherent mesh series acquired by mesh
alignment based on geodesic mapping. The middle row shows
how the surface segmentation on the reference mesh is propagated
over frames. In the bottom figures, warm color indicates high
residual error to original mesh.

geodesically nearest vertex without considering connectivi-
ties among vertices. To enforce a smooth deformation, we
employ as-rigid-as-possible (ARAP) deformation method
[11] to Mref

i using fgeo
i→j as the soft constraint. ARAP de-

formation preserves surface details by keeping rigidities of
each local area around vertex while the whole mesh is de-
formed so as to satisfy the soft constraint. With the com-
bination of geodesic mapping and ARAP deformation, we
replace 3D mesh sequence Mt∈Ii by M ′

t∈Ii
in which mesh

topology is guaranteed to be equal to the reference mesh
Mref

i . Fig. 9 shows structured mesh sequence acquired
by above explained deformation. By restricting the defor-
mation only in each interval, we can avoid potential danger
for erroneous deformations (see Fig.10) caused by global
topology changes.

5. Discussion

As reported in Section 4.1, proposed method shows a
high enough sensitivity to global topology change. How-
ever, the detection results contains a few false positives (See
Table.1). As we can observe in Fig.11, most of false posi-
tives occurred between pairs of 3D video frames in which
reconstruction error can be found. In practice, these erro-

frame16

(original)

frame16

(aligned from frame15)

Figure 10. Example of erroneous deformation caused by the align-
ment over the segment point.

de�cit
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frame42
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Figure 11. Reconstruction errors. In the top left figure, we can see
a deficit of left upper hand. On the other hand, an artifact is found
in right leg in the top right figure.

neous 3D video frames are undesirable to be included in an
interval as it may cause erroneous mapping in tracking-by-
deformation step. Thanks to this sensitivity to erroneous
3D video frames, deformation result contains low residual
errors as we have seen in the last Section 4.2.



6. Conclusion
In this paper, we proposed a new shape descriptor for

incoherent 3D video frame sequence. The contribution
of this paper is to introduce a practical shape descrip-
tor which explicitly accounts for global topology changes
and works on real data containing large non-rigid motion
and reconstruction errors. The proposed shape descriptor
showed the ability to segment the sequence into intervals in
which global topology is coherent. The evaluation demon-
strated that we can obtain segment-wise coherent mesh se-
ries with low residual errors from each interval by tracking-
by-deformation based on geodesic mapping.

We will estimate a time invariant structure in each inter-
val, and integrate them to a unique kinematic structure in
future work.
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