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Abstract. The problem of matching feature points in multiple images
is difficult to solve when their appearance changes due to illumination
variance, either by lighting or object motion. In this paper we tackle this
ill-posed problem by using the difference of local phase which is known to
be stable to a certain extent even under illumination variances. In order
to realize a precise matching, we basically compute the local phase by
convolutions with Gabor filters which we design in multi scales. We then
evaluate the stability of local phase against lighting changes. Through
experiments using both CG and real images that are with illumination
variance, we show the relevancy of our theoretical investigations.
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ters, illumination.

1 Introduction

The problem of matching feature points in multiple images is important as a
prerequisite for structure-from-motion or 3D reconstruction from multi-view im-
ages. Feature points are usually defined where high image gradients are observed
in various directions so that they can be differentiated from their neighboring
image points, and typically detected by operators [1–3] including Harris corner
detectors. The task of feature matching is then to determine the set of corre-
sponding points between input images by comparing the local intensity distribu-
tions. Given an image sequence, I(k) (k = 1, 2, · · · ), that is due to relatively small
motion from frame to frame, template matching is often employed by referring
the intensities in small region around a feature point in k-th image, I(k), to find
the corresponding point in the subsequent image, I(k+1).

One of the difficulties in finding the correspondence is to deal with illumina-
tion variance which tends to occur on the surface of a target object, in particular
when it is in motion relative to the light sources. Namely, when the appearance
of an object changes, in principle it is nearly impossible to accurately match a
feature point in one image to another only by the direct comparison of intensity
distributions. Some matches that are obviously wrong can be excluded as out-
liers by RANSAC [10], by investigating the consistency of matches as a group.
However, the remaining matches would still suffer from drifts of feature points
induced by the changes in their appearance.



The principal aim of this paper is to introduce a phase-based method for
feature matching in order to cope with the issue of the drift under illumination
variance. This is motivated for example by previous work of Fleet and Jepson [4]
which shows that phase is amplitude invariant and robust with respect to smooth
shading and lighting variation. Because of the characteristics, phase has been
successfully applied to estimate optical flow [5], or stereo disparity in sub-pixel
accuracy [6, 7]. Also, Carneiro and Jepson [8] have recently proposed a phase-
based local feature. They have empirically shown its improved performance over
differential invariants when dealing with common illumination changes.

In the remainder of this paper, we propose to carry out feature matching
by using local phase of input image which we compute by convolutions with
Gabor filters. We design the filters in various forms both in terms of scales and
directions, and realize a precise matching by effectively combine the outputs. We
also investigate the relevancy of using local phase for feature matching theoreti-
cally on the basis of a shading model of image intensities. In the experiments we
evaluate our propositions in comparison with conventional template matching,
using both CG and real images with illumination variance.

2 Preliminary

Local Phase. This section provides an overview of the phase-based matching
method using 1D signal. The discussion is extended to the case of 2D images in
the next section.

For matching feature points we use local phase which we compute by convo-
lutions of Gabor filters with the input signal. Gabor filter is a complex-valued
function and has a form at point x,

g(x; σ, ω0) =
1√
2πσ

e
−x2

2σ2 (eiω0x − e
−(σω0)2

2 ) , (1)

where σ is a parameter which determines the width of the filter and ω0 the
central frequency of the power spectrum, respectively.1 The term e−(σω0)

2/2 is
added to remove the DC component of the filter. Let c(x0, ω0) be a convolution
of real-function, f(x), and Gabor filter, g(x; ω0), at point x0, i.e. c(x0, ω0) =
(f ∗ g)(x0, ω0). Since c(x0, ω0) is a complex function, we can formulate it as

c(x0, ω0) = ρ(x0, ω0)eiφ(x0,ω0) , (2)

by using two real functions, ρ(x0, ω0) and φ(x0, ω0), which represent local am-
plitude and phase, respectively.

The Principle of Phase-Based Matching. Matching feature points in two
images, I(1) and I(2), by using local phase is basically to find such points that

1 In below, σ is varied together with ω0 so as to maintain the relation, σω0 = π.



have equivalent distributions of local phase. The spatial shift of the signal, d, is
related to the phase difference, ∆φ(ω0), by

d =
∆φ(ω0)

ω0
. (3)

Since ∆φ is limited to the range −π ≤ ∆φ(ω0) ≤ π, d is also limited to
−π

ω0
≤ d ≤ π

ω0
. (4)

Our strategy is to first compute the phase at a feature point z(1) in image I(1)

and then at a point z(2)′ in I(2), which is a candidate to match z(1). Taking the
phase difference, ∆φ(ω0), we can directly derive d by (3), which is the residual
distance between z(2)′ and the point z(2) that precisely corresponds to z(1).
Hence, we can match feature points by the local phase.

Although the discussion above assumes that local phase does not change
between two images, we revisit the relevancy of the assumption in Sect. 4.

3 Phase-Based Feature Matching in 2D Images

3.1 Convolutions with 2D Gabor Filters

To detect local phase in 2D images, we use 2D Gabor filters, g(x, y), which are

g(x, y; ω0, θ0) =
1

2πσ2
e

−1
2σ2 (ẋ2+ẏ2)(eiω0ẋ − e

−(σω0)2

2 ) , (5)

where ẋ, ẏ are defined as(
ẋ
ẏ

)
=

(
cos θ0 sin θ0

− sin θ0 cos θ0

)(
x
y

)
, (6)

and θ0 and ω0 denote the direction and the central frequency of the filter, re-
spectively.

Here, we give a theoretical interpretation to the convolution of a 2D func-
tion and a 2D Gabor filter. Equation (5) can be expressed as a product of two
components, gẋ(ẋ; ω0, θ0) and gẏ(ẏ; ω0, θ0), which are defined to be

gẋ(ẋ; ω0, θ0) =
1√
2πσ

e
−ẋ2

2σ2 (eiω0ẋ − e
−(ω0σ)2

2 ) , and (7)

gẏ(ẏ; ω0, θ0) =
1√
2πσ

e
−ẏ2

2σ2 , (8)

respectively. Using them, we can represent (f ∗ g)(x0, y0), the convolution of a
2D signal f(x, y) and a 2D Gabor filter g(x, y) at point (x0, y0), as

(f ∗ g)(x0, y0) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)g(x0 − x, y0 − y)dxdy

=
∫ ∞

−∞

∫ ∞

−∞
ḟ(ẋ, ẏ)gẋ(ẋ0 − ẋ)gẏ(ẏ0 − ẏ)dẋdẏ

=
∫ ∞

−∞
gẋ(ẋ0 − ẋ)

{∫ ∞

−∞
ḟ(ẋ, ẏ)gẏ(ẏ0 − ẏ)dẏ

}
dẋ , (9)



where (ẋ0, ẏ0) corresponds to point (x0, y0) on ẋ-ẏ coordinate system such that
ẋ0 = x0 cos θ0+y0 sin θ0, and ẏ0 = −x0 sin θ0+y0 cos θ0, respectively. ḟ(ẋ, ẏ) also
corresponds to the signal f(x, y) in this coordinate system, i.e. ḟ(ẋ, ẏ) = f(x, y).
Now, defining the following function of ẋ,

ḟθ0(ẋ) =
∫ ∞

−∞
ḟ(ẋ, ẏ)gẏ(ẏ0 − ẏ)dẏ , (10)

we can interpret (9) as the convolution of the 1D function ḟθ0(ẋ) and a 1D Gabor
filter, gẋ. We call ḟθ0(ẋ) the directional function for direction θ0. ḟθ0(ẋ) turns
out to be a 1D function obtained by convolving a 2D function ḟ(ẋ, ẏ) with the
Gauss function, gẏ, at each point on line ẏ = ẏ0 for the direction of ẏ.

3.2 Issues in 2D Phase-Based Matching

In 2D images, the relation between the difference of local phase and the distance
of two points is formulated as

d · ω0 = ∆φ(ω0) , (11)

where d = (dx, dy) and ω0 = (ω0 cos θ0, ω0 sin θ0) are both 2-vector and d repre-
sents the distance, while ω0 the central frequency of the Gabor filters. However,
different from the case in 1D signal, we cannot determine d directly from ω0 and
∆φ(ω0) since ∆φ(ω0) is a scalar. Therefore we first assume that d′(θ0) is the
projection of d to the direction θ0, and substitute d′ for d in (11). With this,
we can determine d′(θ0) directly, and then calculate d using two estimates of
d′(θ0) for different directions. This is valid when the 2D signal has simple form,
but not always in real images. Moreover, the local phase may become unstable
when the real component of the Fourier transform of the signal is small.

3.3 Integration of Filters by Using Evaluation Function

For the reasons stated above, we employ multiple Gabor filters to compute the
distance, d, and integrate the outputs of these filters. We then apply an evalua-
tion function, Jx,x′(d), of the distance between two points x and x′ that Wiskott
et al. proposed [9] for solving a graph matching problem. When we use N dif-
ferent Gabor filters that have different combination of parameters ω0 and θ0, we
have

Jx,x′(d) =
N∑

j=1

ρj(x)ρj(x′){∆φj(x, x′) − d · ωj}2 , (12)

where ∆φj(x,x′) = φj(x) − φj(x′), and ωj = (ωjx, ωjy) = (ωj cos θj , ωj sin θj).
Since the term ∆φj(x, x′) − d · ωj is a transformation of (11) and should be
zero for proper d in an ideal case, we can obtain d as minimizing Jx,x′(d), and
calculate it directly by solving equations ∂J/∂dx = 0 and ∂J/∂dy = 0 for d. See
Appendix for the details.

By this method we can integrate the outputs of arbitrary designs of Gabor
filters. Moreover, since Jx,x′(d) uses amplitude ρ for weighting, the influence of
unstable phase is attenuated.



Fig. 1. Schematics of the use of multiple filters. Each circle represents the coverage
of a filter. Left one is a sketch of matching in one shot. Right one shows the iterative
matching. The iterative use of filters allows a coverage for wider disparities and a more
reliable matching with filters of higher frequencies.

3.4 The Choice of Filters

Now that we have the method for integrating multiple filters, we need also con-
sider the choice of filters and how to utilize them in practice. We set the pa-
rameters of Gabor filters as a combination of ων = 2−(ν+1)π (ν = 0, . . . , 3) and
θµ = µπ/8 (µ = 0, . . . , 7), and thereby we use 4 × 8 = 32 sorts of Gabor filters.
In integrating these filters, we take a coarse-to-fine strategy. Equation (4) tells
that d obtained from multiple filters is limited to the range |d| ≤ π/ωmax, where
ωmax is the greatest central frequency in the group of Gabor filters.

Thus, we group the filters into several sets by their central frequencies, ων ,
and first use only those with the lowest central frequency. For the obtained
matching points, we compute the residual of the distance using the set of filters
with the second lowest frequency, and iteratively continue this procedure using
filter groups with higher frequencies. In this way, we can use many filters and
obtain more reliable matching even when d has a large value. Figure 1 is a sketch
of this method. In the experiments in Sect. 5, we group 32 filters into four sets
and use all of them for matching.

3.5 Matching Algorithm

We describe the matching algorithm. I(k) (k = 1, 2, . . .) denotes each frame in a
sequence of images.

1. Apply a feature point detector to I(1), obtaining feature points z(1) = (z(1)
1 ,

. . ., z
(1)
m ). Set k = 1.

2. Set points z(k+1)′ = (z(k+1)′
1 , . . . , z

(k+1)′
m ) in I(k+1). These points are candi-

dates which is to match z(k) or close to z(k). When the difference between
I(k) and I(k+1) is small, set z(k+1)′ at the same coordinate as z(k) as the
initial guess.

3. Match feature points by using (12), obtaining the feature points in I(k+1),
i.e. z(k+1). By the coarse-to-fine strategy, repeat matching for several times.
Set k = k + 1, and return to step 2.



4 Analysis of Phase under Illumination Variances

In this section, we analyze the local phase under illumination variances. We
employ the Lambertian reflection model and represent the pixel intensity, L(p),
of a point p under incident light by a light source at infinity as

L(p) = b(p) · l0 . (13)

The 3-vector l0 is the product of the strength of the light source with the unit
vector for its direction whereas the 3-vector b(p) is defined to be the product of
the albedo, η(p), with the inward facing unit normal, b̂(p), for point p. Hence,
b(p) = η(p)b̂(p), and b̂(p) can then be considered to encode the 3D shape of the
surface around p, and η(p) to represent the texture of the object.

The positions of detected feature points are according to η and b̂ since many
of feature points detectors, such as Harris corner detector, extract feature points
at the position where the image gradients are steep in two dimensions. We can
thereby classify feature points into two categories by the parameters which give
rise to high gradient. For these two types of feature points, we analyze the phase
under illumination variances. We first assume 1D signal f(x), which we define
as the pixel intensity at position x as

f(x) = η(x)b̂(x) · l0 . (14)

We then extend the discussions to the case with a 2D signal.

Feature Points due to Texture. First, we analyze the group of feature points
that are detected due to steep gradient of the texture. We assume that these
feature points are only due to texture and b̂(x) is constant, i.e. b̂(x) = b̂0, in the
neighborhood of x. Let f ′(x) be the pixel intensity caused by the incident light
l′0. Since the surface normal is constant, the effect of the change from l0 to l′0 is
uniform and the relation between f(x) and f ′(x) can be written as

f ′(x) = αf(x) , (15)

where α is a coefficient. Let ρ(ω) and φ(ω) be the amplitude and the phase of
f(x) at frequency ω, respectively. Analogously, let ρ′(ω) and φ′(ω) be those of
f ′(x). In frequency domain the relation of (15) corresponds to the change of the
amplitude, and thus we have

ρ′(ω) = αρ(ω) (16)
φ′(ω) = φ(ω) . (17)

Hence, for 1D signals the local phase of a feature point due to its texture is
stable even if the incident light changes. This is also true for 2D signals because
the relation in (15) is not limited to the case with 1D signals.
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Fig. 2. The area where surface normal changes discontinuously.

Feature Points due to Shape. Next, we analyze the group of feature points
due to the shape of an object. In particular we analyze an surface that is com-
posed of two parts of different normal vector, see Fig. 2. We assume the texture
of the parts is constant, i.e. η(x) = η0. Let the coordinate where two different
parts are connected be x = 0, then the normal b̂ can be expressed as

arg b̂(x) =

{
−θb (x ≥ 0)
+θb (x < 0) ,

(18)

where θb denotes the angle between angle bisector of the corner made by the two
different parts and the normal vector of each part. Then the pixel intensity is

f(x) =

{
η0|l0| cos (θl + θb) (x ≥ 0)
η0|l0| cos (θl − θb) (x < 0) ,

(19)

where θl is the angle of l0 defined relative to the angle bisector. Equation (19)
implies that f(x) under illumination variance is not uniform. However, f(x) can
be expressed as

f(x) = au(x) + b , (20)

by using a step function, u(x), and coefficients a and b. Using this expression,
the pixel intensity caused by varying incident light can also be expressed as
f ′(x) = a′u(x) + b′ with coefficients a′ and b′.

In the frequency domain the counterpart of (20) gives

F (ω) = aU(ω) + 2πbδ(ω) , (21)

where F (ω) and U(ω) are the Fourier transforms of f(x) and u(x), respectively.
As we have explained in Sect. 2, the DC component is excluded from the Gabor
filter. Thus, F (ω) = aU(ω). The amplitude and the phase change due to the
variance of incident light as

ρ′(ω) =
∣∣∣∣a′

a

∣∣∣∣ ρ(ω) (22)

φ′(ω) =

{
φ(ω) (a′/a ≥ 0)
−φ(ω) (a′/a < 0) .

(23)
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Fig. 3. Examples of images used in the experiments. (a) CG images. (b) Real images
of a statue captured under different lighting positions. (c) Real images of the statue
captured in different poses.

(a)

(b)Template Matching

(c)Phase-Based Matching

Fig. 4. Matching for CG images. (a) Reference image. (b) Results by template match-
ing. (c) Results by phase-based matching.

This implies that the phase is stable under illumination change as long as a′/a ≥
0, i.e., as long as the sign of θl is unchanged.

For 2D signals, we have seen in Sect. 3.1 that the convolution with a 2D
Gabor filter is attributed to that of directional function ḟθ0(ẋ) for direction θ0

with 1D Gabor filter. Hence the phase is stable under illumination change as
long as ḟθ0(ẋ) for certain directions satisfy the above described condition and
the effect of them are dominant after integrating those functions in (12). In the
next section we use CG simulated images to examine the stability of local phases
experimentally.

5 Experiments

We use three classes of image sequences, including CG images and real images,
for evaluating our method. We compare the results with those obtained by con-
ventional template matching – SAD (Sum of Absolute Difference) of mean sub-
tracted pixel intensities between a template and an input image,2 which reduces
the influence of uniform brightness change.

2 The template size is 9 × 9 pixels and the search area 21 × 21 pixels.



CG Images. Images in Fig. 3(a) are generated by viewing a pyramid shaped
object with diffuse surface from the top, while changing the position of the light
source. Since image gradients are steep in two dimensions at the top of the
pyramid, we define a feature point there in the reference image and match it in
other images.

Figure 4(a) shows the reference image while (b) and (c) show the results
by template matching and phase-based matching, respectively. These results
show that the phase-based matching succeeded in some cases where template
matching failed. In particular, for the leftmost image of Fig. 4(c), the matching
succeeded even though the brightnesses in both side areas have been reversed.
As a whole, in this experiment the phase-based matching turned out to be valid
when the brightest area is common between two images. This result supports
the argument in Sect. 4 that local phase stays constant as long as the change of
the light position is limited to a certain range.

Real Images under a Moving Light Source. We search for matching of
feature points in real images as shown in Fig. 3(b). These images are captured
by viewing a statue from its front, with a light source at 0◦, 5◦, 10◦, 20◦, 30◦

away from the optic axis of the camera to both left and right sides. We use the
image with the light source at 0◦ as the reference image and detect feature points
by Harris corner detector. We then find matching of these points in the other
images. Note that we preclude some of them that are shadowed in some images,
and those on the boundary of the foreground.

Figure 5 shows the results of matching. Figure 5(d) plots the average displace-
ments of the coordinates of the feature points measured from the reference image
for different lighting positions. We can observe that the phase-based matching
gives results with less displacements in all cases.

Real Images of an Object in Motion. We search for feature points in time
series images of a statue which are captured while changing the pose of it as
shown in Fig. 3(c). These images are taken at a rate of 30 frames per second and
we examine a sequence of 40 images. We extract feature points in the first frame
by applying Harris corner detector. Again, we remove those on the boundary of
the foreground and those which are occluded in some frames.

For matching feature points between consecutive images, it is natural to
refer image I(k−1) to obtain a corresponding feature point in image I(k). In this
experiment, however, we choose to determine corresponding feature points in
image I(k) by comparing their local phases or pixel intensities to those in the
first frame, I(1), so that we can deal with the case that illumination variance
under postural change is nontrivial. On the other hand, in order to narrow the
search area, we utilize the coordinates of the feature points in I(k−1) as the initial
estimates of those in I(k).

To evaluate the performance of the feature matching we use epipolar line.
First, we compute the fundamental matrices by using the coordinates of the
feature points in the first frame and those of corresponding feature points in
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Fig. 5. Matching for real images of an object captured under different lighting posi-
tions. (a) Reference image. (b) Results by template matching. (c) Results by phase-
based matching. (d) Average displacements of feature points (in pixels) for different
lighting positions that are defined (in angle) relative to the reference image.
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Fig. 6. Matching for a sequence of real images of an object in different poses. (a) First
frame. (b) Results by template matching. (c) Results by phase-based matching. (d)
Average distances (in pixels) between matched points and the epipolar line in the first
frame.

each of 5, 10, 15, 20, 25, 30 and 35 frames. Then we use them to draw epipolar
lines in the first frame image and check the average distance between matched
points and the epipolar line in each case. Since the distance should become zero
when the matching is ideally computed, we can employ this value as a measure
of accuracy of the feature matching. We assumed affine camera model.

Figure 6 shows the results of matching. Figure 6(d) plots the average dis-
tances between matched points and the computed epipolar line. We can observe
that the phase-based method realizes smaller average distance in all frames.

6 Conclusion

In this paper, we have proposed a phase-based method for feature matching and
analyzed its stability under illumination variances. The method turned out to
show improved results compared to conventional template matching in situations
where illumination changes. In order to discuss the efficiency of our method
more generally, we need further theoretical analysis of local phase under lighting
changes. Analyses on signals which encode continuous changes in the orientation
of objects surfaces would be typical ones. It will also be worth seeking further
efficient ways to select and integrate multiple filters.
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9. Wiskott, L., Fellous, J.M., Krüger, N., von der Malsburg, C.: Face recognition by
elastic bunch graph matching. In: Intelligent Biometric Techniques in Fingerprint
and Face Recognition. CRC Press (1999) 355–396

10. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Second
edn. Cambridge University Press (2004)

A Calculation of Distance from Evaluation Function

From (11), we can calculate d directly by solving equations ∂J/∂dx = 0 and ∂J/∂dy = 0
for d, as

„

dx

dy

«

=
1

ΓxxΓyy − ΓxyΓyx
×

„

Γyy −Γyx

−Γxy Γxx

« „

Φx

Φy

«

, (24)

where ΓxxΓyy − ΓxyΓyx must be nonzero, and Γxy, Φx are

Γxy =

N
X

j=1

ρj(x)ρj(x
′)ωjxωjy (25)

Φx =

N
X

j=1

ρj(x)ρj(x
′)ωjx∆φj(x, x′) , (26)

respectively. Γxx, Γyx, Γyy and Φy are analogously defined by substituting ωjx and ωjy

in (25) and (26).


