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Abstract. This paper presents a method for interpreting facial expres-
sions based on temporal structures among partial movements in facial
image sequences. To extract the structures, we propose a novel facial
expression representation, which we call a facial score, similar to a mu-
sical score. The facial score enables us to describe facial expressions as
spatio-temporal combinations of temporal intervals; each interval repre-
sents a simple motion pattern with the beginning and ending times of the
motion. Thus, we can classify fine-grained expressions from multivariate
distributions of temporal differences between the intervals in the score.
In this paper, we provide a method to obtain the score automatically
from input images using bottom-up clustering of dynamics. We evalu-
ate the efficiency of facial scores by comparing the temporal structure of
intentional smiles with that of spontaneous smiles.

1 Introduction

Facial expression plays an important role in our communication; for instance, it
can nonverbally express emotions and intentions to others. Much progress has
been made to build computer systems that recognize facial expression for hu-
man interfaces. However, these systems have problems; they don’t use enough
dynamic information in recognition, and the classification of facial expression
relies on a fundamental category based on emotions. Most previous systems de-
scribe facial expression based on action units (AUs) of the Facial Action Coding
System (FACS) developed by Ekman and Friesen [13]. An AU is defined as the
smallest unit of facial movement that is anatomically independent and visually
distinctive. FACS is a method for describing facial expression on the basis of
the combination of AUs. FACS, however, has a major weakness; there is no
time component of the description [6]. Furthermore, there may be facial motion
that AUs cannot express because they are heuristic motion patterns classified by
human. It is also important to decide what categories of facial expression are ap-
propriate as the outputs of facial recognition. Most previous systems categorize
facial expression into one of six basic categories (happiness, surprise, fear, anger,
disgust, and sadness) [6]. In human communication, however, facial expression is
classified into one of the more fine-grained categories by subtle dynamic changes
that are observed in facial components: the variety of changes and the timing of
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Fig. 1. The overall flow of facial expression recognition using the facial score.

changes. To capture the subtlety of human emotion and intention, automated
recognition of subtle dynamic changes in facial expression is needed.

In this paper we assume that (1) dynamic movement of each facial compo-
nent (facial part) yields changes of facial expression, and that (2) movement of
facial parts is expressed based on temporal intervals. We define the intervals as
temporal ranges of monotonically changing events that have beginning times,
ending times, and labels of motion patterns (modes) as attributes. We provide a
framework for recognizing facial expression in detail based on timing structures,
which are defined as temporal relations among the beginning and ending times
of multiple intervals. To extract the timing structures, we propose a novel facial
expression representation, which we call a facial score. The score is similar to a
musical score, which describes the timing of notes in music. Using the score, we
can describe facial expressions as spatio-temporal combination of the intervals.

It is important to decide what the definition of modes is in the interval-based
description. Whereas AUs are suitable to distinguish emotional facial expres-
sion, they sometimes do not preserve sufficient dynamic information (e.g., time-
varying patterns) of facial actions. In this paper, we take another approach that
determines a set of modes from statistical analysis and describes facial actions
based on generative models. This approach extracts modes that have enough
dynamic information from the viewpoint of pattern generation, and provides a
unified framework that can be used not only for facial expression analysis but
for facial expression generation. We propose a bottom-up learning method to
find modes from captured real data. In this method, each mode is modeled by
a dynamical system that has an ability of generating simple patterns, and the
modes are extracted from clustering analysis based on the distances between
dynamical systems (see Section 3.3 and 4.2 for details).

In summary, the facial score is characterized as follows:

— It enables us to describe timing structures in faces based on temporal inter-

vals.
— It enables us to use motion patterns extracted from training data in a

bottom-up manner as modes of intervals.



Figure 1 depicts the overall flow of facial expression recognition using the
facial score: (1) we extract a series of feature vectors that characterize facial
expression from a sequence of facial images, (2) we partition the series of feature
vectors and extract the modes simultaneously to obtain a facial score, and (3) we
extract timing structures from the facial score, which contribute to recognition
of the facial expression. Automation of the above process provides for applica-
tions in recognizing facial expression, and therefore allows computers to learn to
recognize facial expression in detail.

The goal of this paper is to propose a method for automatically obtaining the
facial score and to evaluate the efficiency of the facial score for facial expression
recognition. We compare the timing structure of intentional smiles with that
of spontaneous smiles for the evaluation; in human communication it makes
sense to make a distinction between the two smiles, but most previous computer
systems have classified these smiles into the same category.

In Section 2, related works are described. In Section 3, facial scores are in-
troduced as representations that describe timing structures in faces. In Section
4, we describe a method for automatically obtaining the facial score from input
sequences of facial images. In Section 5, we obtain facial scores automatically
from captured real data including intentional and spontaneous smiles, and eval-
uate the efficiency of the facial scores by the separability between the two smiles.
Finally, in Section 6 we conclude our work.

2 Related Works

In psychological experiments, evaluation by playing back facial expressions on
videotape to subjects has suggested the following knowledge of dynamic aspects
of facial movement. Bassili video-recorded the face that was covered with black
makeup and numerous white spots, and found that it is possible to distinguish
facial expression to a certain degree of accuracy merely from motion of the white
spots by playing back the video [2]. As a study concentrating on a more specific
part of facial motion, Koyama, et al. created CG animations with the temporal
relation between eye and mouth movement controlled, and showed laughter can
be classified into pleasant, unpleasant, and sociable types based on the temporal
difference [9]. As a study of analyzing solitary and social smiles, Schmidt, et al.
indicated temporally consistent lip movement patterns based on the evaluation
of the relationship between maximum velocity and amplitude [11]. Hence, the
importance of dynamic aspect in facial expression has been emphasized by many
studies. However, an appropriate representation that maintains spatio-temporal
structures in facial actions is still under study.

3 Facial Scores

3.1 Facial Scores Definition

A facial score is a representation that describes motion patterns of each facial
component and temporal relations between the movement. In this paper we
define the following notations:
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Fig. 2. Facial scores. The vertical axis represents modes of facial parts, and the hori-
zontal axis represents time. The transition of the motion of each facial part is described
based on intervals along the temporal axis.

Facial parts and Facial part sets: Facial parts represent isolable facial com-
ponents. We define facial part sets as P = {Pl, ...,PNP} where N, is the
number of facial parts described by facial scores. For instance, elements of
facial part sets include mouths, right eyes, left eyes, right eyebrows, and left
eyebrows.

Modes and Mode sets: Modes represent monotonically changing events. We

define mode sets as M@ = { (| MJ(\Z?L } where N,,, is the number of

modes of a facial part P, (a € {1, ..., N,}). For instance, elements of mode
sets of a mouth part include “opening”, “remain open”, “closing”, and “re-
main closed”.

Intervals and Interval sets: Intervals represent temporal ranges of modes.
We define interval sets as Z() = {I @ . II(\?k)a } where Ny, is the number of
intervals into which time series data of a facial part P, is segmented. Intervals
I,ia) (k € {1,..., N, }) have beginning times b,(:) € {1,...,T}, ending times
e,(:) € {1,...,T}, and labels of modes representing the events méa) € M@
as attributes where T is the number of time series data of a facial part P,.

Facial Scores: We define a facial score as a set of interval sets of all facial
parts {I(l), ...,I(NP)}. Figure 2 shows a conceptual figure of a facial score.
The vertical axis represents modes of facial parts, and the horizontal axis
represents time. The transition of the motion of each facial part is described
based on intervals along the temporal axis. In each facial part of the figure,
intervals of various colors represent various modes. Thus, the facial score can
describe timing structures among motions of facial parts.

3.2 Facial Parts in Facial Scores

To recognize facial expression based on timing structures, we treat the two areas
where their movements occur independently as different facial parts. Ekman, et
al. have revealed that the difference in the facial appearance of basic emotions
(happiness, surprise, fear, anger, disgust, and sadness) results from the combi-
nation of the three facial areas (around the eyebrows, eyes, and mouth) where
their movements can be observed individually in appearance [5]. We use these



three areas, and furthermore treat areas around the eyebrows and eyes on the
left and right as different facial parts because the asymmetric movements of each
eyebrow and eye can be observed in real facial expression.

It is important to select useful features that can express subtle changes of
movements in the five facial areas. This paper defines feature vectors as coor-
dinates of feature points shown in Figure 5 (a), which can extract information
of movement directly. We consider that transient features such as furrows also
provide effective information in recognition of subtle facial expression, and that
changes of the feature points can represent them indirectly; for instance, move-
ment of feature points on the nose implies nasolabial furrows.

Therefore, we define elements of facial part sets P as right eyebrow, left
eyebrow, right eye, left eye, nose, and mouth. A feature vector z(*) of a facial
part P, is represented by the following 2n,, -dimensional column vector:

-
@) — (xga)7 y§a)a~~’xv(z?a’ y,(L‘i)a) , (1)
where n,, is the number of feature points of a facial part F,, and let (335, a)’ ](,“)>

be coordinates of a feature point number p € {1, ...,n,,}.

3.3 Modes in Facial Scores

As we defined in Section 3.1, each complex movement of a facial part is composed
of simple motion categories, which we call modes. Therefore, a movement can
be partitioned into a sequence of temporal intervals by modes.

Modes are classified into two large categories by the velocity of feature vec-
tors: stationary poses and dynamic movements. For the modes with movement,
we use monotonic motions as the lowest-level representation, whereas humans
sometimes classify a cyclic motion as one category. Therefore, our facial score
represents a cyclic motion as a sequence of monotonic motions. For example, the
open and close action of the mouth is represented as the following sequence of
four modes: “opening”, “remain open”, “closing”, and “remain closed”.

AUs used in FACS are the most common units to describe facial movements.
Although AUs are suitable to distinguish emotional facial expressions by their
combinations, we do not use AUs as the modes in our facial scores for two reasons.
First, a method of AU tracking is still a challenging research topic for computer
vision. Second, AUs sometimes do not maintain sufficient dynamic information in
facial actions. As a result, AU-based CG animation systems sometimes generate
unnatural facial actions. In contrast, our approach takes a bottom-up learning
method to find modes rather than using predefined motion categories, as we
described in Section 1. That is, all the modes are extracted by the clustering of
dynamics from captured real data, as we will see in Section 4.2. For a generative
model of simple dynamics in each mode, we use a first-order linear dynamical
system. The dynamics of the mode M\ (i € {1, ..., N, }) in a facial part P, is
represented by the following notation:

2" = PO 00 4 £ 0 L, (2)



where zt(a) is a feature vector at time ¢, (% ) is a transition matrix, which differs

from other modes’ matrices, f(% 9 is a bias term, w(* ? is a process noise of the
system that has a multivariate Gaussian distribution with mean vector 0 and
covariance matrix Q@ 9.

As a result, each motion transition in each facial part is described based on
the transition of linear dynamical systems, which is similar to a switching linear
dynamical system [3,8]. Therefore, the proposed model can be considered as a
concurrent process of multiple switching linear dynamical systems. We currently
do not model the transition probability between modes to reduce the model
parameters; however, the transition probability will work as constraints during
a mode segmentation process, and can be introduced if specific mode transition
patterns appear frequently.

Given a sequence of feature vectors, we find a rough segmentation using
zero-crossing points of the velocity as the initialization of the method. Then,
we merge the nearest dynamical system pairs iteratively based on agglomerative
hierarchical clustering. A linear dynamical system, in general, can generate not
only monotonic motions but cyclic or oscillating motions. To extract only the
monotonic motions, we propose a method to provide a constraint on eigenvalues
of the transition matrices. We will describe the details of the identification and
clustering algorithms in Section 4.2.

3.4 Timing Structures in Facial Scores

Using facial scores defined in the previous sections, we can represent temporal
relations among motions in facial parts; we refer to the relation as timing struc-
tures of the face. In this section, we describe a method to represent and extract
timing structures from a facial score.

Representation of Timing Structures: Figure 3(a) shows 13 categories of tempo-
ral relations between two intervals I; and I; [1,10]. We can classify the relations
of the two intervals based on the temporal order of four times b;,b;,e; and e;,
where b;(b;) and e;(e;) represent the beginning and ending times of the interval
I;(I;), respectively. Although these categories enable us to represent temporal
structures among multiple events, such as overlaps between two intervals, they
are insufficient for us to describe the difference of timing structures in facial ex-
pressions. We need to concentrate on not only temporal order of events but scales
and degree of temporal differences among beginning and ending times of multi-
ple intervals. In this paper, we extend the 13 categories based on multivariate
distributions of real-valued variables. Using temporal differences between begin-
ning and ending times, we can represent the first-order timing structure of two
intervals as four distributions H(b; — b;), H(e; —e;), H(b; —¢;) and H(e; — b;),
where H(r) is a one-dimensional distribution of variable » € R. We can also
represent the second-order timing structure as six distributions H(b; — b;,e; —
ei), H(bj—b;,b; —e;), H(bj —b;,e; —b;), H(ej —e;,bj —e;), H(ej —e;,e; —b;) and
H(bj —e;,ej —b;), where H(ry, r2) is a two-dimensional distribution of variables
r1, T2 € R. Figure 3(b) shows the example of distribution H(b; — b;, e; — €;),
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Fig. 3. (a) An example of two-dimensional distributions of temporal differences be-
tween two intervals. The temporal order of beginning and ending times provides 13
relations of the two intervals. (b) The horizontal and vertical axes denote the differ-
ence between beginning times b; — b; and the difference between ending times e; — e;
of the two intervals (I; and I;), respectively.

where the horizontal and vertical axes represent the difference between the be-
ginning times and the difference between the ending times, respectively. Rep-
resentations of high-order timing structures become a set of high-dimensional
distributions in the same manner. To represent timing structures among more
than three intervals, for example the first-order timing structure of three inter-
vals I;, I; and Iy, we need 12 one-dimensional distributions H (b; —b;), H (bx,—b;),
and so on.

Ezxtraction of Timing Structures from Facial Scores: The selection of interval
combinations is necessary for calculating the distributions that are described
in the previous paragraphs when we make use of the timing structures for
facial expression analysis and recognition. In our experiments in Section 5,
we selected the combinations based on the following methods. First, we find
combinations of the intervals that belong to each facial part based on tempo-
ral distances. The interval in a facial part P, (b # a,b € {1,...,N,}) that has

the nearest distance from an interval I ,ia) in a facial part P, is calculated as

Il(*b)(l* = argmin, IntervalDist(Ilga)7 Il(b))), where IntervalDist is a distance be-

tween two intervals that is defined as follows:
IntervalDist(I,ia)7 Il(b)) = |b§€a) - bl(b)\ + |6](€a) — el(b)|. (3)

Second, we represent the timing structure as two-dimensional distributions. If
there are clusters in the calculated distributions, we can define successfully more
subtle categories of facial expressions than basic emotional facial expressions.

4 Automatic Acquisition of Facial Scores

In this section, we describe a method for automatically obtaining facial scores
with facial image sequences as the inputs.



4.1 Facial Feature Extraction

We track feature points in facial image sequences using Active Appearance Mod-
els (AAM) [4]. An AAM contains a statistical model of correlations between
shape and grey-level appearance variation. The model can be matched to a tar-
get image rapidly and robustly.

To build the model, we require a training set of images marked with feature
points. Figure 4 (a) shows an example of a face image labeled with 58 feature
points. Let s be a shape vector that represents the coordinate value of feature
points. Let g be a grey-level vector that represents the intensity information
from the shape-normalized image over the region covered with the mean shape.
In the first step, the method applies principal component analysis (PCA) to the
data. Any example image can then be approximated using:

s=5+Uscs , g=g+Uycy, (4)

where 5 and g are the corresponding sample mean vectors, Us and Uy are matrices
of column eigenvectors of the shape and grey-level, and ¢, and ¢, are vectors of
shape and grey-level parameters, respectively. In the second step, because there
may be correlations between the shape and grey-level variation, the method
concatenates the vectors ¢s and ¢4, applies PCA, and obtains a model of the

form
Wees | _ Vs, _
[ . ]_c_{vg]d_Vd, (5)

where Wy is a diagonal matrix of weights for each shape parameter, allowing for
the difference in units between the shape and grey-level models, V is a matrix
of column eigenvectors, and d is a vector of appearance parameters controlling
both the shape and grey-levels of the model.

Note that the linear nature of the model allows us to express the shape vector
s and grey-level vector g directly as functions of d:

s=5+UW,'Vid, g=g+U,V,d. (6)

An example image can be synthesized for a given d by generating the shape-
free grey-level image from the vector g and warping it using the feature points
described by s. During a training phase we learn the relationship between model
parameter displacements and the residual errors induced between a training
image and a synthesized image.

The matching process for tracking the feature points is provided as an opti-
mization problem in which we minimize the difference between a target image
and an image synthesized by the model.

4.2 Modes Extraction

As we postulated in Section 3.3, each mode in the facial expression score is
represented by a different linear dynamical system. In this section, we describe
a method to find a set of modes that corresponds to a set of dynamical systems.
This algorithm is applied to each facial part independently.
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Fig. 4. (a) A training image to build active appearance models. (b) Part of a captured
face image sequence. (c¢) Part of a face image sequence with tracked feature points.

Although there are several approaches to find dynamics in training sequences,
we propose a bottom-up clustering method to extract modes based on an agglom-
erative hierarchical clustering approach described in [7]. The method provides
useful interfaces such as dendrograms to determine the number of clusters.

First, we introduce a constrained system identification method that restricts
an upper bound of eigenvalues in the transition matrix in Equation (2). The
method enables us to find a set of modes that represent only monotonic dynam-
ics. Then, we introduce an agglomerative hierarchical clustering of dynamical
systems with the definition of distance between two dynamical systems. This
algorithm also merges two interval sets that are labeled by the same dynami-
cal system in each iteration. Thus, the clustering methods solve two problems
simultaneously: temporal segmentation and parameter estimation.

Constrained System Identification: The parameter estimation of a transition
matrix F(@9) from a sequence of feature vectors zla’i), - zéﬂa’i) in a facial part P,
becomes an error minimization problem; that is, minimizing squared prediction
error vectors during the temporal interval [1,T] that is represented by the mode
Mi(a). For convenience, we drop index a, which identifies a facial part, in the
remaining of this section because the following clustering method is applied to
each part independently.

The key idea to estimate monotonic dynamics is the method to constrain on
eigenvalues. If all the eigenvalues are lower than 1, the dynamical system changes
state in a monotonic manner (i.e., cyclic or oscillation will not occur and the
state converges to a certain value). Using the notation Zé D= [zgl), e zéle] and
Zfl) [22 )7 e Z,gf)L we can estimate matrix F(®) by the following equation:

Fx — arg I}I?I(i? HF(i)Zéi) _ Zii) ||2 _ 6121m0 ZY)ZSZ.)T(Z( )Z + 82T ) (7)

where I is a 2n,, X 2n,, unit matrix and J is a positive real value. Using Ger-
shgorin’s theorem in linear algebra, we can determine the upper bound of eigen-



values in a matrix from the elements of the matrix. Therefore, we use a nonzero
value for § that controls the scale of values in the matrix; that is, we stop the
limit in the Equation (7) before Z(gl)T(ZOl)Z(gl)T +621)~! converges to a pseudo-
inverse matrix of Zéz).

Clustering of Dynamics: The clustering algorithm of dynamics (modes) is ini-
tialized by a segmentation that partitions the training sequence into motion and
stationary pose intervals, which we call the initial interval set. To calculate the
initial interval set, we simply divide the training sequence by zero-crossing points
of feature velocity (i.e., the first-order difference of feature vectors). In the first
step of the algorithm, one dynamical system is identified from each interval in
the initial interval set. Then, we calculate the distances for all the dynamical sys-
tem pairs based on the distance definition in the next paragraph. In the second
step, the nearest dynamical systems are merged iteratively based on an agglom-
erative hierarchical clustering (see Algorithm 1 in Appendix for details). Finally,
all the modes are merged to one mode. We determine the number of the modes
manually using the obtained dendrogram (i.e., the tree structure that provides
the history of the total distance change).

Distance between Dynamical Systems: We define the distance between two dy-
namical systems (modes) based on a cross check of the prediction errors between
the two modes. In the following equation, we use the notation Z,El_)l and zt(i), which
means that the adjacent feature vectors z;_1 and z; belong to an interval that
is represented by mode M;. The prediction from the vector zt(z_)1 to the feature
vector of time ¢ by the dynamics of the mode M; becomes F(j)zfi_)l. Thus, we
can calculate the prediction error from zt(i) as Et(ilj) = F(j)z,gi)l +fU) — zt(i). Cal-
culating this prediction error for all the adjacent feature vectors in the interval
set Z;, which is represented by the mode M;, we can define the prediction error

from Mj to M; as the following equation:
1 G i5)2 ili)2
EMIM) =5 > (& -5, (8)
Ix€ZL; t=by

where C'is the total interval length of the intervals in the set Z;, which normalizes
the sum of prediction error in a time axis. For the distance definition between
two modes, we take the average

Dist (M;, M;) ={E (M;||M;) + E (M;][M;)} /2, (9)
because the two prediction errors, from M; to M; and from M; to M;, are
asymmetric.

5 Experimental Evaluations

We evaluated the efficiency of our representation for a separation of intentional
smiles from spontaneous smiles using obtained facial scores from captured data.



Video Capturing: Intentional and spontaneous smiles of four subjects were cap-
tured in 240 x 320 at 60 fps as the input image sequences. We used a camera
system that was composed of a helmet and a camera fixed in front of the helmet
to focus on the analysis of front faces. The camera system enabled us to capture
front face images even if head motion occurred. The subjects were instructed
to begin with a neutral expression, make a smile, and return to a neutral ex-
pression again. Intentional smiles were captured by instructing the subjects to
force a smile. Spontaneous smiles were captured by making the subjects laugh.
The subjects were instructed to make either smile iteratively in capturing one
sequence, so that no sequences included both smiles. Figure 4 (b) shows part of
a captured face image sequence.

Automatic Acquisition of Facial Scores: Feature points in the captured face
image sequences were tracked using the method in Section 4.1'. The number of
feature points used in the AAM was set to 5 on each eyebrow, 8 on each eye,
11 on the nose, 8 on the mouth, and 13 on the jawline (refer to Figure 4 (a)).
Although the jawline was not represented as one of the facial parts, it was used
for improving tracking accuracy. Therefore, feature vectors were obtained whose
dimensions for each eyebrow, each eye, the nose, and the mouth were 10, 16,
22 and 16 respectively. Figure 4 (c) shows part of a face image sequence with
tracked feature points; the frames correspond to the images shown in Figure
4 (b). Comparison of the corresponding images demonstrates extremely precise
detection of feature points in changes of facial expression.

The obtained feature vectors of each facial part were segmented into modes
using the method in Section 4.2. Consequently, facial scores of intentional and
spontaneous smiles were acquired. Figure 5 shows the correspondence of the
mouth part of an obtained facial score from spontaneous smiles with the feature
vector series. The vertical axes of the top, the middle and the bottom subfigures
represent x-coordinates of feature points, y-coordinates of feature points and
modes respectively, and the horizontal axes of each subfigure represent time.
Figure 6 shows an example of obtained facial scores from intentional smiles,
and the correspondence it with captured image data. These figures demonstrate
that movement of smiles can be segmented into the following different modes:
“neutral”, “begin smiling”, “smiling”, and “end smiling”.

Comparison of Timing Structures in Intentional and Spontaneous Smiles: As
an example of comparison of timing structures in intentional and spontaneous
smiles, we concentrated on a mode “begin smiling” and examined temporal re-
lations between the beginning and ending times of the mouth, nose and left
eye modes (see Figure 7). 20 samples of each smile were prepared. We used a
two-dimensional distribution H (bpose — Dmouth, Dieye — Dnose), which separated
the two smiles with the highest efficiency, where by,outh, bnose, and bieye are the
beginning times of the mouth, nose, and left eye, respectively. Figure 8 shows the
distributions of four subjects. We see that there are respective clusters in the dis-
tribution of the two smiles in case of subject A, B and C, but that there are not

! Feature points were tracked using the AAM-APT that Stegmann (Technical Univer-
sity of Denmark) developed [12].
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Fig. 5. The correspondence of the mouth part of an obtained facial score from spon-
taneous smiles with the feature vector series. The vertical axes of the top, the middle
and the bottom subfigures represent x-coordinates of feature points, y-coordinates of
feature points and modes respectively, and the horizontal axes of each subfigure rep-
resent time. The numbers of legends in the top and middle correspond to numbers
that represent labels of feature points in Figure 4 (a). For example, the mode 4 and 5
represent “remain open” and “remain closed”, respectively.
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Fig. 6. An example of obtained facial scores from intentional smiles (left and right
eyebrows are omitted).



any clear clusters in case of subject D. We can find similarity between the distri-
butions of subject A and B. On the other hand, we can find difference between
distribution of subject A and C (or subject B and C). Hence, our experimental
result suggests that the timing structures extracted from facial scores have indi-
vidual variation, and the timing structures are effective in discrimination of the
two smiles.

6 Conclusion

We proposed a facial score as a novel facial expression representation. The score
describes timing structures in faces by assuming that dynamic movement of
each facial part yields changes of facial expression. Using the score, we provided
a framework for recognizing fine-grained facial expression categories. In our eval-
uation, the scores were acquired from captured real image sequences including
intentional and spontaneous smiles automatically, and we confirmed that move-
ment of facial parts was expressed based on temporal intervals. We suggested
the individual variation of the timing structures extracted from facial scores and
the efficiency of the timing structures for discrimination of the two smiles.

To emphasize the characteristics of the proposed representation, we focused
on only timing structures in this paper. Other features of movement such as
scale, speed and duration, which provide further information on recognizing fa-
cial expression, should be taken into account in practical systems. We also need
to discuss specificity and generality of timing structures: some structures may ex-
ist as general features determined by physical muscle constraints, and the other
may exist as subject specific features acquired as personal habits. Directions for
future works are to tackle these problems and to evaluate the effectiveness of
timing structures using a large number of captured sequences.
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A Clustering of Dynamical Systems

Algorithm 1 Agglomerative Hierarchical Clustering

for i — 1 to N do

M — Identify 1"

(3

end for
for all pair M”, M(” where M), M € M do

Dist (i, j) < CalcDistance M, M"

end for
while N > 2 do

(1%, j*) < argmin,, ;) Dist (7, j)

7{®) — Mergelntervals '@, I](.f) . MY — Identify T'"

erase MJ@* from M@; N N -1

for all pair ]V[i(a)*, ]\4;‘1) where JW;G) € M@ do
Dist(i*, j) « CalcDistance Mi(f), M](a)

end for

end while

The clustering algorithm is applied to each facial part independently, and extracts

modes (simple motion) in the facial part. Suffix (a) in M® and I®) denotes an index
of facial part. Identify is a constrained s(ystem identification described in Section 4.2,

which estimates the mode parameters 6

) = {F(e D e D from feature vectors in

intervals. Il-(a) is an interval set that comprises intervals labeled by Mi(a). CalcDistance
calculates the distance between the two modes based on Equation (9). Mergelntervals
merges two interval sets that belong to the nearest modes (dynamical systems).
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Fig. 7. Comparison of the two facial scores obtained from intentional and spontaneous

smiles.
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Fig. 8. The two-dimensional distribution that represents the timing structures of the
beginning of intentional and spontaneous smiles. The horizontal axis denotes the dif-
ference between the beginning times of the nose and mouth b,0se — bmoutn, and the
vertical axis denotes the difference between the beginning times of the left eye and nose

bleye - bnose .



