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Abstract

This paper presents a framework for dynamic 3D shape
reconstruction from multi-viewpoint images using a de-
formable mesh model. With our method, we can obtain
3D shape and 3D motion of the object simultaneously. We
represent the shape by a surface mesh model and the mo-
tion by translations of its vertices, i.e., deformation. Thus
global and local topological structure of the mesh are pre-
served from frame to frame. This helps us to analyse the
motion of the object, to compress the 3D data, and so on.
Our model deforms its shape so as to satisfy several con-
straints. This constraint-based deformation provides a com-
putational framework to integrate several reconstruction
cues such as surface texture, silhouette, and motion flow
observed in multi-viewpoint images.

1 Introduction

The problem we consider in this paper is how we can re-
construct dynamic 3D shape from multi-viewpoint images,
which are attracting many researchers.

3D shape reconstruction is a classic problem in com-
puter vision. In recent methods, multi-viewpoint object
images are employed to improve the robustness and accu-
racy. 3D shape reconstruction methods can be categorized
based on 1) the representation of object shape: Volume-
based or surface-based and 2) reconstruction cues:stereo-
based or silhouette-based. To accomplish more stability and
accuracy, recent methods propose frameworks to combine
multiple reconstruction cues. For example, Fua[4] repre-
sented object shape by 2.5D triangular mesh model and de-
formed it based on photometric stereo and silhouette con-
straint. Cross[3] carved visual hull, a set of voxels given by
silhouettes, using photometric property.

On the other hand, 3D motion recovery with known ob-
ject shape is also a classic problem. For example, Heap[5]
proposed human hand tracking from camera images us-
ing deformable hand model. Bottino[1] tracked 3D human
action from multi-viewpoint silhouettes. Vedula[9] intro-
duced a framework to compute dense 3D motion flow from
optical flows with/without object shape.

The problem we consider in this paper isdynamic3D
shape from multi-viewpoint images, which reconstructs ob-
ject shape and motion simultaneously. A naive method for
this problem would be: Step 1. reconstruct 3D shape for
each frame, Step 2. estimate 3D motion by establishing
correspondences between a pair 3D shapes at framet and
next framet +1. However, this approach consists of hetero-
geneous processings. We believe that homogeneous pro-
cessings, i.e., simultaneous recovery is better than hetero-
geneous two step method. Toward simultaneous recovery,
for example, Vedula[10] showed an algorithm to recover
shapes represented by voxels in 2 frames and per-voxel-
correspondence between them simultaneously.

1.1 Approach

In this paper, we present a framework for dynamic 3D
shape reconstruction from multi-viewpoint images using a
deformable mesh model. With our method, we can obtain
3D shape and 3D motion of the object simultaneously.

We represent the shape by a surface mesh model and
the motion by translations of its vertices, i.e., deformation.
Thus global and local topological structure of the mesh are
preserved from frame to frame. This helps us to analyze
the motion of the object, to compress the 3D data, and
so on. Our model deforms its shape so as to satisfy sev-
eral constraints, 1) “photo-consistency” constraint, 2) sil-
houette constraint, 3) smoothness constraint, 4) 3D mo-
tion flow constraint, and 5) inertia constraint. We show
this constraint-based deformation provides a computational
framework to integrate several reconstruction cues such as
surface texture, silhouette, and motion flow observed in
multi-viewpoint images.

In our 3D deformable mesh model, we introduce two
types of deformation: intra-frame deformation and inter-
frame deformation. In the intra-frame deformation, our
model uses visual hull, a result of volumetric intersection,
as initial shape and changes its shape so as to satisfy the
constraint 1), 2) and 3) described above. The volumetric in-
tersection estimates rough but stable shape using geometric
information, i.e., silhouettes, and the deformable model re-
fines the shape using photometric information. In the inter-
frame deformation, our model changes its shape frame by



Figure 1. Input images and visual hull

frame, under all constraints 1), ..., 5). This deforming pro-
cess enables us to obtain thetopologically consistentshape
in the next frame andper-vertex-correspondence informa-
tion, i.e., motion simultaneously.

2 Input Images And Visual Hull

Figure 1 illustrates input images captured by cameras
circumnavigating the object (dancing woman) and visual
hull reconstructed by our volumetric intersection method
proposed in [11] followed by the discrete marching cubes
method[7].

3 Deformable 3D Mesh Model For Intra-
frame Deformation

Using our deformable mesh model for the intra-frame
deformation, we can employ geometric and photometric
constraints of the object surface into its shape reconstruc-
tion process, which are not used in the volume intersection
method, stereo, or the space carving method[8].

Our algorithm consists of the following steps:

step 1 Convert the visual hull of the object: the voxel repre-
sentation into the triangle mesh model by the discrete
marching cubes algorithm and use it as an initial shape.

step 2 Deform the model iteratively:

step 2.1 Compute force working at each vertex re-
spectively.

step 2.2 Move each vertex according to the force.

step 2.3 Terminate if the vertex motions are small
enough. Otherwise go back to 2.1 .

To realize the shape deformation like SNAKES[6], we
can use either energy function based or force based meth-
ods. As described above, we employed a force based

Figure 2. Frame and skin model

method. This is firstly, from a computational point of view,
because we have too many vertices (for example, the mesh
model shown in Figure 1 has about 12,000 vertices) to solve
energy function and secondly, from an analytical point of
view, because one of the constraints used to control the de-
formation cannot be represented as any analytical energy
function (see below).

We employed the following three types of constraints to
control the intra-frame deformation:

1. Photometric constraint: a patch in the mesh model
should be placed so that its texture, which is computed
by projecting the patch onto a captured image, should
be consistent irrespectively of onto which image it is
projected.

2. Silhouette constraint: when the mesh model is pro-
jected onto an image plane, its 2D silhouette should
be coincide with the observed object silhouette on that
image plane.

3. Smoothness constraint: the 3D mesh should be lo-
cally smooth and should not intersect with itself.

These constraints define aframe and skin modelto rep-
resent 3D object shape:

• Suppose we want to model the object in Figure 2 (a).

• First, the silhouette constraint defines a set of frames
of the object (Figure 2 (b)).

• Then the smoothness constraint defines a rubber sheet
skin to cover the frames (Figure 2 (c)).

• Finally, the photometric constraint defines supporting
points on the skin that have prominent textures (Figure
2 (d)).

In what follows, we describe the forces at each vertex
generated to satisfy the constraints.

3.1 Forces at each Vertex

We denote a vertex, its 3D position, and the set of cam-
eras which can observe that vertex byv, qv, andCv respec-
tively. For example,Cv = {CAM2,CAM3} in Figure 3.

We introduce the following three forces atv to move
its position so that the above mentioned three constraints
should be satisfied:



Figure 3. Photometric consistency and visi-
bility

External Force: Fe(v)
First, we define external forceFe(v) to deform the mesh to
satisfy the photometric constraint.

Fe(v) ≡ ∇Ee(qv), (1)

where Ee(qv) denotes the correlation of textures to be
mapped aroundv (Figure 3) :

Ee(qv) ≡
1

N(Cv)

∑

c∈Cv

∥∥∥pv,c− pv

∥∥∥2
, (2)

wherec denotes a camera inCv, N(Cv) the number of cam-
eras inCv, pv,c the texture corresponding tov on the image
captured byc, and ¯pv the average ofpv,c . Fe(v) moves
v so that its corresponding image textures observed by the
cameras inCv become mutually consistent.
Internal Force: F i(v)
SinceFe(v) may destroy smoothness of the mesh or incur
self-intersection, we introduce the internal forceF i(v) atv:

F i(v) ≡
∑n

j qv j
− qv

n
, (3)

whereqv j
denotes neighboring vertices ofv andn the num-

ber of such vertices.F i(v) works like tension between ver-
tices and keeps them locally smooth.

Note that this simple internal force tends to shrink the
mesh model. This is suitable for the intra-frame deforma-
tion because it starts with visual hull which encages the real
object shape. However, in the inter-frame deformation, we
redefine internal force as combination of gravity and repul-
sion between linked vertices asF i(v), and adddiffusionstep
just after step 2.1.
Silhouette Preserving Force:Fs(v)
To satisfy the silhouette constraint described before, we
introduce the silhouette preserving forceFs(v). This is
the most distinguishing characteristics of our deformable
model and involves nonlinear selective operation based on
the global shape of the mesh, which cannot be analytically
represented by any energy function.

Figure 4 explains how this force atv is computed, where
So,c denotes the object silhouette observed by camerac,

Figure 4. Silhouette preserving force

Sm,c the 2D projection of the 3D mesh on the image plane of
camerac, andv′ the 2D projection ofv on the image plane
of camerac.

1. For eachc in Cv, compute the partial silhouette pre-
serving forcef s(v,c) by the following method.

2. If

(a) v′ is located out ofSo,c or

(b) v′ is located inSo,c and on the contour ofSm,c,

then compute the 2D shortest vector fromv′ to So,c

(Figure 4 2©) and set its corresponding 3D vector=

f s(v,c) (Figure 4 4©).

3. Otherwise,f s(v,c) = 0.

The overall silhouette preserving force atv is computed
by summing upf s(v,c):

Fs(v) ≡
∑

c∈Cv

f s(v,c). (4)

Note thatFs(v) works only at those vertices that are lo-
cated around the object contour generator[3], which is de-
fined based on the global 3D shape of the object as well as
locations of image planes of the cameras.
Overall Vertex Force: F(v)
Finally we define vertex forceF(v) with coefficientsα,β,γ
as follows:

F(v) ≡ αF i(v)+βFe(v)+γFs(v). (5)

Fe(v) and Fs(v) work to reconstruct the accurate object
shape andF i(v) to smooth and interpolate the shape. Note
that there may be some vertices whereCv = {} and hence
Fe(v) = Fs(v) = 0.

3.2 Performance Evaluation

Figure 5 illustrates the camera arrangement for experi-
ments, where we useCAM1, . . . , CAM4 for the shape recon-
struction andCAM5 for the performance evaluation. That
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Figure 7. Experimental results. (a) F i(v) alone (α= 1.0,β= 0.0,γ= 0.0), (b)F i(v)+Fs(v) (α= 0.5,β= 0.0,γ= 0.5)
(c)F i(v)+ Fe(v)+ Fs(v) (α = 0.3,β = 0.4,γ = 0.3)

Figure 5. Camera arrangement

is, we compare the 2D silhouette of the reconstructed shape
viewed fromCAM5 position with the really observed one
by CAM5.

Figure 6 shows the initial object shape by the volume in-
tersection using the images captured byCAM1, . . . , CAM4.
The shape is viewed fromCAM5 andCAM1 positions, i.e.
the shaded regions showSm,5 andSm,1, respectively. Bold
lines in the figures highlight the contours ofSo,5 andSo,1.
We can observe some differences betweenSo,5 and Sm,5

while not betweenSo,1 andSm,1. This is because the im-
age captured byCAM5 is used for the reconstruction.

In the experiments, we evaluated our algorithm with
the following conditions : (a)F(v) = F i(v), (b) F(v) =

F i(v)+ Fs(v), (c) F(v) = F i(v)+ Fe(v)+ Fs(v). The first row
of Figure 7 illustratesSm,5 (left) andSm,1 (right) for each
condition associated with the bold lines denoting the corre-
sponding observed object silhouette contours:So,5 andSo,1.
The graphs on the second row show how the average error
betweenSm,c and So,c c = 1,5 changes with the iterative
shape deformation.

(a) CAM5 (b) CAM1

Figure 6. Initial shape. (a) is viewed from
CAM5 in Figure 5, (b) from CAM1

From these results we can get the following observa-
tions:

• With F i(v) alone (Figure 7(a)), the mesh model shrinks
and its 2D silhouette on each image plane becomes far
apart from the observed one.

• With F i(v) and Fs(v), while Sm,c,c = {1. . .4} well
match withSm,c, Sm,5, whose corresponding image is
not used for the reconstruction, does not deform well
(Figure 7(b)).

• With F i(v), Fe(v), andFs(v), Sm,5 matches well with
So,5 (Figure 7(c)). This proves the effectiveness of
Fe(v).

We also evaluated the mesh model with synthetic ob-
jects defined by super quadric functions. Although these
objects had concave portions, the mesh model could recon-
struct such concavity.

Compared with the Space-Carving method[8], which
employs photometric consistency as its main reconstruction
cue, our approach additionally employs geometric continu-
ity and silhouette constraint. Such rich constraints make



our approach more stable and accurate. Moreover, our de-
formable mesh model can be extended to dynamic inter-
frame deformation, which will enable us to analyze dy-
namic object motion and realize highly efficient data com-
pression. The next section describes this inter-frame defor-
mation algorithm.

4 Dynamic Shape Recovery Using De-
formable 3D Mesh Model

If a model att deform its shape to satisfy the constraints
at t + 1, we can obtain shape att + 1 and motion fromt to
t + 1 simultaneously.

Clearly, the constraints used in the intra-frame deforma-
tion should be satisfied and would be enough if we had rich
texture information all over the object surface. To make the
dynamic deformation process more stable, we first modify
the photometric constraint:

1. Photometric constraint(modified): textures of each
patch in the multi-viewpoint images should be consis-
tent in the frames at botht andt + 1.

and then introduce additional constraints:

4. 3D Motion flow constraint: a mesh vertex should
drift in the direction of the motion flow of its vicinity.

5. Inertia constraint : the motion of a vertex should be
smooth and continuous.

Drift Force: Fd(vt)
As described in section 3, we assume that we have silhou-
ette images and a visual hull at each frame. With these vi-
sual hulls, i.e., sets of voxels, we can compute rough cor-
respondences between them by the point-set-deformation
algorithm[2]. This algorithm gives us the voxel-wise cor-
respondence flow fromVt, voxel set att, to Vt+1, voxel set
at t + 1. We can represent this flow by a set of correspon-
dence lines:

Lt = {l i | i = 1, . . . ,N(Vt)} , (6)

wherel i denotes the correspondence line starting fromith
voxel in Vt andN(Vt) the number of voxels inVt. Whereas
visual hulls do not represent accurate object shapes, we can
use this correspondence as roughly estimated motion flow.

Once the motion flow is obtained, we define the potential
field Ed(vt) with this flow. First, letvt denotes a vertex of
the mesh att, qvt

the position ofvt, lvt the closest correspon-
dence line inLt from a vertexvt, plvt ,vt

the closest point on
lvt from vt, andslvt

the stating point of the correspondence
line lvt . Then, we define the potential field as the function of
the distance fromvt to lvt and the distance fromslvt

to plvt ,vt
:

Ed(qvt
) ≡ ‖slvt

− plvt ,vt
‖2−‖qvt

− plvt ,vt
‖2. (7)

Finally, we define the drift forceFd(vt) at vertexvt was the
gradient vector ofEd(qvt

):

Fd(vt) ≡ ∇Ed(qvt
). (8)

Inertia Force: Fn(vt)
If we can assume that the interval between successive
frames is short enough, we can expect the continuity and
the smoothness of the object motion. This assumption tells
us that we can predict a vertex location att +1 from its mo-
tion history.

We can represent such predictions as a set of prediction
lines connectingqvt

and q̂vt+1
, whereq̂vt+1

denotes the pre-
dicted location ofvt+1. Then we can define the inertia force
Fn(vt) just in the same way as the drift forceFd(vt):

Fn(vt) ≡ ∇En(qvt
), (9)

whereEn(qvt
) denotes potential field defined based on the

set of prediction lines.
Overall Vertex Force: F(vt)
Finally we define vertex forceF(vt) with coefficients
α,β,γ,δ, ε as follows:

F(vt) ≡ αF i(vt)+βFe(vt)+γFs(vt)

+δFd(vt)+ εFn(vt). (10)

Each vertex of the mesh is moved fromqvt
according to

F(vt) to getqvt+1
.

4.1 Experimental Results

Figure 8 illustrates the deformation result through 3 suc-
cessive frames. Left, center and right columns of this figure
illustrate real images, visual hulls generated by the discrete
marching cubes method at each frame, and mesh models de-
formed frame by frame respectively. Note that we used the
visual hull at framet as the initial shape of the mesh model,
and did not apply the intra-frame deformation in order to
evaluate the inter-frame deformation exclusively.

From this result, we can observe:

• Our mesh model deforms non-rigidly.

• From topological point of view, although results of the
marching cubes (center column) are globally (as entire
mesh) consistent but locally (for each vertex) incon-
sistent, our mesh model (right column) preserves both
global and local topological structure.

5 Conclusion

In this paper, we proposed a computational framework
using a deformable mesh model to reconstruct dynamic 3D
shape, i.e., full 3D shapes and motions simultaneously. We
believe that simultaneous recovery approach, i.e., homoge-
neous processing scheme is better than the heterogeneous
approach which recovers shapes first and then recovers mo-
tions from the shapes.

Our constraint-based deformable mesh model scheme
realizes 1) integration of several reconstruction cues as de-
formation constraints and 2) seamless extension from the
intra-frame deformation to the inter-frame deformation by



Frame Captured image
Visual hull

(by marching cubes) Deformable mesh model

t → =

↓ ↓ ↓

t + 1 →
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t + 2 →

Figure 8. Successive deformation results

adding inter-frame specific constraints. We presented the
design of our deformable mesh model and evaluated it in
the intra-frame and the inter-frame deformation.

Using our computational framework, we will be able to
develop more effective 3D motion analysis, 3D data com-
pression, and so on.
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