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Abstract

This paper is aimed at presenting a new algorithm for
multi-path interference resolutions under mirror-based full
3D capture using a single correlation-based ToF camera.
Our algorithmdoes not require additional captures or device
modifications, and resolves the interference using a single
ToF sensing that is also used for the 3D reconstruction as
well. Evaluations with real images prove the concept of the
proposed algorithm qualitatively and quantitatively.

1. Introduction
The goal of this paper is to realize a full 3D shape mea-

surement using a single correlation-based ToF (C-ToF) cam-
era with multiple mirrors behind the object. By utilizing the
virtual viewpoints defined by the mirrors, the C-ToF camera
can observe the object from different directions and can fuse
depth-maps into a single full 3D shape.

A challenge in this mirror-based C-ToF sensing is the
multi-path interference of C-ToF illuminations. Since C-
ToF cameras utilize four-bucket sampling [2,13,14] in which
the sensor outputs cross-correlations between an amplitude
modulated infrared illumination cast to and returned from
the scene in order to calculate the depth from the phase delay,
additional illumination paths defined by the mirrors result
in an unreliable depth calculation.

The key idea to solve this problem is to model the multi-
path illumination explicitly by calibrating the mirror geom-
etry in advance. We show that once a depth is hypothesized
for a pixel, the multi-path model allows us to evaluate the
likelihood of the assumption.

Our contribution is twofold. Firstly, we propose a new al-
gorithm which can find a depth where the cross-correlations
returned by the sensor is best described by taking the multi-

path illuminations into account. By utilizing this ourmethod
can estimate the full 3D object shape by alternatingly opti-
mizing the depth and the normal. Secondly we propose a
new mirror calibration which exploits the interference. Our
method can estimate not only the mirror geometry but also
its reflection coefficient simultaneously.

Since our method requires a single regular C-ToF sensing
only, it can be used to capture dynamic objects without
capturing additional frames or device modifications.

2. Related works
Image-based full 3D capture with mirrors has been stud-

ied in the literature for years [3, 9, 15, 19]. In the context of
active stereo with mirrors, Lanman et al. proposed an ortho-
graphic pattern projection [15] and Tahara et al. proposed
an epipole-centered structured patterns [19] by making pat-
terns projected from different paths do not collide spatially
on the object surface.

On the other hand, as described in [2, 7, 13], multi-path
illuminations from the light source to a correlation-based
ToF pixel result in a wrong estimation of the depth, since it
depends on computing correlations between the temporally-
modulated source and the received light signals. This prob-
lem is known as multi-path interference, and frequency-
division or time-division multiplexing can be a practical
solution if it is caused by modulated illuminations from dif-
ferent C-ToF cameras.

Otherwise the interference occurs due to multiple reflec-
tions from a single light source, and a major difficultly is to
estimate the target 3D structure and the multiple light paths
simultaneously since the multiple paths depends on the 3D
structure which is unknown at the capture timing.

To solve this problem there exist several approaches
which utilize special devices [17, 20, 21], special illumi-
nation patterns [4, 6, 8, 11, 12], Lambertian scene assump-
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Figure 1: ToF camera. The camera and the light source do
not coincide physically, but such displacement is assumed
to be calibrated for each pixel.

tions [5,10], etc. They utilize multiple captures of the scene
or involve computationally expensive optimizations.

Compared with such studies, this paper proposes an algo-
rithm that does not require special modifications to the ToF
camera and the light source, similarly to [5, 10]. That is,
our method can be operated only with the raw capture data
of a single frame originally returned by off-the-shelf C-ToF
cameras. The main difference with [5,10] is the fact that our
algorithm explicitly calibrates the mirrors that causes the in-
terference, and the mirror calibration allows us a pixel-wise
simple depth correction while [10] solves an inverse ren-
dering to synthesize the observation. In addition, this paper
proposes a mirror calibration utilizing the interference itself.

3. Measurement model
3.1. Correlation-based time-of-flight camera

As illustrated in Figure 1, the time-of-flight principle
measures the distance to the target by measuring the time in
which the light emitted from the camera travels at the speed
c hits the target at d distance and then travels back to the
camera in time τ:

d = cτ/2. (1)

Since measuring τ is not a trivial task in particular for
short-range measurement, correlation-based ToF (C-ToF)
cameras modulate the amplitude of the emitted light in the
time domain, andmeasure the phase delay between the emit-
ted and the received light signals. Let S(t) denote the emitted
light signal modulated at f Hz:

S(t) = cos 2π f t. (2)

The received light can be modeled as

G(t) = A cos (2π f t + ψ) + B, (3)

where A is the attenuation caused by the reflection and the
distance the light traveled. B denotes the background il-
lumination. ψ is the phase delay caused by the round-trip
distance from the camera to the target:

ψ = 2π f τ. (4)

In order to estimate the phase ψ, C-ToF sensors utilize
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Figure 2: Mirror-based multi-view measurement

the correlation between S(t) and G(t):

C(τ) = S(t) ∗ G(t)

= lim
T→∞

1
T

∫ T
2

− T
2

G(t)S(t + τ)dt

= A
2 cos(ψ − 2π f τ) + B. (5)

That is, C-ToF sensors output four correlation values of Eq
(5) where 2π f τ = 0, π/2, π, 3π/2:

C0 = C(0) = A
2 cos(ψ − 0) = A

2 cosψ + B, (6)
C1 = C( π2 ) = A

2 cos(ψ − π
2 ) = A

2 sinψ + B, (7)
C2 = C(π) = A

2 cos(ψ − π) = − A
2 cosψ + B, (8)

C3 = C( 3π
2 ) = A

2 cos(ψ − 3π
2 ) = − A

2 sinψ + B, (9)

and estimate the parameters A, B and ψ in G(t) by

ψ = 2π f τ = arctan
(

C3 − C1
C2 − C0

)
, (10)

A =
1
2

√
(C3 − C1)2 + (C2 − C0)2, (11)

B =
1
4

(C3 + C2 + C1 + C0). (12)

This algorithm is called four-bucket sampling [2,13,14], and
we propose an extension of this for multi-path cases.

3.2. Mirror-based multi-view imaging

Figure 2 illustrates the measurement model. A C-ToF
camera observes the target at p directly and also indirectly
at p′ via a mirror of normal n and the distance d from the
camera center. Here the point p′ is the mirror of p given by:

p = p′ + 2tn, (13)

where t denotes the distance from p to the mirror plane. The
projection of p′ to n gives

t + d = −n> · p′. (14)

From these two equations, we obtain

p = −2(n> · p′ + d)n + p′. (15)
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Figure 3: Interference by direct and indirect illuminations.
The direct illumination (red) travels 2d1, and the indirect
one (blue) travels d1 + d2.

This can be rewritten as

p̃ = S p̃′ =
[

H −2dn
01×3 1

]
p̃′, (16)

where H = I3×3−2nn> is Householdermatrix and x̃ denotes
the homogeneous coordinate of x.

3.3. C-ToF interference by direct and indirect illu-
minations

As illustrated in Figure 3, suppose a C-ToF camera pixel
observes a point on the object surface such that it is illumi-
nated directly by the light source (red) as well as indirectly
via a mirror (blue). In this case the reflected light can be
modeled as

G(t) = G1(t) + G2(t)
= A1 cos (2π f t + ψ1) + A2 cos (2π f t + ψ2) + B,

(17)

and the correlation can be given by

C(τ) = S(t) ∗ (G1(t) + G2(t))
= S(t) ∗ G1(t) + S(t) ∗ G2(t)

=
A1
2 cos(ψ1 − 2π f τ) + A2

2 cos(ψ2 − 2π f τ) + B.
(18)

Hence the four correlation values at 2π f τ = 0, π/2, π, 3π/2
satisfy



cosψ1 cosψ2 1
sinψ1 sinψ2 1
− cosψ1 − cosψ2 1
− sinψ1 − sinψ2 1





A1
2
A2
2
B


=



C0
C1
C2
C3



. (19)

From this equation, we obtain B = 1
4 (C0 + C1 + C2 + C3)

as done in Eq (12) and
[
cosψ1 cosψ2
sinψ1 sinψ2

] [
A1
A2

]
=

[
C0 − C2
C1 − C3

]
, (20)

by subtracting the even rows and odd rows in Eq (19).
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Figure 4: Four-bucket sampling on mirrored image pixels.
The direct illumination to the mirrored object (red) travels
2d2, and the indirect one to the same target point (blue)
travels d1 + d2.

3.3.1 Four-bucket sampling on real image pixels

Suppose the mirror parameter S in Eq (16) and also the
intrinsic parameter K of the C-ToF camera are calibrated
beforehand. If we assume the distance to the object projected
to a pixel q is d1, then we can obtain the distance to its mirror
as follows.

The position of a 3D point projected to a pixel q of the
C-ToF camera is given by

p =
d1K−1 q̃

‖K−1 q̃‖
, (21)

where d1 is the distance from the camera to the 3D point,
and its mirror is given by

p̃′ = S p̃. (22)

Hence by computing the length of p′ as d2, the round trip
distances of the direct and the indirect illuminations are
given as 2d1 and d1 + d2.

Once obtained such distances, then Eqs (1) and (4) return
the corresponding delays τi and the phases ψi (i = 1, 2)
immediately. Therefore, the left-side 2×2 matrix of Eq (20)
can be expressed as a function of d1:

Ψ(d1) =
[
cosψ1 cosψ2
sinψ1 sinψ2

]
, (23)

and we can solve Eq (20) for A1 and A2 as
[
A1
A2

]
= Ψ−1(d1)

[
C0 − C2
C1 − C3

]
, (24)

for the hypothesized d1.

3.3.2 Four-bucket sampling on mirrored image pixels

Similarly to Section 3.3.1, we can consider a four-bucket
sampling for pixels corresponding to mirrored images as
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Figure 5: Multi-path illuminations. The direct light (red)
illuminates the object with the angle θ1, and the indirect one
(blue) illuminates with the angle θ2 via the mirror of the
reflectance coefficient ρ.

illustrated in Figure 4. In this case the target is illuminated
as same as Figure 3, but the reflected light is captured by the
camera via the mirror. Therefore, the two light path lengths
are given as d1 + d2 and 2d2.

4. Analysis by synthesis approach
Eq (24) returns A1 and A2 once a depth d1 to the target

is hypothesized. In other words, this equation itself cannot
determine if the hypothesized d1 was correct or not. This
section proposes an algorithm that seeks the best depth d1
for each pixel by examining a goodness of the returned A1
and A2 for possible d1 candidates by introducing a surface
reflection model.

As illustrated in Figure 5, both the direct and the indirect
illuminations are delivered to the camera along the same
path once they are reflected at the object surface. Hence the
difference on A1 and A2 can be modeled by considering how
they illuminate the object from different directions.

By considering the illumination attenuation by the inverse
square of the distance and the reflectance coefficients of the
mirror and the surface, the difference on A1 and A2 can be
modeled as

A2 =
R2
R1

d2
1

d2
2
ρA1, (25)

where ρ is the reflectance coefficient of the mirror and R1
and R2 are the reflectance coefficients of the object surface
for each illumination. d1 and d2 are the direct and the
indirect distances from the light to the surface.

While there existmany analytical [18] and learning-based
[16] reflection models, we here employ Lambertian model
in which the reflection depends only on the incident light
angle:

A2 =
cos θ2
cos θ1

d2
1

d2
2
ρA1, (26)

where θ1 and θ2 denote the incident angles to the object
surface (Figure 5).

Notice that Eq (26) requires the object surface normal
to compute the incident angles while the 3D shape itself
is unknown. This is a chicken-and-egg problem and we
solve this by an iterative approach as described later. In
other words, our algorithm assumes the normals to be given
in estimating the depth, and considers that cos θ2

cos θ1
is also a

function of d1 for a particular pixel q.
As a result, Eq (26) can be expressed as

A2 = α(d1)A1, (27)

and hence Eq (20) can be rewritten as
[
cosψ1 cosψ2
sinψ1 sinψ2

] [
A1

α(d1)A1

]
= Ψ(d1)

[
A1

α(d1)A1

]
=

[
C0 − C2
C1 − C3

]
.

(28)

This is an overconstrained system for A1 and the MLE is
given by

A∗1 =
1
2

(
C0 − C2

cosψ1 + α(d1) cosψ2
+

C1 − C3
sinψ1 + α(d1) sinψ2

)
.

(29)

Inversely we can evaluate how the hypothesized d1 as well
as the surface normal are correct by measuring

E(d1) =

Ψ(d1)

[
A∗1

α(d1)A∗1

]
−

[
C0 − C2
C1 − C3

]
. (30)

The same discussion can be applied for mirrored image
pixels in Section 3.3.2, by substituting Eq (26) with

A2 =
cos θ1
cos θ2

d2
2

d2
1

1
ρ

A1. (31)

5. Mirror-based full 3D shape measurement
Given the objective function E(d1) in Eq (30), we can

introduce an algorithm that alternatingly estimates the 3D
shape as well as its normal as follows.

Step 1. Capture the object with mirrors, and obtain four
correlation values for each pixel.

Step 2. Initialize the normal corresponding to each pixel by
using the depth-map without considering interfer-
ence.

Step 3. Find the best depth for each pixel by seeking the best
d1 that minimizes E(d1) (Eq (30)).

Step 4. Update the normal using the estimated depth-map
and repeat Step 3 until the estimated depth con-
verges.



In computing the normal for each pixel, we simply as-
sumed that it is approximated by the average of the surface
normals of four 3D triangles defined by each pixel and its
four neighboring pixels. Let p(q) denote the 3D point cor-
responding to a C-ToF pixel q. By denoting the four neigh-
boring pixels of a pixel q in question as qi (i = 0, . . . , 3) in
CCW order in the image plane, the surface normal at p(q)
is approximated by

1
4

3∑
i=0

ei × ei+1 mod 4

‖ei × ei+1 mod 4‖
, (32)

where ei = p(qi) − p(q).

6. Mirror calibration
Obviously the 3D shape estimation quality by the pro-

posed algorithm depends on the quality of the mirror param-
eters, i.e. its geometry S in Eq (16) as well as the reflectance
coefficient ρ in Eq (26). This section introduces a new cal-
ibration method of these parameters by using a reference
object that follows the reflection model assumed in Section
4.

Suppose a reference object with well-localizable feature
points, such as a chess board, is located where the capture
target is supposed to be positioned, and it is captured by the
fixed C-ToF camera with and without mirrors. The capture
without the mirrors returns the ground truth 3D geometry of
the feature points since it does not involve any interferences.
The capture with mirrors returns a 3D geometry of the same
feature points distorted due to the interference.

The goal of the calibration is to estimate the optimal
mirror parameter such that it minimizes Eq (30) for the
depth given by the ground truth 3D geometry, and it can be
formulated as a non-linear optimization problem as follows.

Let the number of feature points found in the reference
object be N , the ground truth depth for i-th feature point be
d̂i

1. The calibration parameters consist of the mirror normal
n, the distance d, and the reflectance coefficient ρ. Given n
and d, we can compute the mirrored position of each ground
truth 3D points by Eq (16), and the corresponding distance
d2. Hence Ψ(d1) in Eq (30) can be expressed as Ψ(n, d).

Similarly since α(d1) is a function of ρ, d1 and d2, it
can be expressed as α(n, d, ρ). Here the ground truth 3D
geometry of the reference object can be used to provide the
object surface normal to compute θ1 and θ2 for α(n, d, ρ)
(Eq (26)).

As a result, Eq (30) can be used as an error function of
n, d, and ρ for each of N feature points, and their optimal
values can be given by solving:

min
n,d,ρ

N∑
i=1

(
E(n, d, ρ) |d1=d̂

i
1
+ E ′(n, d, ρ) |d1=d̂

i
1

)
, (33)

(a) Side-view (b) Top-view

Figure 6: Capture environment

Figure 7: Captured ToF image

where E(n, d, ρ) |d1=d̂
i
1
and E ′(n, d, ρ) |d1=d̂

i
1
denote the er-

rors for i-th feature point on the pixels corresponding to the
real and mirrored images (Eq (27)).

7. Evaluations
7.1. Environment

As shown in Figure 6 we used a C-ToF camera (PMD
CamCube 3.0, 200 × 200 resolution, 20 MHz modulation
frequency) to capture the object. The twomirrors are located
behind the object with approximately 120◦, and they are
calibrated by the algorithm in Section 6.

7.2. Quantitative evaluations

To evaluate the proposed algorithm quantitatively, this
section shows results for a flat chessboard captured with a
single mirror (the left-side mirror in Figure 6). Figure 7
shows the image captured by the ToF camera. This is the
amplitude image given as A by Eq (11). The right and the
left patterns in this image correspond to the real and its
mirrored images of the board.

Figures 8 and 10 show results returned by the original
four-bucket sampling algorithm without interference reso-
lutions. The former corresponds to the real image (the
right-side pattern of Figure 7), and the latter corresponds
to the mirrored image (the left-side of Figure 7). In these
figures, (a) and (b) clearly shows that the 3D points captured
with the mirror (blue points) are largely distorted from the
ground truth (green and red points). Here the ground truth
3D points in the real image are captured by removing the
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Figure 8: 3D geometry returned by the ToF camera under interferences (real images). Green: ground truth, blue: under
interference.
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Figure 9: 3D geometry corrected by the proposed method (real images). Green: ground truth, red: proposed.

mirror from the scene to eliminate multi-path illuminations.
For the mirror image side, the estimated 3D points are mir-
rored to the real side to be compared with the ground truth.
Figures (c) show the histograms of displacements w.r.t. the
ground truth.

The red points in Figure 9 and the green points in Figure
11 show results by the proposed method. The green and the
red points are the ground truth. Compared with Figures 8
and 10, (a) and (b) prove the displacements arewell corrected
qualitatively. This point is also verified quantitatively by the
histograms in (c) in which the residual displacements are
approximately centered at zero.

7.3. Full 3D reconstruction

Figure 13 shows two objects Prism and Box used to eval-
uate our method in terms of full 3D shape capture with
mirrors.

Figure 13(a) shows the 3D points captured without the
mirrors. While it includes areas visible from the original
camera viewpoint only, we use this as a reference. Figure
13(b) shows the result by the proposedmethod. The blue and
the red points are the estimated 3D points from the mirrored

image regions. Compared with the reference, this proves the
concept of our interference resolution.

Figure 14 shows the result of the Box object. The yel-
low points in (b) correspond to the top-surface labeled by
hand and their 3D positions are identical to the points in
(a). Compared with the Prism object case, Figure 14(b)
clearly shows that the estimation fails completely. This is
because the top-surface of the object is illuminated by three
paths (one direct and two indirect illuminations) that is not
assumed in Eq (17).

7.4. Interference by floor

As shown in Figure 15, interferences can be introduced
not only by mirrors but also regular surfaces such as the
floor. Figures 16 and 17 show the 3D points of the upright
surface in Figure 15 by the regular four-bucket sampling and
the proposed method.

Here the green points are the reference points captured
with a black-out curtain over the white floor surface. The
floor geometry and the reflectance is calibrated by capturing
the floor with and without the object to obtain the correla-
tions used in Section 6.
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Figure 10: 3D geometry returned by the ToF camera under interferences (mirrored images). Red: ground truth, blue: under
interferences.
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Figure 11: 3D geometry corrected by the proposed method (mirrored images). Red: ground truth, green: proposed.

(a) Prism object (b) Box object

Figure 12: Capture targets

Figure 17 proves that the proposedmethod can reasonably
resolve the interference caused not only by mirrors but also
by regular surfaces including the floor.

8. Discussions

Degenerated case Eq (24) assumes that the 2 × 2 matrix
Ψ(d1) of Eq (23) is invertible. This assumption holds as
long as its determinant is not zero. Since the determinant is
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Figure 13: 3D reconstruction of prism

given by

det(Ψ(d1)) = cos(ψ1) sin(ψ2) − cos(ψ2) sin(ψ1)

=
1
2

(sin(ψ1 + ψ2) − sin(ψ1 − ψ2))

−
1
2

(sin(ψ2 + ψ1) − sin(ψ2 − ψ1))

= sin(ψ2 − ψ1), (34)

it can be zero if ψ2 = ψ1 + mπ (m ∈ N). This indicates that
the proposed algorithm does not work if the difference of
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Figure 14: Failure case: 3D reconstruction of box

Figure 15: Interference by floor
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Figure 16: Without interference resolution (green: refer-
ence, blue: conventional)
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Figure 17: With interference resolution (green: reference,
red: proposed)

the direct and indirect path lengths is mc
4 f .

Surface Reflection Model Section 4 assumed the Lam-
bertian reflection model to obtain Eq (30). This reflection
model can be replaced with other models [16,18] according
to the capture targets as long as it depends on the incident
and reflected light angles, since the algorithm in Section 5
alternatingly updates the object 3D shape and the normal.

Convergence The alternating algorithm in Section 5 is
not proven to converge theoretically. It should depend on
the initial estimate of the normal which is computed from
the 3D estimate without interference resolutions, we did not
observe such non-convergent cases in our experiments.

Smoothness Constraint The algorithm in Section 4 is a
pixel-wise depth estimationmethodwithout explicit smooth-
ness constraints between neighboring pixels. As done in
many 3D reconstruction studies, we can render the prob-
lem into a MAP-MRF optimization with Eq (30) as the data
term [1].

Simultaneous Estimation The objective function Eq (30)
evaluates the depth of a pixel in question while computing
its mirrored 3D position as a byproduct. This mirrored 3D
point also has a corresponding C-ToF pixel by computing
its projection, and we can evaluate the depth on that pixel
by using Eq (27). That is, instead of estimating the depth
for the real and the mirrored image pixels separately, we can
consider estimating a consistent 3D depth for the both pixels
simultaneously.

9. Conclusion
This paper proposed a new interference resolution algo-

rithm for correlation-based ToF cameras without involving
additional captures nor modifications to the devices.

While it has several points to be further studied as dis-
cussed in Section 8, we believe that this paper proves the con-
cept of the single shot interference resolution for the mirror-
based multi-view environment qualitatively and quantita-
tively.
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