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This paper proposes a new color calibration method for multi-viewpoint im-
ages captured by sparsely and convergently arranged cameras. The main con-
tribution of our method is its practical and efficient procedure while traditional
methods are known to be labor-intensive. Because our method automatically
extracts 3D points in the scene for color calibration, we do not need to capture
color calibration objects like Macbeth chart. This enables us to calibrate a set
of multi-viewpoint images whose capture environment is not available. Exper-
iments with real images show that our method can minimize the difference of
pixel values (1) quantitatively by leave-one-out evaluation, and (2) qualitatively
by rendering a 3D video.

1. Introduction

This paper is aimed at presenting a new color calibration algorithm for

multi-viewpoint images captured by sparsely and convergently arranged cam-

eras (Fig. 1). This type of camera arrangement is used with the intrinsic and

extrinsic camera parameters for 3D shape reconstruction of moving objects [1,2]

or 3D shape reconstruction from Internet photos [3], for example.

Our method (1) estimates 3D points in the scene robustly and accurately from

multi-viewpoint wide-baseline images, and then (2) estimates lens vignetting and

imager response parameters of all cameras simultaneously in order to match the

colors of the estimated 3D points projections.

The contribution of this algorithm is its convenience and practicality. Our

method does not require known calibration objects because we estimate param-
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Fig. 1 Color calibration of sparsely and convergently arranged cameras. (a) Cameras captur-
ing an object, (b) Texture mapping result with an estimated 3D shape of the object,
(c) Close-up images. Top: without color calibration. Bottom: with our color calibra-
tion. The red arrows indicate the boundaries of mapped texture where a texture-source
camera switches to another, and therefore we can check the color consistency there.

eters directly from the original images. Therefore we do not need to carry out

additional capture of calibration objects (Macbeth color checker, for example)

which should be done very carefully and hence known to be time-consuming and

labor-intensive work. In addition, our method can be used for multi-viewpoint

images whose capture environment is not known or lost. This enables us to

estimate the calibration parameters of image sets collected from Internet [3] or

images taken before.

However our method is not designed to estimate the “true” colors of the scene

because we do not have any knowledge about the real colors of 3D points and

just make the colors “consistent” to each other. This is a clear limitation of our

method, and therefore our method does not advance the state-of-the-art of color

calibration in quality.

The rest of this paper is organized as follows. Section 2 briefly reviews related

work. Section 3 describes the first step of the algorithm to obtain 3D points in

the scene robustly and accurately. Section 4 defines the model of the lens and

camera imager. Section 5 proposes our color calibration algorithm and Section 6

shows qualitative and quantitative evaluations.
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2. Related Work

Many studies on multi-viewpoint color calibration have been proposed so far.

The literature can be categorized into two groups. The first group consists in cal-

ibrating imager responses only [4–7], and the second group consists in calibrating

imager responses and vignetting effect simultaneously [8–10].

Our proposed algorithm can be categorized in the second group, nevertheless

it has two differences. The first point is camera arrangement. Conventional

algorithms which calibrate lens vignetting effects and imager responses simulta-

neously assume that the optic axes of the multiple cameras are almost parallel so

that they can expect that two contiguous images share a certain amount of over-

laps [8–10] in pixel level. On the other hand, we only assume that two contiguous

images share some image features. This enables us to apply our algorithm for

cameras in sparse and convergent arrangement (Fig. 1(a)). The second point is

calibration objects. Unlike other approaches, our method uses image features

in the original images, and does not require known objects like “Macbeth color

checker”. Therefore we have an advantage on its applicability. In particular, we

can even apply our method to datasets taken before and cannot capture such

images. However, this point implies that our calibration cannot produce “true”

colors, and just makes colors consistent to each other.

Besides there is another approach that calibrates lens vignetting effect from a

single image [11]. This approach does not depend on the camera arrangement and

therefore can be combined with methods without vignetting correction. However

this approach assumes that the radiometric shading is the dominant shading

in input images. Hence this assumption cannot handle images taken by multi-

viewpoint cameras studio lit by near light sources.

3. Robust and Accurate 3D Point Estimation from Wide-baseline

Camera Images

The algorithm we propose here aims at providing corresponding points between

multi-viewpoint images. These corresponding points will be used to define an

objective function for our color calibration in Section 5. While several feature

point extraction and matching algorithms for wide-baseline non-parallel cameras

(a) (b)

(c) (d)

Fig. 2 Matching based on edge features. (a) rectified images, (b) edge features crossing epipo-
lar lines, (c) texture similarity computation with normal direction optimization, (d) an
example of matched pair. In (d), the red rectangles illustrate the window used to com-
pute the texture similarity, the green lines illustrate the normals, and the blue circles
illustrate the points on the either side of the edge feature.

have been proposed so far [12–14], we propose the following algorithm which

introduces a bi-directional uniqueness constraint to the algorithm by Furukawa

[15] in order to improve the accuracy and robustness of the matching. This is

because we can utilize the intrinsic and extrinsic camera parameters for matching

explicitly.

( 1 ) Extract edge features from the images taken by two cameras c and c′.

( 2 ) Eliminate edge features which do not cross the epipolar lines. Let IE and

I ′E denote the resultant images (Fig. 2(b)). Here the epipolar line at c′

defined by a point e of the edge features in IE can cross several points of

edge features in I ′E . Let E
′ = {e′j |j = 1, . . . , n} be the set of these points.

( 3 ) Compute the texture similarities between e and e′j ∈ E′ using the normal

direction optimization [15] (Fig. 2(c)). Let ê′j denote the point in E′ which

gives the best similarity. To enforce the uniqueness constraint, we accept
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the pair e and ê′j if the similarity between them is significantly better

than the one of the second best pair. Otherwise we reject this pair and

leave e without correspondence in the camera c′ image because matchings

are ambiguous. Here the computation of the similarity should be robust

to the lens vignetting and imager responses. We used the “Zero-mean

Normalized Cross Correlation” function ZNCC(·) which is known to satisfy

this requirement:
Similarity(e, e′j) = ZNCC(e, e′j)

=

∑N
i=1

{
(Ii − Īe) · (I ′i − Ī ′e′

j
)
}

√∑N
i=1(Ii − Īe)2

√∑N
i=1(I

′
i − Ī ′e′

j
)2
,

(1)

where Ii and I ′i are the i-th pixel values in the matching window of e and

e′j of the camera c and c′, and Īe and Ī ′e′
j
are the averages of pixel values

given by Īe =

∑N

i=1
Ii

N and Īe′
j
=

∑N

i=1
I′
i

N .

( 4 ) Validate the uniqueness of the correspondence in the opposite direction

(ê′j → e ∈ E). If there is another edge feature point in IE that has a

comparable similarity with ê′j , reject this pair.

( 5 ) The points of the accepted pair lie on the edge features in IE and I ′E by

definition, and therefore the pixel values on them are ambiguous because

we cannot tell which points fall on either side of the edge feature. Hence

we use two points which exist on the either side of the edge feature, not

the point on the edge feature (Fig. 2(d)).

( 6 ) By iterating the steps from (1) to (4) for all e ∈ IE , we obtain the set of

corresponding points between camera c and c′. We denote this set Pc,c′ ={
⟨pic, pic′⟩ | i = 1, . . . , nc,c′

}
, where ⟨pc, pc′⟩ is a corresponding pair and nc,c′

denotes the number of obtained correspondences.

This algorithm produces a set of corresponding points between two cameras

and is applied to all the possible camera pairs. Note that Pc,c′ is equal to Pc′,c

since we enforce the bi-directional uniqueness constraint.

4. Lens and Imager Response Model

In this paper we model the ideal intensity x of a pixel at distance r from the

optic center of the imager as mapped to the observed intensity x′ by the following

function:

x′ = Gi(V (x, r)), i = {R,G,B}, (2)

where Gi denotes an imager response of R, G, B channel and V (x, r) is the lens

vignetting function described below. This function models the ideal intensity as

distorted first by the lens according to the distance from the optic center and

then distorted by the imager regardless of the radial distance but according to

the color channel.

4.1 Lens Vignetting Model

While there are many vignetting models in the literature [16–18], we use a

simplified Kang-and-Weiss model [11] for simplicity:

V (x, r) = V (r)x, (3)

V (x, r) = VG(r)VA(r)x, (4)

VG(r) = (1− ar), (5)

VA(r) =
1

(1 + (r/f)2)2
, (6)

where VG(r) models a geometric factor by a first order polynomial with a coeffi-

cient a, and VA(r) represents an off-axis illumination factor using the focal length

of the camera denoted by f .

In this paper we assume that the intrinsic parameters including the focal length

are known, but we use another f for this model to keep the applicability of this

lens model as much as possible. Therefore our model has two parameters a and

f for each camera.

4.2 Imager Response Model

We model the imager response simply by a linear function for each color chan-

nel:

Gi(x) = αix+ βi, i = {R,G,B} (7)

As the result of this modeling we have six parameters to estimate for each camera.

Here we do not consider the non-linear gamma correction done in the imager as

we assume machine vision cameras which can explicitly disable this function.

Note that we may omit the superfix R, G, or B hereafter when not necessary.
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5. Color Calibration Algorithm

Using the model from the previous section, we formulate the multi-viewpoint

color calibration problem as a non-linear optimization problem which estimates

the best parameters of the model which minimize the sum of color differences

between corresponding points given by the algorithm in Section 3.

5.1 Color Correction Function

From Equation (2), we have the inverse function which maps a real intensity

x′ to the ideal intensity x:

x = Fc(x
′) =

(x′ − βi
c)(1 + (r/fc)

2)2

αi
c(1− acr)

, i = {R,G,B}, (8)

where fc, ac, αc and βc denote f , a, α and β of camera c respectively.

5.2 Objective Function

The function to compute the color differences after color correction of a pair of

corresponding points ⟨pic, pic′⟩ given by two cameras c and c′ is

E(⟨pic, pic′⟩) =ρ
(
Fc(xpi

c
)− Fc′(xpi

c′
)
)

=ρ

(
(xpi

c
− βc)(1 + (r/fc)

2)2

αc(1− acr)

−
(xpi

c′
− βc′)(1 + (r/fc′)

2)2

αc′(1− ac′r)

)
,

(9)

where xpi
c
and xpi

c′
denote the observed intensity at pic and pic′ . ρ(·) denotes a

robust estimator, such as the pseudo-Huber function [19]:

ρ(δ) = 2b2

(√
1 +

δ2

b2
− 1

)
(10)

where b is a parameter determined by heuristics.

With this function we define an nc,c′ dimension error vector of the color differ-

ences between cameras c and c′ for each color channel as

Ec,c′ =
(
E(⟨p1c , p1c′⟩), . . . , E(⟨pnc,c′

c , p
nc,c′

c′ ⟩)
)⊤

, (11)

where Pc,c′ denotes nc,c′ corresponding points between c and c′ as defined in

Section 3. Finally by concatenating Ec,c′ over all
N(N−1)

2 pairs from N cameras,

we define the total error function E0 by

E0 =
(
E⊤

1,2 E⊤
1,3 . . . E⊤

N−1,N

)⊤
. (12)

Note that here E0 does not depend on the order of cameras since the bi-directional

constraint in Section 3 makes Pi,j equal to Pj,i and therefore Ei,j is equal to Ej,i.

This E0 measures how the parameters can reduce the color differences of a

channel across multiple cameras. However E0 → min has a trivial solution αc =

∞ which makes all pixels to be saturated. Therefore we introduce a constraint

term which represents the fidelity to the original pixel values. Suppose we have

nc corresponding points for camera c among all the other N − 1 cameras and

the j-th point of them is denoted by pjc. We define the fidelity term of a color

channel as

D0 =
(
D⊤

1 . . . D⊤
c . . . D⊤

N

)⊤
, (13)

where Dc denotes the per-camera fidelity function defined as

Dc =
(
Dc(p

1
c), . . . , Dc(p

nc
c )
)⊤

. (14)

Here Dc(p
j
c) is a point-wise fidelity function and in this paper we used the fol-

lowing squared error function:

Dc(p
j
c) =

∥∥∥xpj
c
− Fc(xpj

c
)
∥∥∥2 . (15)

By integrating E0 and D0 from all color channels with a weighting factor λ we

obtain the final objective function to be minimized as

E =
(
ER

0

⊤
EG

0

⊤
EB

0

⊤
λDR

0

⊤
λDG

0

⊤
λDB

0

⊤)⊤
. (16)

The above-defined objective function E (Equation (16)) has 8N parameters to

estimate for N cameras. We assume that we can obtain at least 8 corresponding

points for each camera by the algorithm described in Section 3, and estimate

these parameters using Levenberg-Marquardt method. Here we use the following

initial values αc = 1, βc = 0, ac = 1, fc = f̃c, where f̃c denotes the focal length

of the intrinsic parameter of camera c.

6. Evaluation

6.1 Evaluation using Reference Object

First, in order to evaluate the color calibration process without the corre-

sponding point estimation step, we estimated the color calibration parameters

using a reference object from which we can obtain corresponding points with-

out errors (Fig. 3). The six centers of the colored circles and the four centers

of grayscale blocks are extracted as corresponding points. We used 16 UXGA
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Fig. 3 A color chart as known reference object

Fig. 4 Camera arrangement

Fig. 5 Arrangement of the reference object (top view)

cameras (Pointgrey Grasshopper with Kowa LM5JC1M lens) running at 30fps

as shown in Fig. 4, and captured the reference object 9 times to uniformly cover

the entire region of the scene (Fig. 5). Figure 6 shows a part of the captured

images. In this experiment, the processing time was approximately 5 minutes by

an Intel Core-i7 860 PC.

Fig. 6 Examples of captured images

Table 1 Averaged color differences at corresponding points

Original Figure 5 Figure 9(a) Figure 9(b)

15.60 8.532 9.635 11.98

Figure 7 shows the result of color calibration. The top-left image shows one

of the input original images and the top-right image shows the calibrated top-left

image. The bottom-left and bottom-right images show input and calibrated im-

ages of all 16 cameras. Note that each image is projected to a virtual viewpoint so

that we can compare the images easily. From these results, especially focusing on

the images with the red borders in Fig. 7, we can observe that we can improve the

color consistency across multi-viewpoint cameras qualitatively. Figure 8 shows

the distributions of color differences in [0:255] at corresponding points before and

after the color calibration. The difference is computed as ∥ER
0

⊤
EG

0
⊤
EB

0
⊤∥. We

can conclude that color calibration with the estimated parameters can reduce the

total color differences quantitatively.
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Fig. 7 Color calibration results. Left: without calibration. Right: with calibration. Top:
camera images. Bottom: images projected to a virtual viewpoint. Images in the
bottom row are projected to a virtual viewpoint so that we can compare them easily.
Images with the red borders indicate a camera corrected clearly.

6.1.1 Distribution of corresponding points

Secondly we conducted an experiment with non-uniformly distributed reference

objects as illustrated in Fig. 9 in order to evaluate how the spatial distribution

of the corresponding points affect the calibration result. In the case of Fig. 9(a)

(Pattern A) corresponding points given by the reference object cover the scene

as same as the case of Fig. 5 but with sparse distribution. On the other hand,

corresponding points cover a limited area of the scene, i.e., the points distributed
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Fig. 8 Color differences in [0:255] on corresponding points

(a) Pattern A (b) Pattern B

Fig. 9 Non-uniform distribution of calibration points

non-uniformly in the case of Fig. 9(b) (Pattern B).

Figures 10 and 11 show the calibrated images of both cases. We can observe

that non-uniformly distributed points (Pattern B) give a clearly inappropriate

result as marked with red borders in Fig. 11(b). Table 1 shows the average

differences of colors at all corresponding points in the nine reference objects.

These values also prove that we cannot improve the color consistency with non-

uniformly distributed points (Pattern B) quantitatively. From these observations

we can conclude that the uniform distribution of corresponding points is more

important compared with the number of points.
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(a) Pattern A (Figure 9(a)) (b) Pattern B (Figure 9(b))

Fig. 10 Calibration results with non-uniformly distributed points

6.1.2 Leave-one-out Evaluation with Parameter λ

Figure 12 illustrates the relationship between (1) numbers of overflowed or

underflowed pixels (red) and (2) calibration errors with respect to the parameter

λ in Equation (16) (green). Here we estimated the calibration parameters for each

λ using eight reference objects (Pattern C in Fig. 13), and used the last reference

object to compute the average color difference (Pattern D in Fig. 13). The blue

line in the graph shows the error without color calibration. In this graph we can

observe that smaller λ (λ ≈ 0) can minimize the error but increase the number of

overflowed or underflowed pixels. This is because the object function (Equation

(16)) can make all the pixels saturated as mentioned earlier (Fig. 14(a)). On the

other hand, by comparing Fig. 14(b), (c) and (d), we can observe that larger λ

(λ > 1) prevents the calibration process minimizing the color differences. From

these observations we can conclude that (1) choosing λ in [0.5 : 1] can be a

reasonable starting point for the calibration, and (2) with λ in that range our

algorithm can improve the color consistency qualitatively and quantitatively even

for the area not involved in the calibration. In this paper we used λ = 0.75 for

all calibrations.

(a) Pattern A (Figure 9(a)) (b) Pattern B (Figure 9(b))

Fig. 11 Calibration results with non-uniformly distributed points. Images are projected to a
virtual viewpoint for comparison
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Fig. 12 Parameter λ and calibration error
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(a) Pattern C (b) Pattern D

Fig. 13 Reference objects for leave-one-out evaluation

(a) λ=0.01 (b) λ=0.75

(c) λ=1.5 (d) Original

Fig. 14 Calibration results with various λ. Images with the red border indicate a camera
corrected clearly.

Table 2 Vignetting parameters

f a
Zheng et al . 1.286× 103 2.62× 10−6

Proposed 1.159× 103 7.83× 10−8

6.1.3 Comparison with Conventional De-vignetting Method

To evaluate vignetting parameters estimated by our method, we show our de-

vignetting results without the imager response calibration and the result by Zheng

et al . [11]. Zheng et al . use the same vignetting model (Equation (19) of [11]) and

(a) Original (Γr=1.207) (b) Zheng (Γr=0.317) (c) Proposed (Γr=0.546)

(d) Original (Γr=1.368) (e) Zheng (Γr=1.904) (f) Proposed (Γr=1.966)

Fig. 15 De-vignetting results. The top row shows (a) the original, the result by (b) Zheng et
al . [11], and (c) ours for an outdoor scene. The bottom row shows (d) the original,
the result by (e) Zheng’s and (f) ours for a studio scene.

estimates the parameters from a single natural image. We used the camera de-

noted by the red rectangle in Fig 7 (Pointgrey Grasshopper and Kowa LM5JC1M

lens).

The top row of Fig. 15 shows (a) an original natural image, (b) the image de-

vignetted by Zheng et al ., and (c) the image de-vignetted by our parameters. The

de-vignetting parameters f and a for (b) is estimated from this single image by

Zheng’s method. We used the parameters f and a in the result of Figure 7 for (c).

Ours and Zheng’s parameters are described in Table 2. The Γr value in Fig. 15

is the asymmetry measure of radial gradient distribution in the image defined by

Equation (8) of [11]. Zheng et al . have revealed that de-vignetting can be done

by minimizing this asymmetry measure if the image is taken in natural lighting

environment. In this result, we can observe that both Zheng’s and our results

reduce Γr, and they are successfully de-vignetted. Therefore we can conclude

that the de-vignetting quality of our method is comparable to Zheng’s method

while our method does not rely on the asymmetry measure.

The bottom row of Fig. 15 shows the de-vignetting results of a multi-viewpoint

studio image (the top left image of Fig. 16). Note that the image (f) is not equal

to the top left image of Fig. 18. In Fig. 18, the de-vignetting process made the

radial intensity fall-off be flat, and the gain calibration process made the global

intensity lower. On the other hand, here we do not apply the imager response
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Fig. 16 Input images

model in Equation 7 in order to compare the de-vignetting part solely. In this

result, we used the same parameters in Table 2. Because the de-vignetting pa-

rameter is independent to the scene, the parameter estimated by Zheng’s method

for the outdoor scene is valid for this studio scene as well by definition.

However the asymmetry measure Γr is not reduced both in (e) and (f). This

means that de-vignetting cannot be achieved by minimizing this asymmetry mea-

sure based on “the natural image statistics” assumption. From these observa-

tions, we conclude that our algorithm can estimate de-vignetting parameters for

near light sources environment while Zheng’s method cannot work.

6.2 Evaluation using Real Object

Then we evaluated our method using corresponding points estimated from a

real object. Figure 16 shows the input multi-viewpoint images. Figure 17

shows the 3D points computed from point correspondences estimated by the

method described in Section 3. In this evaluation we obtained about 48,000

correspondences over 16 cameras. The processing time was approximately 10

minutes by an Intel Core-i7 860 PC.

Fig. 17 Obtained 3D points

Fig. 18 Calibration results using parameters estimated with the reference object

Figure 19 shows the calibrated images using points estimated from the object

itself (Fig. 17). Images calibrated with parameters estimated by the reference

object (Figure 5) are shown by Fig. 18 for comparison. By comparing the images

marked by red borders in Figs. 16, 19 and 18, we can observe that the calibration
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Fig. 19 Calibration results using points estimated from the real object

(a) (b) (c) (d)

Fig. 20 Texture mapping results. (a) Reconstructed 3D shape [2], (b) Result with the original
images, (c) Result with images calibrated by the reference object, (d) Result with
images calibrated by the real object.

result using the points from the real object is almost equal to the result with the

reference object qualitatively.

Figures 20 and 21 show texture mapping results. We used the method in [2]

to reconstruct the 3D shape, and generate its texture without any blending tech-

(a) (b) (c)

Fig. 21 Texture mapping results (close-ups). (a) Result with the original images, (b) Result
with images calibrated by the reference object, (c) Result with images calibrated by
the real object. Red arrows indicate boundaries of texture mapping where a texture-
source camera switches to another.

nique. While blending multiple camera images can improve the rendering qual-

ity [20], we do not use it in order to emphasize the color-calibration result. The

red arrows in Figure 21 indicate boundaries of mapped textures where a texture-

source camera switches to another. By focusing on these areas, we can observe

that the calibration using the points given by the real object (Fig. 21(c)) pro-

duces smoother texture boundary when compared with the original (21(a)), and

the quality is reasonably equal to that of the result using the reference object

(21(b)). Hence we can conclude that our method can improve the color consis-

tency across multiple cameras with corresponding points estimated automatically

from the object itself.

However, we can observe that calibrated images are still biased to green as

the original images. This bias is originally caused by the reflections from the

green background, and can be found in all camera images. Because our color

calibration algorithm minimizes the color differences without knowing the “true”

color, these global biases cannot be corrected by definition. This is a limitation

of our method.

6.3 Calibration using Multiple Frames

In this evaluation we show a failure case of calibration using features in a single

frame, and then demonstrate that it can be solved by combining feature points

in multiple frames. Figure 22(a) illustrates the studio setup of this experiment.

We used 12 XGA cameras (Sony XCD-X710CR with Fujinon DF6HA-1B lens)

running at 25fps and captured a dance performance (Fig. 22(b)).

Figure 23 shows the original images of frame 0 and images calibrated with
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(a) (b)

Fig. 22 Camera arrangement and input images. (a) 12 XGA cameras. (b) Example frames
taken by one of 12 cameras.

(a) 

(b)

(c)

(d)

Cam1 Cam2 Cam3 Cam4 Cam5 Cam6

Fig. 23 Input and calibration results. (a) Original input images (Frame 0), (b) Calibrated
images using features found in this frame, (c) Calibrated images using features found
in three frames (Frame 0, 100, and 200), (d) Calibrated images using features found
in 21 frames (Frame 0, 10, . . . , 200).

feature points in this frame only. We can observe that the image of camera 2

is over de-vignetted. This is because we have no feature points in such areas in

this frame. By contrast, the results using feature points from multiple frames

do not include such an over de-vignetting (Figs. 23(c) and (d)). For the results

in Figs. 23(c) and (d), we used three frames (0, 100 and 200) and 21 frames (0,

10, . . . , 200) respectively. The processing time was approximately 2, 5, and 60

(a) 

(b)

(c)

(d)

Cam1 Cam2 Cam3 Cam4 Cam5 Cam6

Fig. 24 Input and calibration results. (a) Original input images (Frame 900), (b) Calibrated
images using the parameter of Fig. 23(b), (c) Calibrated images using the parameter
of Fig. 23(c), (d) Calibrated images using the parameter of Fig. 23(d)

(a) (b) (c) (d)
Fig. 25 Texture mapping results (frame 900). (a) Without color calibration, (b) Calibrated

using the parameter of Fig. 23(b), (c) Calibrated using the parameter of Fig. 23(c),
(d) Calibrated using the parameter of Fig. 23(d)

minutes for (b), (c), and (d) by an Intel Core-i7 860 PC respectively. We can

conclude that (1) it is crucial to involve widely distributed feature points and (2)

use of multiple frames can solve this problem.

In addition, Fig. 24 shows calibrated images of another frame not used in the

parameter estimation process. Figure 24(a) shows the original image of frame

900. Figures 24(b), (c) and (d) show the results calibrated by the parameters

of Figs. 23(b), (c), and (d) respectively. We can observe that the estimated

parameters can improve the color consistency of another frame, and therefore we

IPSJ Transactions on Computer Vision and Applications Vol. 2 132–144 (Nov. 2010) c⃝ 2010 Information Society of Japan



143 Object-Oriented Color Calibration of Multi-viewpoint Cameras in Sparse and Convergent Arrangement

conclude that the estimated parameters are reasonably frame-independent.

Besides, Fig. 25 shows texture mapping results of frame 900. In this result, we

can observe that the rendering quality is clearly improved even by the parameter

estimated from a single frame (Fig. 23(b)). This is because the position of the

object is close to the position in frame 0, and therefore the calibration was valid at

least for these areas. This is an important characteristic of our algorithm which

minimizes the color differences on the 3D object surface, not the entire area of

the image. From this observation, we believe that we can extend our approach for

cameras changing their parameter (shutter, gain, hue etc.) by combining frame-

wise calibration with inter-frame color consistency constraints.

7. Conclusion

To improve the color consistency across cameras in sparse and convergent ar-

rangement, we proposed a new method which estimates calibration points auto-

matically from the object in the scene. Our approach does not require capture

of reference objects, which is known to be time-consuming and labor-intensive

work. This also enables us to apply this method for images already taken by cam-

eras without color calibrations, like images collected via Internet. In addition we

can extend this technique for images taken with dynamic camera parameters

(auto-exposure) typically used in outdoor environment by introducing additional

constraint on inter-frame color consistency.

On the other hand, the quantitative evaluation by Table 1 shows that our

method cannot make the color differences across cameras to be zero exactly. This

is because we have introduced the fidelity term D0 into the objective function

(Equation (16)). The original idea was to prevent the optimization process to

produce trivial solutions, but this term also prevent the optimization to make

the color differences to be zero when the estimated ideal colors are not close to

the original. As a result, the proposed method produces a set of parameters

which minimizes the color differences as long as the calibrated colors are not

too far from the original colors. In addition to this point, our method (1) does

not consider the non-Lambertian case, and (2) does not estimate the gamma

correction in the imager by assuming machine vision cameras. These points are

left for future work to achieve complete color consistency across multi-viewpoint

non-machine vision cameras.
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