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Abstract

To realize a symbiotic relationship between humans and
computers, it is crucial to estimate the external and internal
state of the human by observation. One promising approach
is to acquire the same visual information as the human ac-
quires. In this paper, we introduce our wearable vision sen-
sor, which is equipped with a pair of active stereo cameras
and a gaze-direction detector. From the visual information
obtained by the wearable vision sensor, we present three ba-
sic three functionalities: a 3D gaze point detection and im-
age retrieval, a 3D digitization of a hand-held object, and
the measurement of a walking trajectory.

1. Introduction

Recently, human-machine symbiotic systems have been
studied extensively. Their most important characteristic is
an ability to interact with a human without manual invoca-
tion, conventional cooperative systems must wait for an in-
vocation event to start interaction. Instead of waiting for an
event, a symbiotic system observes the human physical state
and estimates such emotional states as interest, intention,
sympathy and feeling. Based on the estimation, a symbiotic
system will start to interact with a human as well as syn-
chronize itself with human action. Vision is a crucial tool to
observe a human as well as his environment.

There are two approaches to human observation. One is
the embedded ubiquitous vision in our environment, and the
other is to wear vision. Although, recent progress in elec-
tronics has enhanced the feasibility of ubiquitous embedded
vision, we believe that wearable vision is superior to the en-
vironmental vision, because it shares a similar sight with

the human wearing it. Since, environmental vision does not
have manipulation capability, it is only able to observe hu-
man action from a viewpoint different than the human. On
the other hand, wearable vision, which combines sensory
motion with human vision, can share and experience almost
exactly the same sight as humans. In addition to the realiza-
tion of symbiotic systems, analyzing the sight of the wear-
able vision sensor will foster the study of humans. So, we
have developed a wearable vision sensor[15].

One advance of the wearable vision sensor is that it cor-
responds to human sight. Human vision has both a very pre-
cise resolution at its center and a very wide field of view. In
human vision, eyeball moves from point to point according
to the interest of the human. To emulate human sight, our
wearable vision sensor is equipped with a gaze-direction de-
tector and a pair of active stereo cameras that have pan, tilt
and zoom control features. We have researched the follow-
ing three basic functionalities of the wearable vision sensor.
One is to detect the three dimensional gaze point of humans
and retrieve the image of interest. The second is to digi-
tize the object shape and texture in 3D while it is manipu-
lated by hand. The last is to recover the trajectory of human
movement. In the following section, we present those func-
tionalities one by one and conclude with directions for fu-
ture research.

2. 3D gaze point detection and image retrieval

In this section, we present a method to retrieve the im-
age of the object of interest, by 3D gaze point detection and
camera control.

Wearable vision has been researched in various ways
[7, 5, 10, 17]. The biggest advantage of wearable vision is
that it shares its field of sight with the human who wears



it. However, balancing a wide field of view and resolution
is a problem that must be solved. This research proposes to
solve this problem by using gaze-direction and active cam-
eras. It is also quite natural that a person’s field of vision
strongly reflects his/her interest or attention regardless of
his/her consciousness [4].
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Figure 1. Appearance of active wearable vi-
sion sensor

A human’s viewing line can be measured by a device,
called a NAC Corporation EMR-8, that projects an infra-
red light beam onto an eye and detects its reflection from the
retina (through the iris) and the cornea with an eye-direction
sensor camera. Since the retinal and the cornea reflections
reside on different spheres of the eye, the direction of the
eye can be computed from those two reflections. Our wear-
able vision sensor, shown in Figure 1, uses this device to
measure the gaze-direction. The sensor is equipped with a
pair of SONY EVI-G20 active stereo cameras. Each of the
camera is equipped with pan, tilt, and zoom mechanism,
that are controlled by a computer. The camera is located on
the side of the head. Those three devices are mounted on
an bracket around a helmet to fix the geometrical relation-
ship between the stereo camera and the gaze-direction de-
tector. Their geometrical configuration is calibrated with the
method shown in [15]. This configuration enables the sen-
sor to share the same sight as the human.

In our proposed wearable vision sensor, the first problem
is controlling the active cameras so that they share the same
sight as the human who wears the sensor. The vision sensor
should have the following capabilities:

• To acquire images from a wide field of view, if the hu-
man does not fix the sight.

• To track the human’s gaze.

• To acquire images with high resolution, when the hu-
man fixes his sight on an object.

Since a wide field of view and a view with high resolution
are mutually exclusive, we have developed a control algo-
rithm based on gaze direction. To detect fixation of sight,
temporal average of gaze direction is calculated. If the aver-
aged gaze direction is fixed, the camera is zoomed up, but if
it is changing, the camera is zoomed down. We have also de-
veloped a fast viewing-depth estimation algorithm that uses
stereo cameras and a gaze-direction detector. In the follow-
ing subsection, we will describe the detailed system and its
algorithms.

2.1. Estimation of 3D gaze point

The 3D gaze-point is defined as the intersection of a
viewing line and the viewed object. In Figure 2, cameras
and the gaze-direction detector have been calibrated in ad-
vance. The viewing line is projected onto the screen of each
camera. It is equivalent to the epipolar line of a viewing line.
In the pair of stereo images in Figure 2, from the closest
point to infinity on the viewing line, we assume the depth,
and then crop the corresponding sub-image from the im-
age on each screen. Those two images will match around
the gaze point. Using this epipolar constraint, the number
of trials required to calculate the best match is 10 to 100
times reduced, compared with standard stereo matching.

According to the 3D gaze-point measurement, we con-
trol the pan, tilt, and zoom parameters of the active camera
as follows:

• If the gaze point is moving, the camera is zoomed out
to retrieve a wide viewing field. Pan and tilt are con-
trolled to follow the gaze direction.

• If the gaze point is fixed, the camera is zoomed in to
retrieve a detailed image of the gazed object. The pan
and tilt are controlled to converge toward the 3D gaze
point.

We have implemented the above strategy with a dynamic
memory architecture[13], whose control schematic diagram
is shown in Figure 3. An example of the advantage of this
system is shown in Figure 4. In Figure 4, both the left and
right images are shown in the upper and lower rows, respec-
tively. Each image is superimposed on the epipolar line with
a white line, to represent the gaze direction. A yellow dot is
marked on the 3D gaze point. The left image is taken with-
out camera control, while the right image is taken with cam-
era pan, tilt and zoom control. Based on the vantage point of
the camera control, the gazed object (a computer box) can
be observed in detail.

We have proposed a wearable vision sensor with a gaze-
direction detector and a pair of stereo cameras. We showed
that the 3D gaze point is quickly detected by finding the best
image match along the epipolar line derived from gaze di-
rection. Adding 3D gaze location to the camera control, we
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Figure 2. Optical configuration of wearable
vision sensor and principal 3D gaze-point de-
tection
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can resolve the exclusive difficulty for the viewing field and
image resolution. Our future work will extend this proposal
to include 3D object extraction.

3. 3D Digitization of a hand-held object

The second aspect of our research into the wearable vi-
sion sensor is the digitization of a hand-held object in 3D.
A symbiotic system must recognize the action and feeling
of the human living together. If the object of action is small
enough, it can typically be held and manipulated by hand.
Ideally, the object should be recognized while it is in his
hand. The human feeling to the object in hand should also
be recognized.

Most of the research into observation, based on hand-
held manipulation of objects, has concentrated on the hand-
object relationship[14][6]. But hand-object-view relation-
ships have not been not studied yet. Our biggest concern
is the kind of view that can be acquired from the recogni-
tion of the object and the intention of the human manipulat-
ing it. Introducing the idea of “view” into hand-object rela-
tionships opens a new possibility for estimating human feel-
ings, such as interest and intention, to the object in his hand.
Therefore, our next research target will be 3D-shape extrac-
tion – both of the object and of the hand. In this paper, we
separate the hand-object-view relationship into four typical
cases and analyze what kind of visual information can be
acquired from them.



There have been two major approaches to reconstruct
the 3D shape. One is to use multiple synchronous images
taken by multiple cameras [12]. The other is to use multiple
asynchronous images taken along a time sequence. The syn-
chronous approach can deal with dynamic scenes. However,
the asynchronous approach assumes a static scene, in which
nothing changes along the time sequence, so the images are
equivalent to the synchronous approach. Once connected to
the synchronous model, we can apply such well studied 3D
reconstruction methods as the factorization method [16],
volume intersection [1] [2], and space carving [11]. How-
ever, a hand-manipulated object is obscured by the hands.
During manipulation, each hand changes its shape and loca-
tion relative to the object dynamically, so it is not captured
by the asynchronous single camera approach. Although, a
synchronous approach can solve this problem, it is not suit-
able for our wearable vision. 3D shape extraction of the
hand-held object by a wearable vision sensor presents a new
vision problem.

In this research, 3D shape extraction of a hand-held ob-
ject is regarded as a new class of shape extraction prob-
lem because of the asynchronous images which are captured
when a dynamic occluding object exists.

Our approach is based on vacant space, which is defined
as space that is certain to be vacant. It can be derived both
from silhouettes and from stereo matching. Since the hand
is a dynamic object occluding the static object, the vacant
space will change from image to image and extend its space
until it reaches the boundaries of the static object. Finally,
we can get the 3D shape of the static object without the dy-
namic occlusive object. This paper proposes the following:

1. From the observation viewpoint, we analyzed human
manipulation into four types: shape acquisition, vi-
sual texture acquisition, haptic texture acquisition, and
total-appearance acquisition. We classified the rela-
tionships between the manipulation type and the visual
information that we obtained.

2. We propose a dynamic space carving for 3D shape ex-
traction of a static object occluded by a dynamic ob-
ject moving around the static object. We showed that
by using vacant space, the dynamic object will be elim-
inated along the carving.

3. We showed that the integration in vacant space of a
stereo-depth map and a silhouette improves the effi-
ciency of dynamic space carving.

3.1. Hand-Object-View Relationships

When a person takes an object in his hands and observes
it, it is not possible to acquire all of its information simul-
taneously. When the object is manipulated by hand, its visi-
ble part changes depending on how it is held or the physical

relationship between the object and the hand. We classify
hand-object-view relationships into four classes according
to the information which the holder of the object can ac-
quire.

(a) Shape Acquisition (b) Visual Texture Acquisi-
tion

(c) Haptic Texture Acquisi-
tion

(d) Total Appearance Ac-
quisition

Figure 5. Hand-object-view relationships

Shape Acquisition : The object obscures much of the
hand, so its silhouette is visible. Figure 5(a),

Visual Texture Acquisition : The object is in front of the
hand, so its texture is visible. Figure 5(b).

Haptic Texture Acquisition : The object is wrapped by
the hands. Even though the object can be observed, lit-
tle visual information can be acquired. Figure 5(c).

Total Appearance Acquisition : The object is turned by
the hand, so that a total view, both of shape and tex-
ture, is acquired. Figure 5(d).

Since it is difficult for a computer to distinguish the cap-
tured image in the above examples, we propose to use both
shape and texture for 3D shape extraction, and integrate
them in our proposed vacant space.

3.2. Vacant Space

It is not always easy to distinguish between an object and
a hand, especially if the object is being held in the hand.
Therefore, the object and the hand are observed as one ob-
ject, whose shape is changing in time. This makes it diffi-
cult to apply such conventional techniques as shape from



silhouettes [9] and space carving [11] because they depend
on the correspondence of the texture on the stable object. In-
stead, we propose to detect vacant space, defined as space
which is certain not to be occupied by any object. If va-
cant space is carved, the space occupied by a hand will in-
tersect with the moving hand. The intersection will become
zero if the hand moves in a sufficiently large area. On the
other hand, since the object does not change, the object’s
space will never become vacant space. Therefore, if vacant
space is carved using a long image sequence, only the ob-
ject remains in space.

3.3. Processing Procedure

Based on vacant space detection, the 3D object extrac-
tion is implemented as follows:

1. Capture – A series of stereo images are captured by
the wearable vision sensor.

2. Camera Motion Recovery – First, feature points are
detected by a Harris Corner Detector [8]. The 3D loca-
tion of the feature points are calculated by stereo anal-
ysis for each image. Next, the camera position is esti-
mated by an advanced ICP algorithm [3].

3. Depth Map Acquisition – For each viewpoint, a depth
map is computed by region based stereo analysis.

4. Silhouette Acquisition – For each viewpoint, a silhou-
ette is computed by background subtraction.

5. Carving Vacant Space – The vacant space is updated
by the above silhouette and the depth map.

3.4. Evaluation

First, we have evaluated our algorithm with an object
whose exact dimensions were measured manually. From
22 viewpoints around the object, we extracted a 3D shape
by dynamic space carving. The resultant shape extracted
only by silhouette is shown in Figure 6(b), and the resul-
tant shape by silhouette and texture is shown in Figure 6(c).
These results are compared with the ideal shape shown in
Figure 6(d). The number of the extra voxels and the miss-
ing voxels are shown in Figure 7(a) and (b), respectively.
Figure 7 shows that even only by silhouette, dynamic space
carving can extract the static 3D object shape without the
hand, which is a dynamic occluding object. With silhouette
and texture, the same accuracy can be achieved with fewer
viewpoints. Extraction of a concave shape, which is impos-
sible only by silhouette, is also possible by integrating sil-
houette and texture.

In the second experiment, we applied our algorithm to a
more complex object as shown in Figure 8(a). The images
were captured from 13 viewpoints around the object, and

(a) Captured Image (b) Extraction with silhou-
ette

(c) Extraction with silhou-
ette and texture

(d) Ground truth

Figure 6. Photo frame data set

the obtained silhouettes are shown in Figure 8(b). The ex-
tracted shape does not include the hands as shown in Figure
8(c). After mapping the texture, we obtained the 3D digi-
tized object shown in Figure 8(d).

3.5. Conclusion

First, in this section, we showed that hand-object-view
analysis, and their relationships can be classified into four
types. Then we showed that shape from silhouette and shape
from texture can be integrated in vacant space to extract a
static object partially occluded by hand. Our experiments
confirmed that dynamic space carving can extract the static
object and eliminate dynamic objects around the static ob-
ject. Finally, we showed that the integration of silhouette
and texture enhances the extraction performance.

4. Estimation of human-motion trajectory by
binocular-independent fixation control

In this section, we discuss human-motion trajectory esti-
mation using an active wearable vision sensor. In previous
sections, the sensor shares the view with the human; how-
ever, in this research, the sensor is used for acquiring objec-



(a) Extra Voxels

(b) Missing Voxels

Figure 7. Error analysis of dynamic space
carving

tive information: the field of view from the cameras is inde-
pendent of the person’s.

To estimate human-motion trajectory with two active
wearable cameras, we introduce fixation control, i.e., cam-
era control in which the camera automatically fixates its op-
tical axis on a selected point (called the fixation point) in
3D and applies fixation control independently to each ac-
tive camera. That is, while the person moves, we control the
two active cameras independently so that each camera au-
tomatically fixates its optical axis to its own fixation point.
We call this camera control the binocular-independent fixa-
tion control (Figure 9).

In binocular-independent fixation control, the two cam-
eras need not share a common field of view because each
camera fixates its optical axis on its own fixation point in
3D. We do not face the problem of feature correspondences
between the images captured by the two cameras. More-
over, the estimation accuracy becomes independent of the
baseline of two cameras.

To derive sufficient constraints to estimate human mo-
tion, we employ lines, which we refer to as focused lines,
nearby the fixation point, because (i) we find many lines in
an indoor scene, and (ii) we can easily and accurately detect
lines with less computation by using the Hough transforma-
tion, and (iii) we can easily establish line correspondences

(a) Captured Image (b) Silhouette Image

(c) 3D
shape

(d) 3D shape
with texture

Figure 8. Monster figure data set

over time-series frames due to their spatial extents. The con-
straints derived from line correspondences depend only on
the rotation component of the human motion. We can thus
divide the human motion estimation into two steps: the ro-
tation estimation and the translation estimation.

The first step is the rotation estimation of the camera mo-
tion. We assume a correspondence of n focused lines over
two time-series frames. Then, we have n + 3 unknowns (n
is from the scale factors and 3 is from the rotation), whereas
we have 3n constraints in this case. Therefore, we can es-
timate the rotation of the camera motion if we have more
than two focused lines of correspondences.

When we finish estimating the rotation of the camera
motion, translation are the only factors that need to be
solved. The constraint derived from the fixation correspon-
dence thus becomes homogeneously linear with respect to
the unknowns. Hence, we can obtain the translation of the
camera motion up to scale from two fixation correspon-
dences with only linear computation.



(a) Independent fixation con-
trol

L

C

(b) Line correspondence ge-
ometry (right camera)

Figure 9. Binocular-independent fixation con-
trol and line correspondence.

(a) wide-view representation (b) top-view representation

Figure 10. Camera motion trajectory.

4.1. Experiments

We moved a pair of stereo cameras indoors and created a
simulation of the active wearable vision sensor. The trajec-
tory of the right-camera motion is shown in Figure 10, and
the length of the trajectory was about 6 m. We marked 35
points on the trajectory and regarded them as samples dur-
ing the motion. We then applied the binocular-independent
fixation control only to the samples to estimate the right-
camera motion.

In the images captured by each camera at the starting
point of the camera motion, we manually selected a point to
serve as the fixation point. During the estimation, we man-
ually updated fixation points 8 times. We used two focused
lines for each camera, four focused lines in total. Edge de-
tection followed by the Hough transformation is used for
focused line detection. Figure 11 shows an example of im-
age pairs captured at a marked point. In the image, the fixa-
tion point (the black circle) and two focused lines (the thick
black lines) are overlaid.

(a) left-camera image (b) right-camera image

Figure 11. Example of images acquired by the
two cameras during camera motion.

 

 
 

(a) 3D representation (b) top-view representation

Figure 12. Estimated trajectory of the camera
motion.

Under the above conditions, we estimated the right-
camera motion at each marked point. Figure 12 shows the
trajectory of the right-camera motion, obtained by concate-
nating the estimated motions at the marked points. In the
figure, S is the starting point of the motion.

The height, which is almost constant, from the floor was
almost accurately estimated from the trajectory. As for the
component parallel to the floor, however, the former part
(from S to P in the figure) of the estimated trajectory is
fairly close to the actual trajectory; but the latter part (af-
ter P ) deviates from the actual trajectory. We have a theory
to explain this deviation. Perhaps the motion at P was incor-
rectly estimated, by mistakes in the fixation correspondence
or in the line detection. Since the motion was incrementally
estimated, an incorrect estimation at the marked point re-
sulted in an aberration in the subsequent estimations.

4.2. Conclusion

We proposed a method for incrementally estimating the
motion trajectory of a person wearing our sensor and by us-
ing binocular-independent fixation control, in which each
of the cameras tracks a different point in a different field of
view in the environment. We will address the problem of er-
ror accumulation, in future work.



5. Summary

An active wearable vision sensor and its three important
functionalities are proposed in this paper. First, 3D gaze-
point detection and image retrieval are proposed. They take
advantage of the epipolar constraints given by the viewing
direction and the stereo cameras and the achieved real time
camera control which balances the viewing field and im-
age resolution. Second, 3D digitization of a hand-held ob-
ject is proposed. In this research, the hand-object relation-
ship is classified by appearance variation. Then a new 3D
shape extraction algorithm, which we refer to as dynamic-
space carving, is proposed. The 3D shape of a partially oc-
cluded object is carved out of vacant space, which integrates
both silhouette and texture. Third, a new technique to keep
track of multiple features in a stable environment is pro-
posed to recover human-motion trajectory. The camera con-
trol on a moving platform, which we refer to as binocular-
independent fixation, is equivalent to the tracking of a mov-
ing object from wide-baseline stereo cameras embedded in
the environment. This results in stable tracking and precise
trajectory estimation. Our future work will extend gaze and
manipulation analysis and focus on human observation and
recognition to help a symbiosis between machines and hu-
mans in the near future.
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