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Abstract

This paper compares two methods for estimating illuminatig
distributions from shadows: methods using self shadows &
cast shadowsThe cast shadow methqutovides an fective
framework for recovering illuminations in a real scene utilizin
variations of image brightnesses inside shadows cast by
occluding object of known shape. The shadow surface
typically the same plane on which the object is placed.
new self shadow methois proposed in this paper in which
the shadow surface is on the occluding object itself.
show that it works even for lighting environments where t
cast shadow method fails while clarifying the stability issud
related to sampling resolution, and the selection of lighting

model. We also present an automatic framework for estimatibtgure 1: CG image rendered under estimated illumination
of near lighting by a depth identification, as well as thBY the proposed method. The illumination is represented by a
directional analysis of the illumination distribution, which waélistribution of near light sources.

not addressed in the cast shadow method. We prove the

effectiveness of our new method with experiments using real . _ . -
scenes so-called inverse lighting employ images containing a

reference object with known shape and reflectance properties,
and estimate the lighting environment by analyzing its shading
or highlights.

Lighting environment estimation is one of the most importarp@ecenﬂy, Sato et al. have introduced a method for
research topics in computer vision. If it is possible to derigyerse lighting [12], in which the lighting environment
the lighting information from an input image of a real scengs characterized by a distributed set of directional light
it enables us to superimpose virtual objects into the scegrces; their radiant intensities can kfceently estimated
with natural shading and shadows by controlling the Iightiqg), analyzing pixel values of shadows on a plane cast by an
effects in the generated or captured images accordingly (Fi%fﬁect of known shape. We refer to the methodttes cast

1). The applications of lighting environment estimation arghadow methoih this paper. As pointed out in [10], however,
widespread, such as object tracking, face recognition, VR agf\atural question to the method is whether a given input image
graphics. always provides dfticient information to robustly estimate the

For lighting environment estimation various methods, eithéjumination distribution. Namely, it is discussed that possible
direct or indirect, have been proposed. Pioneering wolkstability of estimation is due to factors such as what size
includes those of estimating illuminant directions in thBOrtions of shadows cast by an object can be observed in the
framework of shape from shading [7, 18]. In direct sensidQPUt image, and what_3|ze portions of the view of the camera
such as in [1, 11], images of the illuminant distribution ar@'® occluded by the object.

directly captured by a camera, and the lighting environmentyg enlarge the variety of images to which the method can be
estimated by analyzing the pixel values of the images. Amoggpjied, some fiicient strategies including the techniques of
indirect sensing approaches some exploit the occludifganging the sampling density of illumination distribution or
boundary that puts strong constraints on the light sourggtimal sampling of image pixels have also been introduced
directions using an object that has a (locally) Lambertigig]. pespite such advances, the above mentioned factors
surface [6, 16]. Some other indirect approaches [5, 15, 17, 18| remain open issues. This is the case especially when the

1 Introduction



proximity of light source is to be considered, i.e., the clossurface, we estimate the lighting environment based on the
a light source is to the occluding object, the larger portidiollowing premises.

of shadow s likely to be cast by the object, which Caus??mera: The camera that captures a shadow image including

such instability as previously dl_scus_sed. AIthoqgh afew recqhe reference object is calibrated so that we know the
advances [3, 9, 13, 2] allow estimation of near light source, itis, .. ; ) . . .

. . relationship of corresponding points in the scene and in the
still a challenging problem to solve for parameters of a complex )
o . image. (The skeleton cube can be conveniently used for
lighting environment. N

calibration as well).

In this paper, based on the promising framework of the ca@bordinate System: We define the origin of the world
shadow method, we propose thelf shadow methoieh which coordinate system at the bottom of the reference object in
the shadow surface is on the occluding object itself. Asich a way that each axis of it is aligned parallel to the side
a possible occluding object, we utilize a hollow cube witbf the skeleton cube. We locate the lighting environment and
specific shape, th8keleton Cubésee Figure 2) which allows cameras that capture images in the world coordinate system.
self shadows to occur in a consistent way. We then analyze the
pixel values of shading and self shadows on its inside surfaces

for estimating radiant intensities of distributed light sources. 2-1  Reéflectance Model

Comparing the cast shadow method and the self shad¥{g assume that the surface reflection of the reference object
method, we clarify the limitation of the former, and shovg described by the simplified Torrance-Sparrow model [4, 14]
why the latter works even for lighting environments that thwhich can represent bothfllise and specular reflection, and
former fails to estimate. Since self shadows are observedibigspecially describes the specular reflection with physical
the inside surface of the skeleton cube under light sourcesPERPerties. Itis in this sense more general than other models
almost any positions, in practice, it is convenient that we ha§éch as the Phong reflectance model [8]. In this paper,
only to examine its inside surfaces without worrying abolyYé presume the influence of inter-reflection is ignorable and
the observable size portions of shadows in the input imag@ncentrate our discussion on the first reflection.

Finally, we also present an automatic framework for estimatingith the simplified Torrance-Sparrow model, observed

analysis of the illumination distribution. as

In the remainder of the paper, Section 2 describes the 1(X) = (kaRa + KsRs)L £, )

framework for estimating illumination from shadows, angyhereL is the radiant intensity of light sourcg€. Ry and
Section 3 introduces the skeleton cube as a reference objgCtdenote the diuse and the specular component of a
for the self shadow method. We compare the cast shadgjirectional reflectance distribution function, respectively,
method and the new self shadow method in Section 4, anﬁereaskd and kS are the We|ght|ng cdicients of them.
show experimental results in Section 5. Section 6 concludggough 1(x) and L are functions with respect to the

the paper. wavelength, we utilize the functions at three wavelengths
for red, green and blue. For the sake of a simple description,
2 lllumination Estimation from Shadows we do not denote it explicitly in the following.

In this section, we describe the framework for estimatinggssuming the diuse component is represented as Lambertian,
illumination from shadows in a way that accommodates bote haveRy = N - L/r?, whereN, L, andr denote the surface
the cast shadow methodnd theself shadow method The orientation, the direction of light sourde, and the distance
lighting environment is approximated by a distribution of poirieetween light source and pointx, respectively. The specular
light sources so that the problem is attributed to solve fépmponentRs, is represented as

the radiant |nt¢ns_|ty pf e_ach of discretely sampled sources. 11 (oSN - H))?

Although the distribution is first assumed to be at an infinite Ri= 5 —— exp|-——=——| )
distance, we later take the distance into account. rEN-Vv 20

By convention, we utilize the following termsshadow image whereV, H, ando- denote the viewing direction, the half vector
the image with shadowsgference objectthe object of known of L andV, and the surface roughness, respectively.
size which casts shadows, astthdow surfacethe surface onto

The radiance of point on the shadow surface can be generall
which the reference object casts shadows. P g y

formulated as

Note that the shadow surface is typically the same plane on N

whiqh.the reference objectis placed in the cast'shadow method, 1(x) = Z M(X, £i) (kgRyg + KsRs)L 1., (3)
but it is the inner surface of the reference object such as the =

skeleton cube in the case of the self shadow method. Typical _ o )
reference object in the cast shadow method is rectangular sof€reN is the number of point light sources, and(x, £i) is

Observing the radiance at sample points that are on the shado@sk term that encodes the self shadow of the skeleton cube.
The mask termM(x, £;), is binary, indicating whether point



x is illuminated by light sourcelj or not, i.e. , M(x, £;) = 1 if
light sourceZ; illuminates pointx andM(x, £;) = 0 otherwise.

2.2 Computational Algorithm

When we sampleM points on the shadow surface for
observing the radiance, we have a matrix representation ba

on Equation (3) Pillar

I(x1) Kii Kz -+ Ky Le,
1(x2) Ka Kz -+ Ky Lz,
) = . : . N )
[(Xm) Kvi Km2 -+ Kun Ly
where Width of the Pillar
Kmn = M(Xm, £n) (KaRy + KsRs). %)
We then write Equation (4) simply as
I'=KL, (6) Figure 2: The skeleton cube. Sampling points are at the

where K = (Kny). Given a stficient number of surface lattice positions on the inside surface of the cube.
radiance samples (i.eM > N), it is in principle possible to

solve Equation (6) fok by the linear least squares method with

nonnegative variables,

1 ) ) 4 Comparisons of the Self Shadow Method and the Cast
min §||KL — 15 subjecttoL > 0. (7) Shadow Method
Namely, we can obtain the radiant intensities in vect@ur basic strategy for estimating illumination distribution in
[Leoblp Lo the 3D space is twofold, i.e., directional analysis and distance
identification. We first assume an illumination distribution
3 Reference Object in the Self Shadow Method on a hemisphere that has a certain radius, and estimate the

) ] ] radiant intensities of the light sources by solving Equation
In order to estimate the parameters of light sources in the s@j Then, by repeating the estimate of the radiant intensities

shadow method, we analyze self shadows of a reference objgffile decreasing the radius step-by-step, we can identify the
Given that we can utilize a reference object of known shape, Wgections along which the estimated radiant intensities remain
design the skeleton cube, a hollow cube which casts shad@ih at all the distances as those of major light sources in the
to its inside surface, as shown in Figure 2. The design is on &ne. Through this process, light sources with weak radiant

basis of the two requirements that are inconsistent to each othgbnsities such as reflections from the walls are regarded as
Namely, the shape should be simple while some complexity{s,pient lighting.

desirable:
In order to explicitly identify the light sources in the 3D space,
 Simplicity: Simple shape is suitable for the computationave also need to know the distances to them, for example from
costs. Then, a large portion of the surface should Blee center of the reference object, the origin of the world
observable in sampling the surface intensity. coordinate system. This is important especially when there
. are near light sources in the scene. For this purpose, we
* Complexity: The shape needs to be comple>§ to a certauy, investigate possible locations of the light sources on lines
extent so that self shadows occur under variable IIghtIr%ﬁ’ong the above estimated directions. In practice, we consider
conditions. distributions of light sources at a certain interval along the

We employ the skeleton cube as a reference object that satisltﬂ?eess di?g((:jti(t)rr]ﬁo\rll asr?;\ll;sigquztcl)?g t(h6&)1tf?:ryisaﬂgclec;glogjhr/e%sinw:he

the above requirements. That is, under light sources at almos : : L o X
» ) . R assumption of an illumination distribution on the hemisphere
any positions in a scene, it casts shadows on its inside surfaces o : :
: ; i%r describing the ambient light.
and the shadows can be observed from any viewpoints. Séee
also Appendix on how the self shadows are generated un#erally, we refine the estimates of light source distribution
light sources at various locations. by again solving Equation (6), but fdr that represents light

The skeleton cube can also be used as a reference objecf?urces which we assume in the vicinity of the once identified

of .. ;
geometric calibration of cameras, which is an ordinary metho%Catlons of light sources.

by matching corresponding points in a captured image and #ve now discuss the stability issues for each of the directional
model although we do not go into the details of the geometidnalysis and the distance identification while comparing the
calibration in this paper. self shadow method with the cast shadow method.



O Light source in stable direction . i o
Table 1: Average errors and standard deviations in estimating

. Light source in unstable direction the radiant intensities (See also Figure 4)
angle cast shadow self shadow
10-35 6.78e-07,9.67e-07 6.78e-07, 9.67e-07
20-55 2.88,5.59 9.5e-07, 1.14e-06
, 45-80 3.56, 6.88 7.25e-07, 1.03e-06
" ’ 10-80 2.42,3.90 1.16e-06, 1.13e-06
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Figure 3: One-dimensional sketch that shows directions of
light sources which can be stably estimated by the cast shadow
method.

4.1 Directional Analysis

The cast shadow method: In [10], several issues in the cast
shadow method are pointed out and some of them have been
alleviated. Possible instability of estimation is due to factors

such as what size portions of shadows cast by an object can be
observed in the input image, and what size portions of the vie§() _

of the camera are occluded by the object. T

However, an important related factor which has not yet been
discussed is that there may be light sources whose information
cannot be reflected in the sampling area of the shadow surfag€y pla ne
A simple one-dimensional sketch in Figure 3ffsies to

illustrate it. In the figure, although the four discretely sampqugure 4: Schematic for evaluating the directional analysis.

light sources on the top of the hemisphere cast shadows paglyr arcs are corresponding to the four rows in Table 1.
to the sampling area behind the occluding reference object, it

is not the case for the remaining eight sources at both sides.

For example, all the four sources that illuminate the scene from

the left side would cast shadow on the entire sampling ared - red by the two methods in terms of average errors
behind the object, and illuminate the front side in an equivaler?t y 9

. . . and standard deviations through simulations using such
way. It is therefore obvious that the analysis of the shado o S I .
. . ; o ... _Illumination distributions as sketched in Figure 3. The radiant
would not give precise estimates of the radiant intensities .0 " : .
ensities to be estimated are randomly set in a way that the

X in
those light sources. : .
average value is normalized to 1.0.

The seif shadow method: The self shadow method on able 1 shows the results in the cases of estimating four

the other hand allows those light sources at both sides to . o : .
. o ) . ) ifferent partial distributions of the light sources which are
identified thanks to multiple shadow surfaces witlffetient . . S

located at every five degrees as depicted in Figure 4. For

orientations which span the three dimensional space. As %?(%mple, the first row of the table (angle 10-35) corresponds

been clarified in [10], what matters to realize a stable soluti?n .
: . . e the case that all the light sources are above the angle at
is not the size of sampling area, but variations of observal%ﬁe

image brightnesses inside shadow surfaces which are deriyed border (angle 36.9). The cast shadow method as well as

9 gntne . . e self shadow method should provide stable estimates in this

Zg\r;rcl;mg'g?iﬁ:zgﬂ fﬁ;ﬁgw%?;tsh%ﬂﬁtsﬁozhﬁ f#:z?g: g;(%ﬁge, and the estimated intensities are in fact very close to the
inner shgdow surfaces of the skeleton cube tgnds to be sm tﬁ‘é‘? value with only very small errors. In the other three cases,

than the case of the cast shadow method ahowever, both average errors and the standard deviations by the
' cast shadow method are very large, which is natural according

Comparisons: To see the relevancy of the above discussioty the above analysis, whereas those by the self shadow method

we study how accurately the radiant intensities can be actuale kept small, reflecting its higher stability.
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Figure 5: A top view of the cast shadow method. Shadowkigure 6: A view of the self shadow method. Shadows cast by
cast by light sources in an identical direction but atférent the two light sources in an identical direction but aterent
distances are sketched. The circles are placed to highligiiistances are generated by CG. The circles are placed to
possible dfferences between the shadows. hlgh'lght diﬂ”erences between the self shadows.

5 Experiments
5.1 Performance Evaluation

4.2 Distance Identification We evaluate the performances of the self shadow method and
the cast shadow method for estimating near lighting in the

The cast shadow method: Figure 5 shows a tOp view of fo"owing Configura’[ion_ See also Figure 7.

the cast shadow method where shadows cast figrdnt light

sources are sketched on the top of each other. The light Camera: Dragonfly2 (Point Gray Research Inc.), 1024

sources are located in an identical direction but dffiedent x 768 pixels, color CCD (Captured images are shown in

distances. To be noted is that the variation between them Figure 8).

is relatively small (see the marked areas with circles) as the )

shadows are cast on a single planar surface. Thus, the chande Lighting Environment: Four candles are closely located

of successfully sampling varieties of brightnesses is quite low, O the reference objects (two of them on the right appear

which is intrinsic to the method and probably the reason why Merged as they are placed in tandem along the viewing

the notion of the distance has not so far been well discussed in diréction), and four florescent light tubes are on the

the framework. ceiling.

The self shadow method: ~ Figure 6 shows a configuration of ® Reference objects:

the self shadow method. Itis synthesized by CG using two light _ The cast shadow method: We place a black
sources that are located in an identical direction butfétidint rectangular solid (size: 5& 100 x 200 mm) on
distances. In the marked parts with the circles we can observe a white Lambertian planar surface from which we
shadows cast to the inner surfaces. Among those, the shadows sample the radiant intensities.

by the two light sources due to the adjacent occluding pillar
(marked with the smaller circle) are almost identical as was
the case with the cast shadow method. On the other hand, the
shadows due to the diagonal pillar (marked with the bottom-
right circle) is of importance in the presence of near light
sources because the variations are more significant, which
estimating the distances.

— The self shadow method: We employ the skeleton
cube (size: 10& 100x 100 mm with 10 mm pillar)
whose surface is nearly Lambertian and mutual
reflections between the pillars are ignorable.

hﬁI'Pe first experiment is for comparison; we estimate the lighting
environment by the cast shadow method that was proposed
Comparisons: As has been already discussed, the sdbir estimating directional light sources in [12]. We then
shadow method allows a higher chance for successfullpserve if any artifact is caused by applying the method to
sampling varieties of brightnesses. It is again due to the fdloe near lighting. Next, we apply the cast shadow method
that it has multiple shadow surfaces wittifdrent orientations, and the self shadow method, respectively to the scene with
and also that some shadows are cast from distant pillars, whigar light sources, and show how the new self shadow method
give rise to more variations of brightnesses in shadows. successfully estimates complex near lighting.



(a) Cast shadow method (b) Self shadow method

Figure 7: Configuration of experiments

Figure 9: Estimated distant lighting by the cast shadow
method. The vertices of the dome denote the directional
light sources, and the pseudo-colors of the dome indicates
the radiant intensities of the light sources with the color of
Figure 8: Captured images black-body radiation. The occluding object and the sampling
plane are placed in the center-bottom of the dome.

(a) Cast shadow method (b) Self shadow method

The cast shadow method with distant lighting model: We
model the distant lighting by a distribution of directional light
sources. They are directed towards the center from the vertic
of an upper hemisphere of the dodecahedron whose faces
recursively subdivided (1280-hedron, 301 vertices). Figure
shows the results of the estimations where the pseudo-color
the dome indicate the radiant intensities.

Some false radiant intensities appear close to the frontal frinye S ‘ o
of the hemisphere and they are caused by the lack of varietie&bfaptured intensities () Relghted et the
brightness in the shadows as discussed in Section 4.2. Figure

10 illustrates the captured intensities and the relit intensitig@ure 10: Qualitative evaluation of the cast shadow method

which are synthesized by using the estimated lighting. TG distant lighting. Green pixels denote the occluding
figure shows that the left-bottom bright region is not pmperbfbject and regions outside sampling area.

relit by the estimated distant lighting, and that a false cast
shadow appears in the left-top region behind the rectangular
block, which indicates that light sources that never exist in the
scene have been mistakenly estimated. The average errorgf self shadow method with near lighting model (the
pixel values are (0.21, 0.12, 0.07) in (R, G, B) values. proposed): Figure 12 illustrates the results of the directional
analysis which we carried out analogously as in the previous
two experiments. Unlike the cases with the cast shadow
method, the right-top light source is successfully estimated as
The cast shadow method with near lighting model: To well as the one in the left bottom. Figure 13 shows the resulting
estimate near lighting, we first need to find directions difght source distribution that is estimated by the directional and
primary light sources by the directional analysis. We utilize titeen the depth identification. The points with small circles
same polyhedron that is described for the previous experimeldse to the skeleton cube are the detected near light sources by
by considering the radius ranging from 1000 mm down to 2308e depth identification along to the detected directions. They
mm at a interval of 10 mm. Figure 11 illustrates the results oéflect the candles that are found in Figure 7b. Finally, Figure
the directional analysis. Figure 11b shows that the left-bottald compared the captured intensities and the relit intensities
light source is detected but the right-top light source is natsing the estimated lighting. The figure shows that the relit
Again, this can be regarded as caused by the issues whichimiensities of the skeleton cube are very close to those originally
explained in the previous sections, and shows tificdity in  captured. The average errors of the pixel values are (0.16, 0.10,
estimating near light sources. 0.08) in (R, G, B) values.



(a) Estimated radiant intensity (b) Detected direction of estimated
primary light sources

Figure 11: Detected directions of light sources by the
directional analysis by the cast shadow method. The pseud
colors of the dome in (a) indicate the radiant intensities of
the light sources with the color of black-body radiation. The
green vertices in (b) denote the directions of the detected ligl
sources.

Figure 13: Estimated distant lighting by the self shadow
method. The vertices of the dome denote the directional light
sources, and points inside the dome denote the near light
sources that are estimated by the distance identification. The
pseudo-colors of the dome and the points indicate the radiant
intensities of the light sources with the color of black-body
radiation. The skeleton cube is shown in the center-bottom of
the dome.

(a) Estimated radiant intensity (b) Detected direction of estimated
primary light sources

Figure 12: Detected directions of light sources by the

directional analysis with the self shadow method. The

pseudo-colors of the dome in (a) indicate the radiant

intensities of the light sources with the color of black-body o _ o
radiation. The green vertices in (b) denote the directions of?) Capturedintensites () E;Iﬁr;iﬂ '.?;E?ii';'es using the
the detected light sources.

Figure 14: Qualitative evaluation of the self shadow method
with near lighting. Green pixels denote outer surfaces that
are not for sampling.

5.2 CG Generation of Temporal Sequence

. . 6 Conclusions
By using a temporal image sequence of a scene we demonstrate

the dfectiveness of our method for estimating dynamic neslve have proposed theelf shadow methodor estimating
lighting that is described in Section 5.1. Figure 15 shows tileimination distributions of a real scene. It utilizes
captured image sequence which illustrates the time varyimariations of image brightnesses inside shadow surfaces
effect of the candles. Figure 16 shows a virtually generateflan occluding object itself. Through analytical comparisons
image sequence of a virtual skeleton cube that is illuminateathe conventional cast shadow method, we have shown why
by the estimated lighting environment. We can observe ththe self shadow method allows more stable estimation of
detailed shadows and the highlighted regions on the pillaisimination distributions, in particular in the presence of near
are appropriately synthesized since the complex illuminatitight sources. We have also demonstrated through experiments
is successfully estimated. Finally, in Figure 17, we show dhat it works dfectively with our twofold algorithm which
example of virtual illumination with an image sequence whictonsists of directional analysis and distance identification for
is rendered with a CG model under the estimated lightirggtimating dynamic light sources including their proximity,
environment. While the expression of flames is usualfiyailt which has been dicult in the previous related approach.
and requires relatively higher skills of modeling, we can easifor example, direct methods such as using a light probe or
obtain a distribution of positions and intensities of real flamesfish-eye lens rely on high dynamic range images. Since
from an image sequence. they require multiple images of a static scene captured with
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Figure 15: Captured image sequence. The images are captured at 15 frames per second.
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Figure 16: Generated image sequence of the skeleton cube with the estimated illumination distribution.

different levels of exposure or aperture, estimating the distar@mgorts, Science and Technology under the Leading Project,
of dynamic lighting is not an easy task for a method using“®evelopment of High Fidelity Digitization Software for
stereo pair of fish-eye lenses. Large-Scale and Intangible Cultural Assets”.

Although the skeleton cube has been employed for the initial _ - _
introduction of the self shadow method in this paper, othér Evaluating Capability of Self Shadow Generation of the
appropriate designs for reference objects may exist. The design Skeleton Cube

should highly #ects the accuracy of estimated light SOUrC§g ,ger to examine the occurrence of self shadows, we count

distribution. One of the keys to obtain an appropriate desigi, \,mper of sampling points on the inside surface of the
is to analyseM in matrix K which influences the stability of gy qjeton cube that are self occluded by other pillar of the

the estimation. Finally, a viewpoint from which we capture thgyow cube when viewed from each possible point light

object is also an important factor so that we observe a larggrce. we consider the space for the point light sources to be
variation of self shadows. placed, ranging from (-1500, -1500, 0) to (1500, 1500, 3000)
with (spacing 100).
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Figure 17: Generated image sequence of a dragon with the estimated illumination distribution. The model of a dragon is
distributed by the Stanford Computer Graphics Laboratory.

case almost all theM term in Equation (5) would equal to [4] K. Ikeuchi and K. Sato. Determining reflectance
1, and thus the estimation of radiant intensities might become properties of an object using range and brightness images.
unstable. Therefore, it is a desirable condition for the skeleton IEEE Transactions on Pattern Analysis and Machine
cube that it has self shadows to some extent wherever the point Intelligence 13(11):1139-1153, 1991.

light sources are placed arbitrarily.
g P Y [5] S.R. Marschner and D. P. Greenberg. Inverse lighting for

We ShOW some I’eSU|tS Of Vel’ification in Figure 18. The CO|0I’ Of photography_ |rF|fth C0|Or |mag|ng Conferencq)ages
each position on the planes in Figure 18 signifies the possible 262265, 1997.

number of self occlusion by a point light source that is placed

on that position of the place. The color denotes the numbei§] P. Nillius and J.-O. Eklundh. Automatic estimation of
i.e. red denotes a low, and blue denotes a high number. For the projected light source direction. IEEE Conference
the total number of sampling points, 5300, even the minimum on Computer Vision and Pattern Recognitismlume |,
number of occluded points was 704 (when viewed frdm, pages 1076-1083, 2001.

in Figure 18) whereas the maximum was 3540. This indicate

that the skeleton cube has self shadows of some good exteﬁzl
by point light sources at all the considered positions, which
is a suitable characteristic for a reference object as a probe of
lighting environment. 8]
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