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Abstract

This paper compares two methods for estimating illumination
distributions from shadows: methods using self shadows and
cast shadows.The cast shadow methodprovides an effective
framework for recovering illuminations in a real scene utilizing
variations of image brightnesses inside shadows cast by an
occluding object of known shape. The shadow surface is
typically the same plane on which the object is placed. A
new self shadow methodis proposed in this paper in which
the shadow surface is on the occluding object itself. We
show that it works even for lighting environments where the
cast shadow method fails while clarifying the stability issues
related to sampling resolution, and the selection of lighting
model. We also present an automatic framework for estimation
of near lighting by a depth identification, as well as the
directional analysis of the illumination distribution, which was
not addressed in the cast shadow method. We prove the
effectiveness of our new method with experiments using real
scenes.

1 Introduction

Lighting environment estimation is one of the most important
research topics in computer vision. If it is possible to derive
the lighting information from an input image of a real scene,
it enables us to superimpose virtual objects into the scene
with natural shading and shadows by controlling the lighting
effects in the generated or captured images accordingly (Figure
1). The applications of lighting environment estimation are
widespread, such as object tracking, face recognition, VR and
graphics.

For lighting environment estimation various methods, either
direct or indirect, have been proposed. Pioneering work
includes those of estimating illuminant directions in the
framework of shape from shading [7, 18]. In direct sensing
such as in [1, 11], images of the illuminant distribution are
directly captured by a camera, and the lighting environment is
estimated by analyzing the pixel values of the images. Among
indirect sensing approaches some exploit the occluding
boundary that puts strong constraints on the light source
directions using an object that has a (locally) Lambertian
surface [6, 16]. Some other indirect approaches [5, 15, 17, 19],

Figure 1: CG image rendered under estimated illumination
by the proposed method. The illumination is represented by a
distribution of near light sources.

so-called inverse lighting, employ images containing a
reference object with known shape and reflectance properties,
and estimate the lighting environment by analyzing its shading
or highlights.

Recently, Sato et al. have introduced a method for
inverse lighting [12], in which the lighting environment
is characterized by a distributed set of directional light
sources; their radiant intensities can be efficiently estimated
by analyzing pixel values of shadows on a plane cast by an
object of known shape. We refer to the method asthe cast
shadow methodin this paper. As pointed out in [10], however,
a natural question to the method is whether a given input image
always provides sufficient information to robustly estimate the
illumination distribution. Namely, it is discussed that possible
instability of estimation is due to factors such as what size
portions of shadows cast by an object can be observed in the
input image, and what size portions of the view of the camera
are occluded by the object.

To enlarge the variety of images to which the method can be
applied, some efficient strategies including the techniques of
changing the sampling density of illumination distribution or
optimal sampling of image pixels have also been introduced
[10]. Despite such advances, the above mentioned factors
still remain open issues. This is the case especially when the



proximity of light source is to be considered, i.e., the closer
a light source is to the occluding object, the larger portion
of shadow is likely to be cast by the object, which causes
such instability as previously discussed. Although a few recent
advances [3, 9, 13, 2] allow estimation of near light source, it is
still a challenging problem to solve for parameters of a complex
lighting environment.

In this paper, based on the promising framework of the cast
shadow method, we propose theself shadow methodin which
the shadow surface is on the occluding object itself. As
a possible occluding object, we utilize a hollow cube with
specific shape, theSkeleton Cube(see Figure 2) which allows
self shadows to occur in a consistent way. We then analyze the
pixel values of shading and self shadows on its inside surfaces
for estimating radiant intensities of distributed light sources.

Comparing the cast shadow method and the self shadow
method, we clarify the limitation of the former, and show
why the latter works even for lighting environments that the
former fails to estimate. Since self shadows are observed on
the inside surface of the skeleton cube under light sources at
almost any positions, in practice, it is convenient that we have
only to examine its inside surfaces without worrying about
the observable size portions of shadows in the input image.
Finally, we also present an automatic framework for estimating
near lighting by a depth identification, as well as directional
analysis of the illumination distribution.

In the remainder of the paper, Section 2 describes the
framework for estimating illumination from shadows, and
Section 3 introduces the skeleton cube as a reference object
for the self shadow method. We compare the cast shadow
method and the new self shadow method in Section 4, and
show experimental results in Section 5. Section 6 concludes
the paper.

2 Illumination Estimation from Shadows

In this section, we describe the framework for estimating
illumination from shadows in a way that accommodates both
the cast shadow methodand theself shadow method. The
lighting environment is approximated by a distribution of point
light sources so that the problem is attributed to solve for
the radiant intensity of each of discretely sampled sources.
Although the distribution is first assumed to be at an infinite
distance, we later take the distance into account.

By convention, we utilize the following terms –shadow image:
the image with shadows,reference object: the object of known
size which casts shadows, andshadow surface: the surface onto
which the reference object casts shadows.

Note that the shadow surface is typically the same plane on
which the reference object is placed in the cast shadow method,
but it is the inner surface of the reference object such as the
skeleton cube in the case of the self shadow method. Typical
reference object in the cast shadow method is rectangular solid.
Observing the radiance at sample points that are on the shadow

surface, we estimate the lighting environment based on the
following premises.

Camera: The camera that captures a shadow image including
the reference object is calibrated so that we know the
relationship of corresponding points in the scene and in the
image. (The skeleton cube can be conveniently used for
calibration as well).
Coordinate System: We define the origin of the world
coordinate system at the bottom of the reference object in
such a way that each axis of it is aligned parallel to the side
of the skeleton cube. We locate the lighting environment and
cameras that capture images in the world coordinate system.

2.1 Reflectance Model

We assume that the surface reflection of the reference object
is described by the simplified Torrance-Sparrow model [4, 14]
which can represent both diffuse and specular reflection, and
it especially describes the specular reflection with physical
properties. It is in this sense more general than other models
such as the Phong reflectance model [8]. In this paper,
we presume the influence of inter-reflection is ignorable and
concentrate our discussion on the first reflection.

With the simplified Torrance-Sparrow model, observed
radiance,I (x), at the minute area around pointx is described
as

I (x) = (kdRd + ksRs)LL, (1)

where L is the radiant intensity of light sourceL. Rd and
Rs denote the diffuse and the specular component of a
bidirectional reflectance distribution function, respectively,
whereaskd and ks are the weighting coefficients of them.
Though I (x) and L are functions with respect to the
wavelength, we utilize the functions at three wavelengths
for red, green and blue. For the sake of a simple description,
we do not denote it explicitly in the following.

Assuming the diffuse component is represented as Lambertian,
we haveRd = N · L/r2, whereN, L, andr denote the surface
orientation, the direction of light sourceL, and the distance
between light sourceL and pointx, respectively. The specular
component,Rs, is represented as

Rs =
1
r2

1
N · V exp

[
− (cos−1(N · H))2

2σ2

]
, (2)

whereV, H, andσ denote the viewing direction, the half vector
of L andV, and the surface roughness, respectively.

The radiance of pointx on the shadow surface can be generally
formulated as

I (x) =
N∑

i=1

M(x,Li) (kdRd + ksRs)LLi , (3)

whereN is the number of point light sources, andM(x,Li) is
a mask term that encodes the self shadow of the skeleton cube.
The mask term,M(x,Li), is binary, indicating whether point



x is illuminated by light sourceLi or not, i.e.,M(x,Li) = 1 if
light sourceLi illuminates pointx andM(x,Li) = 0 otherwise.

2.2 Computational Algorithm

When we sampleM points on the shadow surface for
observing the radiance, we have a matrix representation based
on Equation (3)

I (x1)
I (x2)
...

I (xM)

 =


K11 K12 · · · K1N

K21 K22 · · · K2N
...

...
. . .

...
KM1 KM2 · · · KMN




LL1

LL2

...
LLN

 , (4)

where
Kmn =M(xm,Ln) (kdRd + ksRs). (5)

We then write Equation (4) simply as

I = KL, (6)

where K = (Kmn). Given a sufficient number of surface
radiance samples (i.e.M ≫ N), it is in principle possible to
solve Equation (6) forL by the linear least squares method with
nonnegative variables,

min
L

1
2
∥KL − I ∥22 subject toL ≥ 0. (7)

Namely, we can obtain the radiant intensities in vector
[LL1, LL2, ..., LLN ]⊤.

3 Reference Object in the Self Shadow Method

In order to estimate the parameters of light sources in the self
shadow method, we analyze self shadows of a reference object.
Given that we can utilize a reference object of known shape, we
design the skeleton cube, a hollow cube which casts shadows
to its inside surface, as shown in Figure 2. The design is on the
basis of the two requirements that are inconsistent to each other.
Namely, the shape should be simple while some complexity is
desirable:

• Simplicity: Simple shape is suitable for the computational
costs. Then, a large portion of the surface should be
observable in sampling the surface intensity.

• Complexity: The shape needs to be complex to a certain
extent so that self shadows occur under variable lighting
conditions.

We employ the skeleton cube as a reference object that satisfies
the above requirements. That is, under light sources at almost
any positions in a scene, it casts shadows on its inside surfaces
and the shadows can be observed from any viewpoints. See
also Appendix on how the self shadows are generated under
light sources at various locations.

The skeleton cube can also be used as a reference object for
geometric calibration of cameras, which is an ordinary method
by matching corresponding points in a captured image and the
model although we do not go into the details of the geometric
calibration in this paper.

Sampling points

Pillar

Origin

Width of the Pillar

Figure 2: The skeleton cube. Sampling points are at the
lattice positions on the inside surface of the cube.

4 Comparisons of the Self Shadow Method and the Cast
Shadow Method

Our basic strategy for estimating illumination distribution in
the 3D space is twofold, i.e., directional analysis and distance
identification. We first assume an illumination distribution
on a hemisphere that has a certain radius, and estimate the
radiant intensities of the light sources by solving Equation
(6). Then, by repeating the estimate of the radiant intensities
while decreasing the radius step-by-step, we can identify the
directions along which the estimated radiant intensities remain
high at all the distances as those of major light sources in the
scene. Through this process, light sources with weak radiant
intensities such as reflections from the walls are regarded as
ambient lighting.

In order to explicitly identify the light sources in the 3D space,
we also need to know the distances to them, for example from
the center of the reference object, the origin of the world
coordinate system. This is important especially when there
are near light sources in the scene. For this purpose, we
can investigate possible locations of the light sources on lines
along the above estimated directions. In practice, we consider
distributions of light sources at a certain interval along the
lines and then solve Equation (6) forL, analogously as in
the directional analysis. Note that it is useful to retain the
assumption of an illumination distribution on the hemisphere
for describing the ambient light.

Finally, we refine the estimates of light source distribution
by again solving Equation (6), but forL that represents light
sources which we assume in the vicinity of the once identified
locations of light sources.

We now discuss the stability issues for each of the directional
analysis and the distance identification while comparing the
self shadow method with the cast shadow method.
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Figure 3: One-dimensional sketch that shows directions of
light sources which can be stably estimated by the cast shadow
method.

4.1 Directional Analysis

The cast shadow method: In [10], several issues in the cast
shadow method are pointed out and some of them have been
alleviated. Possible instability of estimation is due to factors
such as what size portions of shadows cast by an object can be
observed in the input image, and what size portions of the view
of the camera are occluded by the object.

However, an important related factor which has not yet been
discussed is that there may be light sources whose information
cannot be reflected in the sampling area of the shadow surface.
A simple one-dimensional sketch in Figure 3 suffices to
illustrate it. In the figure, although the four discretely sampled
light sources on the top of the hemisphere cast shadows partly
to the sampling area behind the occluding reference object, it
is not the case for the remaining eight sources at both sides.
For example, all the four sources that illuminate the scene from
the left side would cast shadow on the entire sampling area
behind the object, and illuminate the front side in an equivalent
way. It is therefore obvious that the analysis of the shadows
would not give precise estimates of the radiant intensities of
those light sources.

The self shadow method: The self shadow method on
the other hand allows those light sources at both sides to be
identified thanks to multiple shadow surfaces with different
orientations which span the three dimensional space. As has
been clarified in [10], what matters to realize a stable solution
is not the size of sampling area, but variations of observable
image brightnesses inside shadow surfaces which are derived
from combinations of different light sources. This supports the
advantage of the self shadow method although the area of the
inner shadow surfaces of the skeleton cube tends to be smaller
than the case of the cast shadow method.

Comparisons: To see the relevancy of the above discussion,
we study how accurately the radiant intensities can be actually

Table 1: Average errors and standard deviations in estimating
the radiant intensities (See also Figure 4)
angle cast shadow self shadow

10 – 35 6.78e-07, 9.67e-07 6.78e-07, 9.67e-07
20 – 55 2.88, 5.59 9.5e-07, 1.14e-06
45 – 80 3.56, 6.88 7.25e-07, 1.03e-06
10 – 80 2.42, 3.90 1.16e-06, 1.13e-06
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Figure 4: Schematic for evaluating the directional analysis.
Four arcs are corresponding to the four rows in Table 1.

recovered by the two methods in terms of average errors
and standard deviations through simulations using such
illumination distributions as sketched in Figure 3. The radiant
intensities to be estimated are randomly set in a way that the
average value is normalized to 1.0.

Table 1 shows the results in the cases of estimating four
different partial distributions of the light sources which are
located at every five degrees as depicted in Figure 4. For
example, the first row of the table (angle 10-35) corresponds
to the case that all the light sources are above the angle at
the border (angle 36.9). The cast shadow method as well as
the self shadow method should provide stable estimates in this
case, and the estimated intensities are in fact very close to the
true value with only very small errors. In the other three cases,
however, both average errors and the standard deviations by the
cast shadow method are very large, which is natural according
to the above analysis, whereas those by the self shadow method
are kept small, reflecting its higher stability.
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Figure 5: A top view of the cast shadow method. Shadows
cast by light sources in an identical direction but at different
distances are sketched. The circles are placed to highlight
possible differences between the shadows.

4.2 Distance Identification

The cast shadow method: Figure 5 shows a top view of
the cast shadow method where shadows cast by different light
sources are sketched on the top of each other. The light
sources are located in an identical direction but at different
distances. To be noted is that the variation between them
is relatively small (see the marked areas with circles) as the
shadows are cast on a single planar surface. Thus, the chance
of successfully sampling varieties of brightnesses is quite low,
which is intrinsic to the method and probably the reason why
the notion of the distance has not so far been well discussed in
the framework.

The self shadow method: Figure 6 shows a configuration of
the self shadow method. It is synthesized by CG using two light
sources that are located in an identical direction but at different
distances. In the marked parts with the circles we can observe
shadows cast to the inner surfaces. Among those, the shadows
by the two light sources due to the adjacent occluding pillar
(marked with the smaller circle) are almost identical as was
the case with the cast shadow method. On the other hand, the
shadows due to the diagonal pillar (marked with the bottom-
right circle) is of importance in the presence of near light
sources because the variations are more significant, which help
estimating the distances.

Comparisons: As has been already discussed, the self
shadow method allows a higher chance for successfully
sampling varieties of brightnesses. It is again due to the fact
that it has multiple shadow surfaces with different orientations,
and also that some shadows are cast from distant pillars, which
give rise to more variations of brightnesses in shadows.

Light sources

Shadowed region similar to 

the cast shadow method

Signi�cant di�erence 

appears in shadowed region

Figure 6: A view of the self shadow method. Shadows cast by
the two light sources in an identical direction but at different
distances are generated by CG. The circles are placed to
highlight differences between the self shadows.

5 Experiments

5.1 Performance Evaluation

We evaluate the performances of the self shadow method and
the cast shadow method for estimating near lighting in the
following configuration. See also Figure 7.

• Camera: Dragonfly2 (Point Gray Research Inc.), 1024
× 768 pixels, color CCD (Captured images are shown in
Figure 8).

• Lighting Environment: Four candles are closely located
to the reference objects (two of them on the right appear
merged as they are placed in tandem along the viewing
direction), and four florescent light tubes are on the
ceiling.

• Reference objects:

– The cast shadow method: We place a black
rectangular solid (size: 50× 100 × 200 mm) on
a white Lambertian planar surface from which we
sample the radiant intensities.

– The self shadow method: We employ the skeleton
cube (size: 100× 100× 100 mm with 10 mm pillar)
whose surface is nearly Lambertian and mutual
reflections between the pillars are ignorable.

The first experiment is for comparison; we estimate the lighting
environment by the cast shadow method that was proposed
for estimating directional light sources in [12]. We then
observe if any artifact is caused by applying the method to
the near lighting. Next, we apply the cast shadow method
and the self shadow method, respectively to the scene with
near light sources, and show how the new self shadow method
successfully estimates complex near lighting.



(a) Cast shadow method (b) Self shadow method

Figure 7: Configuration of experiments

(a) Cast shadow method (b) Self shadow method

Figure 8: Captured images

The cast shadow method with distant lighting model: We
model the distant lighting by a distribution of directional light
sources. They are directed towards the center from the vertices
of an upper hemisphere of the dodecahedron whose faces are
recursively subdivided (1280-hedron, 301 vertices). Figure 9
shows the results of the estimations where the pseudo-colors of
the dome indicate the radiant intensities.

Some false radiant intensities appear close to the frontal fringe
of the hemisphere and they are caused by the lack of varieties of
brightness in the shadows as discussed in Section 4.2. Figure
10 illustrates the captured intensities and the relit intensities
which are synthesized by using the estimated lighting. The
figure shows that the left-bottom bright region is not properly
relit by the estimated distant lighting, and that a false cast
shadow appears in the left-top region behind the rectangular
block, which indicates that light sources that never exist in the
scene have been mistakenly estimated. The average errors of
pixel values are (0.21, 0.12, 0.07) in (R, G, B) values.

The cast shadow method with near lighting model: To
estimate near lighting, we first need to find directions of
primary light sources by the directional analysis. We utilize the
same polyhedron that is described for the previous experiment
by considering the radius ranging from 1000 mm down to 250
mm at a interval of 10 mm. Figure 11 illustrates the results of
the directional analysis. Figure 11b shows that the left-bottom
light source is detected but the right-top light source is not.
Again, this can be regarded as caused by the issues which we
explained in the previous sections, and shows the difficulty in
estimating near light sources.

Figure 9: Estimated distant lighting by the cast shadow
method. The vertices of the dome denote the directional
light sources, and the pseudo-colors of the dome indicates
the radiant intensities of the light sources with the color of
black-body radiation. The occluding object and the sampling
plane are placed in the center-bottom of the dome.

(a) Captured intensities (b) Relighted intensities using the
estimated lighting

Figure 10: Qualitative evaluation of the cast shadow method
with distant lighting. Green pixels denote the occluding
object and regions outside sampling area.

The self shadow method with near lighting model (the
proposed): Figure 12 illustrates the results of the directional
analysis which we carried out analogously as in the previous
two experiments. Unlike the cases with the cast shadow
method, the right-top light source is successfully estimated as
well as the one in the left bottom. Figure 13 shows the resulting
light source distribution that is estimated by the directional and
then the depth identification. The points with small circles
close to the skeleton cube are the detected near light sources by
the depth identification along to the detected directions. They
reflect the candles that are found in Figure 7b. Finally, Figure
14 compared the captured intensities and the relit intensities
using the estimated lighting. The figure shows that the relit
intensities of the skeleton cube are very close to those originally
captured. The average errors of the pixel values are (0.16, 0.10,
0.08) in (R, G, B) values.



(a) Estimated radiant intensity (b) Detected direction of estimated
primary light sources

Figure 11: Detected directions of light sources by the
directional analysis by the cast shadow method. The pseudo-
colors of the dome in (a) indicate the radiant intensities of
the light sources with the color of black-body radiation. The
green vertices in (b) denote the directions of the detected light
sources.

(a) Estimated radiant intensity (b) Detected direction of estimated
primary light sources

Figure 12: Detected directions of light sources by the
directional analysis with the self shadow method. The
pseudo-colors of the dome in (a) indicate the radiant
intensities of the light sources with the color of black-body
radiation. The green vertices in (b) denote the directions of
the detected light sources.

5.2 CG Generation of Temporal Sequence

By using a temporal image sequence of a scene we demonstrate
the effectiveness of our method for estimating dynamic near
lighting that is described in Section 5.1. Figure 15 shows the
captured image sequence which illustrates the time varying
effect of the candles. Figure 16 shows a virtually generated
image sequence of a virtual skeleton cube that is illuminated
by the estimated lighting environment. We can observe that
detailed shadows and the highlighted regions on the pillars
are appropriately synthesized since the complex illumination
is successfully estimated. Finally, in Figure 17, we show an
example of virtual illumination with an image sequence which
is rendered with a CG model under the estimated lighting
environment. While the expression of flames is usually difficult
and requires relatively higher skills of modeling, we can easily
obtain a distribution of positions and intensities of real flames
from an image sequence.

Figure 13: Estimated distant lighting by the self shadow
method. The vertices of the dome denote the directional light
sources, and points inside the dome denote the near light
sources that are estimated by the distance identification. The
pseudo-colors of the dome and the points indicate the radiant
intensities of the light sources with the color of black-body
radiation. The skeleton cube is shown in the center-bottom of
the dome.

(a) Captured intensities (b) Relighted intensities using the
estimated lighting

Figure 14: Qualitative evaluation of the self shadow method
with near lighting. Green pixels denote outer surfaces that
are not for sampling.

6 Conclusions

We have proposed theself shadow methodfor estimating
illumination distributions of a real scene. It utilizes
variations of image brightnesses inside shadow surfaces
of an occluding object itself. Through analytical comparisons
to the conventional cast shadow method, we have shown why
the self shadow method allows more stable estimation of
illumination distributions, in particular in the presence of near
light sources. We have also demonstrated through experiments
that it works effectively with our twofold algorithm which
consists of directional analysis and distance identification for
estimating dynamic light sources including their proximity,
which has been difficult in the previous related approach.
For example, direct methods such as using a light probe or
a fish-eye lens rely on high dynamic range images. Since
they require multiple images of a static scene captured with



(a) # 0 (b) # 5 (c) # 10 (d) # 15 (e) # 20

(f) # 25 (g) # 30 (h) # 35 (i) # 40 (j) # 45

Figure 15: Captured image sequence. The images are captured at 15 frames per second.

(a) # 0 (b) # 5 (c) # 10 (d) # 15 (e) # 20

(f) # 25 (g) # 30 (h) # 35 (i) # 40 (j) # 45

Figure 16: Generated image sequence of the skeleton cube with the estimated illumination distribution.

different levels of exposure or aperture, estimating the distance
of dynamic lighting is not an easy task for a method using a
stereo pair of fish-eye lenses.

Although the skeleton cube has been employed for the initial
introduction of the self shadow method in this paper, other
appropriate designs for reference objects may exist. The design
should highly affects the accuracy of estimated light sources
distribution. One of the keys to obtain an appropriate design
is to analyseM in matrix K which influences the stability of
the estimation. Finally, a viewpoint from which we capture the
object is also an important factor so that we observe a large
variation of self shadows.
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A Evaluating Capability of Self Shadow Generation of the
Skeleton Cube

In order to examine the occurrence of self shadows, we count
the number of sampling points on the inside surface of the
skeleton cube that are self occluded by other pillar of the
hollow cube when viewed from each possible point light
source. We consider the space for the point light sources to be
placed, ranging from (-1500, -1500, 0) to (1500, 1500, 3000)
with (spacing 100).

When a certain sampling point is self occluded viewing from a
certain grid point, self shadow is cast on the point by a light
source on the grid point. Hence, it would be a problem if
there were only few points that are self occluded, since in that



(a) # 0 (b) # 5 (c) # 10 (d) # 15 (e) # 20

(f) # 25 (g) # 30 (h) # 35 (i) # 40 (j) # 45

Figure 17: Generated image sequence of a dragon with the estimated illumination distribution. The model of a dragon is
distributed by the Stanford Computer Graphics Laboratory.

case almost all theM term in Equation (5) would equal to
1, and thus the estimation of radiant intensities might become
unstable. Therefore, it is a desirable condition for the skeleton
cube that it has self shadows to some extent wherever the point
light sources are placed arbitrarily.

We show some results of verification in Figure 18. The color of
each position on the planes in Figure 18 signifies the possible
number of self occlusion by a point light source that is placed
on that position of the place. The color denotes the number,
i.e. red denotes a low, and blue denotes a high number. For
the total number of sampling points, 5300, even the minimum
number of occluded points was 704 (when viewed fromVmin

in Figure 18) whereas the maximum was 3540. This indicates
that the skeleton cube has self shadows of some good extent
by point light sources at all the considered positions, which
is a suitable characteristic for a reference object as a probe of
lighting environment.
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