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ABSTRACT 

 

This chapter presents a new formulation for the problem of human motion tracking in video. 

Tracking is still a challenging problem when strong appearance changes occur as in videos of 

humans in motion. Most trackers rely on a predefined template or on a training dataset to achieve 

detection and tracking. Therefore they are not efficient to track objects whose appearance is not 

known in advance. A solution is to use an online method that updates iteratively a subspace of 

reference target models. In addition, we propose to integrate color and motion cues in a particle 

filter framework to track human body parts. The algorithm process consists of two modes, 

switching between detection and tracking. The detection steps involve trained classifiers to 

update estimated positions of the tracking windows, whereas tracking steps rely on an adaptative 

color-based particle filter coupled with optical flow estimations. The Earth Mover distance is 

used to compare color models in a global fashion, and constraints on flow features avoid drifting 

effects. The proposed method has revealed its efficiency to track body parts in motion and can 

cope with full appearance changes. Experiments were performed on challenging real world 

videos with poorly textured models and non-linear motions. 

 

 

1. INTRODUCTION 

 

Human motion tracking is a common requirement for many real world applications, such as video 

surveillance, games, cultural and medical applications (e.g. for motion and behavior study). The 

literature has provided successful algorithms to detect and track objects of a predefined class in 

image streams or videos. Simple object can be detected and tracked using various image features 

such as color regions, edges, contours, or texture. On the other hand, complex objects such as 

human faces require more sophisticated features to handle the multiple possible instances of the 

object class. For this purpose, statistical methods are a good alternative. First, a statistical model 

(or classifier) learns different patterns related to the object of interest (e.g. different views of 

human faces), including good and bad samples. And then the system is able to estimate whether a 

region contains an object of interest or not. This kind of approach has become very popular. For 



example, the face detector of (Viola, & Jones, 2001) is well known for its efficiency. The main 

drawback is the dependence to prior knowledge on the object class. As the system is trained on a 

finite dataset, the detection is somehow constrained to it. As a matter of fact, most of the tracking 

methods were not designed to keep the track of an object whose appearance could strongly 

change. If there is no a priori knowledge on its multiple possible appearances, then the detection 

fails and the track is lost. Hence, tracking a head which turns completely, or tracking a hand in 

action remain challenging problems, as appearance changes occur quite frequently for human 

body parts in motion . 

We introduce a new formulation dedicated to the problem of appearance changes for object 

tracking in video. Our approach integrates color cues and motion cues to establish a robust 

tracking. As well, an online iterative process updates a subspace of reference templates so that the 

tracking system remains robust to occlusions. The method workflow contains two modes, 

switching between detection and tracking. The detection steps involve trained classifiers to 

update estimated positions of the tracking windows. In particular, we use the cascade of boosted 

classifiers of Haar-like features by (Viola, & Jones, 2001) to perform head detection. Other body 

parts can be either detected using this technique with ad-hoc training samples, or chosen by users 

at the initialization step, or as well can be deduced based on prior knowledge on human shape 

features and constraints. The tracking steps rely on an adaptative color-based particle filter (Isard, 

& Blake, 1998) coupled with optical flow estimations (Lucas, & Kanade, 1981; Tomasi, & 

Kanade, 1991). The Earth Mover distance (Rubner, Tomasi, & Guibas, 1998) has been chosen to 

compare color models due to its robustness to small color variations. Drift effects inherent to 

adaptative tracking methods are handled using optical flow estimations (motion features). 

Our experiments show the accuracy and robustness of the proposed method on challenging video 

sequences of human in motion. For example, videos of yoga performances (stretching exercises at 

various speed) with poorly textured models and non-linear motions were used for testing (cf. Fig. 

1). 
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Fig. 1. Body part tracking with color-based particle filter driven by optical flow. The 

proposed approach is robust to strong occlusion and full appearance change. Detected regions are 

denoted by red squares, and tracked regions by green squares. 

 

 



The rest of the chapter is organized as follows. The next section gives a recap of work related to 

the techniques presented in this chapter. Section 3 presents an overview of the algorithm 

(initialization step and workflow). Section 4 describes the tracking process based on our color-

based particle filter driven by optical flow. Section 5 presents experimental results. Section 6 

concludes with a discussion on our contributions.  

 

 

2. STATE OF THE ART 

 

In the last decade, acquisition devices have become even more accurate and accessible for non-

expert users. This has lead to a rapid growth of various imaging applications. In particular, the 

scientific community has shown a real interest to human body part detection and tracking. For 

example, face detection in images is nowadays a popular and well explored topic (Viola, & Jones, 

2001; Hjelmas, & Low, 2002; Choudhury, Schmid, & Mikolajczyk, 2003). In (Viola, & Jones, 

2001), the authors proposed a cascade of boosted tree classifiers of Haar-like features. The 

classifier is first trained on positive and negative samples, and then the detection is performed by 

sliding a search window through candidate images and checking whether a region contains an 

object of interest or not. The technique is known to be fast and efficient, and can be tuned to 

detect any kind of object class if the classifier is trained on good samples. 

Tracking in video is a popular field of research as well. Recognition from video is still 

challenging because frames are often of low quality, and details can be small (e.g. in video 

surveillance). Various approaches were proposed to track image features (Lucas, & Kanade, 

1981; Tomasi, & Kanade, 1991; Lowe, 2004; Lucena, Fuertes, & de la Blanca, 2004; Tola, 

Lepetit, & Fua, 2008). Lucas, Tomasi and Kanade first select the good features which are optimal 

for tracking, and then keep the tracks of these features in consecutive frames. The KLT feature 

tracker is often used for optical flow estimation to estimate the deformations between two frames. 

As a differential method, it assumes that the pixel intensity of objects is not significantly different 

between two frames. 

Techniques based on prediction and correction as Kalman filter, and more recently particle filters 

have become widely used (Isard, & Blake, 1998; Doucet, Godsill, & Andrieu, 2000; Perez, Hue, 

Vermaak, & Gangnet, 2002; Sugimoto, Yachi, & Matsuyama, 2003; Okuma, Taleghani, de 

Freitas, Kakade, Little, & Lowe, 2004; Dornaika, & Davoine, 2005; Wang, Chen, & Gao, 2005; 

Li, Ai, Yamashita, Lao, & Kawade, 2007; Ross, Lim, Lin, & Yang, 2007; Kim, Kumar, Pavlovic, 

& Rowley, 2008). Particle filters (or sequential Monte Carlo or Condensation) are Bayesian 

model estimation techniques based on simulation. The basic idea is to approximate a sequence of 

probability distributions using a large set of random samples (called particles). Then the particles 

are propagated through the frames based on importance sampling and resampling mechanisms. 

Usually, the particles converge rapidly to the distributions of interest. The algorithm allows 

robust tracking of objects in cluttered scene, and can handle non-linear motion models more 

complex than those commonly used in Kalman filters. The major differences between the 

different particle filter based approaches rely on the design of the sampling strategies, which 

make particles having higher probability mass in regions of interest. 

In (Black, & Jepson, 1998; Collins, Liu, & Leordeanu, 2005 ; Wang, Chen, & Gao, 2005; Ross, 

Lim, Lin, & Yang, 2007; Kim, Kumar, Pavlovic, & Rowley, 2008), linear dimension reduction 

methods (PCA, LDA) are used to extract feature vectors from the regions of interest. These 



approaches suit well for adaptative face tracking and can be formulated in the particle filtering 

framework as well. Nevertheless they require a big training data set to be efficient (Martinez, & 

Kak, 2001), and still cannot cope with unpredicted change of appearance. On the other hand, 

color-based models of regions can capture larger appearance variations (Bradski, 1998; 

Comaniciu, Ramesh, & Meeh, 2000). In (Perez, Hue, Vermaak, & Gangnet, 2002), the authors 

integrate a color-based model tracker (as in the Meanshift technique of Comaniciu, Ramesh, and 

Meeh) within a particle filter framework. The model uses color histograms in the HSV space and 

the Bhattacharyya distance for color distribution comparisons. Nevertheless these methods 

usually fail to track objects in motion or have an increasing drift on long video sequences due to 

strong appearance changes or important lighting variations (Matthews, Ishikawa, & Baker, 2004). 

Indeed most algorithms assume that the model of the target object does not change significantly 

over time. To adapt the model to appearance changes and lighting variations, subspace of the 

target object features are extracted (Collins, Liu, & Leordeanu, 2005; Wang, Chen, & Gao, 2005; 

Ross, Lim, Lin, & Yang, 2007; Kim, Kumar, Pavlovic, & Rowley, 2008). In (Ross, Lim, Lin, & 

Yang, 2007), a subspace of eigenvectors representing the target object is incrementally updated 

through the tracking process. Thus, offline learning step is not required and tracking of unknown 

objects is possible. Recently, (Kim, Kumar, Pavlovic, & Rowley, 2008) proposed to extend this 

approach with additional terms in the data likelihood definition. In particular, the drift error is 

handled using an additional dataset of images. However, these approaches are particularly tuned 

for face tracking, and still require training datasets for every different view of faces. 

 

The core of our approach divides into two steps which are detection and tracking, as (Sugimoto, 

Yachi, & Matsuyama, 2003; Li, Ai, Yamashita, Lao, & Kawade, 2007). Switching between the 

two modes allows to dynamically update the search window to an accurate position whenever the 

detection is positive. In this work, we propose to run a color-based particle filter to achieve the 

tracking process. Our tracker uses a subspace of color models of regions of interest extracted 

from the previous frames, and relies on them to estimate the position of the object in the current 

frame. The subspace is iteratively updated through the video sequence, and dynamically updated 

by the detection process. The detection is performed by a cascade of boosted classifiers (Viola, & 

Jones, 2001) and thus can be trained to detect any object class. We also propose to use the Earth 

Mover distance to improve the robustness of tracking with lighting variations, and constraints 

based on optical flow estimations to cope with drift effects. 

 

 

3. ALGORITHM OVERVIEW 

 

This section describes the algorithm workflow. The proposed approach combines two modes, 

switching between detection mode and tracking mode. The tracking process can be run 

independently if no detector is available for the class of the object of interest. Besides the tracking 

process, the detection improves the response accuracy online, and is used as well as initialization 

step. A subspace of color-based models is used to infer the object of interest location. 

 

 

3.1. Initialization 
 



The initialization step consists in defining the objects to track. In our framework, we focused on 

human body parts because of the wide rang of possible applications. Basically, there are three 

straightforward ways to define the regions of interest: 

 

1. Automatic: this can be achieved by a detection process using statistical machine learning 

method (e.g. the face detector of Viola and Jones). 

 

2. Manual: regions of interest are defined by the user (e.g. by picking regions in the first frame). 

This allows to track any body part without having any prior knowledge. 

 

3. Deduction: as the human body has self-constrained motions, its structure can be deduced using 

a priori knowledge and fuzzy rules. For example, a detected face gives some hints to deduce the 

torso position, etc. 

 

In some of our experiments (cf. Sect. 5), we have combined the three approaches (e.g. head is 

automatically detected, torso is deduced, and hands are picked). Afterwards, the regions of 

interest are used as reference templates on which the tracker relies on to process the next frames. 

 

 

3.2. Workflow 
 

 

 

Fig. 2. Algorithm workflow. If the detection process ty at time t is positive, then the algorithm 

response tz  and the subspace of color models tS  are updated with ty . If the detection fails, then 

tz  and tS  are updated by the tracking process tx . Note that tS  is used to infer the state tx . 

 

 

Assuming the initialization occurs at time 0t , then for every frame at 0>, ttt , the tracker 
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jh  denotes the color-model of iA  at time j , and k  is the size of the 

subspaces (which in fact can be different for every object). Assuming a Bayesian framework (cf. 

Sect. 4), the hidden state 
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tx  corresponding to the estimated position of iA  at time t  by the 

tracker, is inferred by 
i
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tx 1− . We denote by 
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iA  at time t , and 
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tz  the response of the algorithm. Thus, if the detection of iA  at t  is positive, 

then 
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t xz = . Indeed if the detection of iA  at t  is positive, then 
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tS 1+  will be 

updated with the color model corresponding to 
i

ty . And if not, then 
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tS 1+  will be updated with the 

color model corresponding to 
i

tx . The workflow is illustrated on Figure 2 with 1=M  and 1=k . 

 

  

 

4. PARTICLE FILTERING DRIVEN BY OPTICAL FLOW 

 

In this section we present our algorithm formulation based on color-based particle filtering (Isard, 

& Blake, 1998; Perez, Hue, Vermaak, & Gangnet, 2002] and optical flow estimations (Tomasi, & 

Kanade, 1991). We propose to use the Earth Mover Distance (Rubner, Tomasi, & Guibas, 1998) 

to compare color models, and extracted motion features to improve tracking accuracy. Moreover 

our method updates iteratively a subspace of template models to handle appearance changes and 

partial occlusions. 

 

4.1. Particle filtering 
 

We denote by tx  a target state at time t , tz  the observation data at time t , and },...,{= 1 tt zzZ  

all the observations up to time t . Assuming a non-Gaussian state space model, the prior 

probability )|( 1−tt Zxp  at time t  in a Markov process is defined as:  

 

 ,)|()|(=)|( 11111 −−−−− ∫ ttttttt dxZxpxxpZxp  (1) 

 

where )|( 1−tt xxp  is a state transition distribution, and )|( 11 −− tt Zxp  stands for a posterior 

probability at time 1−t . The posterior probability whose the tracking system aims to estimate at 

each time is defined as:  
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 where )|( tt xzp  is the data likelihood at time t . According to the particle filtering framework, 

the posterior )|( tt Zxp  is approximated by a Dirac measure on a finite set of P  particles 
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The sample set Pi
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K1=}{  can then be obtained by resampling Pi
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We denote by E , the overall energy function: dms EEEE ++= , where sE  is an energy related 

to color cues (cf. Sect. 4.2), mE  and dE  are energies related to motion features (cf. Sect. 4.4). E  

has lower values as the search window is close to the target object. Thus, to favor candidate 

regions whose color distribution is similar to the reference model at time t , the data likelihood 

)|( tt xzp  is modeled as a Gaussian function:  

 ,exp)~|(
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E
xzp

i

tt  (4) 

 where σ  is a scale factor, and therefore a small E  returns a large weight. 
 

 

4.2. Color-based model 
 

 

The efficiency of color distributions to track color content of regions that match a reference color 

model has been demonstrated in (Bradski, 2000; Comaniciu, Ramesh, & Meeh, 2000; Perez, Hue, 

Vermaak, & Gangnet, 2002]. They are represented by histograms to characterize the chromatic 

information of regions. Hence they are robust against non-rigidity and rotation. In addition, the 

Hue-Saturation-Value (HSV) color space has been chosen due to its low sensitivity to lighting 

condition. In our approach, color distributions are discretized into three histograms of hN , sN , 

and vN  bins for the hue, saturation, and value respectively. 

Let α  be h , s , or v , )(
3

1
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α

α∑ , and 
α

αα
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the kernel density estimate of the color distribution in the candidate region )( txR  of the state tx  

at time t , and is composed by:  
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where αK  is a normalization constant so that 1=),(
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N

i
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αα∑ , αh  is a function assigning the 

pixel color at location u  to the corresponding histogram bin, and δ  is the Kronecker delta 

function. 



At time t , )( tt xq  is compared to a set of reference color model templates },...,{= 1−− tktt hhS , 

where k  is the number of templates. The templates are extracted iteratively from the detected 

regions at each frame. We recall that color model subspaces help to handle appearance changes 

and partial occlusions, and we define the energy function:  
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where D  is a distance between color distributions (cf. Sect. 4.3). 

 

 

 

4.3 Earth Mover distance 
 

We propose to use the Earth Mover distance (EMD) (Hillier, & Lieberman, 1990; Rubner, 

Tomasi, & Guibas, 1998) to strengthen the property of invariance to lighting of the HSV color 

space. EMD allows to make global comparison of color distributions relying on a global 

optimization process. This method is more robust than approaches relying on histogram bin-to-

bin distances that are more sensitive to quantization and small color changes. The distributions 

are represented by sets of weighted features called signatures. The EMD is then defined as the 

minimal amount of work needed to match a signature to another one. The notion of work relies on 

a metric (e.g. a distance) between two features. In our framework we use the 1L  norm as distance, 

and histogram bins as features. 

Assuming two signatures to compare )},(),...,,{(= 11 mm wpwpP  and 

)},(),...,,{(= 11 nn uquqQ , P  having m  components ip  with weight iw , and Q  having n  

components jq  with weight ju . The global optimization process consists in finding the amount 

of data ijf  of a signature to be transported from the component i  to the component j  that 

minimizes the work W :  
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The first constraint allows only the displacements from P  to Q . The two following constraints 

bound the amount of data transported by P , and the amount of data received by Q  to their 

respective weights. The last constraint sets the maximal amount of data that can be displaced. 

The EMD distance D  between two signatures P  and Q  is then defined as:  
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where the normalization factor Ν ensures a good balance when comparing signatures of different 

size ( Ν is the smallest sum of the signature weights). Note that EMD computation can be 

approximated in linear time with guaranteed error bounds (Shirdhonkar, & Jacobs, 2008). 

 

 

4.4 Motion cues 
 
 

We propose to use motion features to guide the search window through the tracking process. 

Motion features are extracted using the KLT feature tracker (Lucas, & Kanade, 1981; Tomasi,  & 

Kanade, 1991). The method detects feature windows and matches the similar ones between 

consecutive frames (cf. Fig. 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Feature tracking. The tracking process is driven by motion features. Blue dots denote 

feature positions in the previous frame. Red lines show the estimated motion flows. 

 

 

Assuming the set mj

j

tt yY 1...=11 }{= −−  of m  motion features detected in the neighborhood region of 

the state 1−tx  (cf. Sect. 4) at time 1−t , and the set mj
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tt yY 1...=}{=  of matching features extracted 

at time t , then mj

j
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ttt yyYY 1...=11 )},{(=),( −−  forms a set of m  motion vectors (optical flow field) 

between the frames at time 1−t  and t . As well, we denote by 
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the neighborhood region of the particle 
i

tx~ , and ty~  the position of the search window estimated 



by optical flow as: )}({median=~
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ttt yyxy −+ −− . Thus we define the following energy 

functions:  
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where α  and β  are two constant values, and C  is the following function:  
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The data energy mE  aims to favor the particles located around the object target position 

estimated by optical flow, whereas dE  aims to prevent the drift effect. dE  works as a constraint 

which attracts the particles near the estimated search window (cf. Fig. 4). mE  and dE  are 

introduced in the overall energy formulation as described in Sect. 4.1. 
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Fig. 4. Motion cues. Motion cues are formulated in term of energy to minimize. (a) mE measures 

the distance between the estimated position 
i

tx~ by particles and the estimated position by optical 

flow ty~ . (b) dE maximizes the number of features detected in the previous frame. 

 

 

 

5. EXPERIMENTAL RESULTS 

 

Our algorithm has been tested on various real video sequences. For example, we have tracked the 

body parts of a lady practicing yoga (head, hands, torso, and feet) in different video sequences 

and from different viewpoints. The model wears simple clothes with no additional features (cf. 

Fig. 1 and Fig. 7). As well, we have tested the tracker on a model wearing traditional Japanese 

clothes which are more much complex and contain a lot of features (cf. Fig. 5). In this study case, 
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the video frame sizes are 640x480 and 720x576 pixels and were acquired at 25 fps. The algorithm 

was run on a Core2Duo 3.0 GHz with 4GB RAM. 

The following parameters were identical for all the experiments: we have used 10=hN , 

10=sN  and 10=vN  for the quantization of color models, 200=P  particles, 5=k  for 

the color model subspace size, and 0.1=2σ  as scale factor of the likelihood model. The 

constant values α  and β  weight the contribution of the motion cues, and are tuned 

regarding to the frame size. He have defined a square window size of 40 pixels to 

determine the regions of interest. The proposed formulation has shown promising results 

even in uncontrolled environments. The Figures 1 and 6 illustrate the robustness to 

appearance change, lighting variation and partial occlusion, thanks to the online update of 

the color-based model subspace combined with the Earth Mover distance and motion 

cues. For example, the system can track a head even if the face in no more visible (e.g. 

hidden by hair or due to changing viewpoint). Figure 5 illustrates an accurate tracking 

with free-drift effect of a hand with a varying background under the guidance of optical 

flow as motion cues. Figure 7 illustrates the robustness of our approach in comparison to 

a color-based particle filter (Condensation of Perez, Hue, Vermaak, and Gangnet) that 

does not include our features. We show that the Condensation mixes regions having the 

same color shape and distribution whereas our tracker is not confused by the similar 

regions. This is due in particular to the addition of motion cues. 
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Fig. 5. Using optical flow to improve tracking. The combination of color cues and motion cues 

allows to perform robust tracking and prevent drift effects. The tracking of hands is efficient even 

with a changing background. 

 

 

 

 

 

 

 

 

 

 

                 #1                                  #45                                #145                                #165 



 

Fig. 6. Tracking with appearance change. The proposed approach integrates motion cues and a 

subspace of color models which is updated online through the video sequence. The system can 

track objects in motion with appearance change. 
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(a) Condensation. 
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(a) Particle filter driven by optical flow. 

 



 
Fig. 7. Robust body part tracking. (a) Classical Condensation methods (Isard, & Blake, 1998; 

Perez, Hue, Vermaak, & Gangnet, 2002) are confused by regions with similar color and shape 

content. (b) In frame #20, both hands are almost included in a same tracking window, but 

afterwards motion cues have helped to discriminate the different tracks. 

 
6. CONCLUSION 

 

Human motion tracking in video is an attractive research field due to the numerous possible 

applications. The literature has provided powerful algorithms based on statistical methods 

especially dedicated to face detection and tracking. Nevertheless, it is still challenging to handle 

complex object classes such as human body parts whose appearance changes occur quite 

frequently while in motion. 

In this work, we propose to integrate color cues and motion cues in a tracking process relying on 

a particle filter framework. We have used the Earth Mover distance to compare color-based 

model distribution in the HSV color space in order to strengthen the invariance to lighting 

condition. Combined with an online iterative update of color-based model subspace, we have 

obtained robustness to partial occlusion. We have also proposed to integrate extracted motion 

features (optical flow) to handle strong appearance changes and prevent drift effect. In addition, 

our tracking process is run jointly with a detection process that dynamically updates the system 

response. Our new formulation has been tested on real videos, and results on different sequences 

were shown. For future work, we believe our approach can be easily extended to handle a online 

manifold learning process. This would improve both detection and tracking modes. 

 
 
REFERENCES 
 

Black, M., & Jepson, A. (1998). Eigentracking: Robust matching and tracking of articulated 

objects using a view-based representation. International Journal of Computer Vision, 26, 63–84. 

 

Bradski, G. (1998). Computer vision face tracking as a component of a perceptual user interface. 

In Workshop on Applications of Computer Vision. 214–219. 

 

Choudhury, R., Schmid, C., & Mikolajczyk, K. (2003). Face detection and tracking in a video by 

propagating detection probabilities. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 25(10), 1215-1228. 

 

Collins, R., Liu, Y., & Leordeanu, M. (2005), Online selection of discriminative tracking features. 

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10), 1631-1643. 

 

Comaniciu, D., Ramesh, V., & Meeh, P. (2000). Real-time tracking of non-rigid objects using 

mean shift. IEEE Conference on Computer Vision and Pattern Recognition, 2, 142–149. 

 

Dornaika, F., & Davoine, F. (2005). Simultaneous facial action tracking and expression 

recognition using a particle filter. IEEE International Conference on Computer Vision, 1733-

1738. 

 

Doucet, A., Godsill, S., & Andrieu, C. (2000). On sequential Monte Carlo sampling methods for 

bayesian filtering. Statistics and Computing, 10(3), 197–208. 

 



Hillier, F.S., & Lieberman, G.J. (1990). Introduction to mathematical programming. McGraw-

Hill. 

 

Hjelmas, E., & Low, B.K. (2002). Face detection: a survey. Computer Vision and Image 

Understanding, 83, 236–274. 

 

Isard, M., & Blake, A. (1998). Condensation - conditional density propagation for visual tracking.  

International Journal of Computer Vision, 29(1), 5–28. 

 

Kim, M., Kumar, S., Pavlovic, & V., Rowley, H. (2008). Face tracking and recognition with 

visual constraints in real-world videos. IEEE Conference on Computer Vision and Pattern 

Recognition. 

 

Li, Y., Ai, H., Yamashita, T., Lao, S., & Kawade, M. (2007). Tracking in low frame rate video: A 

cascade particle filter with discriminative observers of different lifespans. IEEE Conference on 

Computer Vision and Pattern Recognition. 

 

Lowe, D.G. (2004). Distinctive image features from scale-invariant keypoints. International 

Journal of Computer Vision , 60(2), 91–110. 

 

Lucas, B., & Kanade, T. (1981). An iterative image registration technique with an application to 

stereo vision. International Joint Conferences on Artificial Intelligence, 674–679. 

 

Lucena, M., Fuertes, J.M., & de la Blanca, N.P. (2004): Evaluation of three optical flow based 

observation models for tracking. International Conference on Pattern Recognition, 236–239. 

 

Martinez, A.M., & Kak, A.C. (2001): PCA versus LDA. IEEE Transactions on Pattern Analysis 

and Machine Intelligence, 23(2), 228–233. 

 

Matthews, I., Ishikawa, T., & Baker, S. (2004): The template update problem. IEEE Transactions 

on Pattern Analysis and Machine Intelligence, 26(6), 810–815. 

 

Okuma, K., Taleghani, A., de Freitas, N., Kakade, S., Little, J., & Lowe, D. (2004). A boosted 

particle filter: multitarget detection and tracking. European Conference on Computer Vision, 28–

39. 

 

Perez, P., Hue, C., Vermaak, J., & Gangnet, M. (2002). Color-based probabilistic tracking. 

European Conference on Computer Vision, 661–675. 

 

Ross, D., Lim, J., Lin, R., & Yang, M. (2008). Incremental learning for robust visual tracking. 

International Journal of Computer Vision, 77(1), 125-141. 

 

Rubner, Y., Tomasi, C., & Guibas, L.J. (1998). A metric for distributions with applications to 

image databases. IEEE International Conference on Computer Vision, 59–66. 

 

Shirdhonkar, S., & Jacobs, D.W. (2008). Approximate Earth mover’s distance in linear time. 

IEEE Conference on Computer Vision and Pattern Recognition. 

 

Sugimoto, A., Yachi, K., & Matsuyama, T. (2003). Tracking human heads based on interaction 

between hypotheses with certainty. The 13th Scandinavian Conference on Image Analysis. 

 



Tola, E., Lepetit, V., & Fua, P. (2008). A fast local descriptor for dense matching. IEEE 

Conference on Computer Vision and Pattern Recognition. 

 

Tomasi, C., & Kanade, T. (1991). Detection and tracking of point features. Technical Report 

CMU-CS-91-132, Carnegie Mellon University. 

 

Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. 

IEEE Conference on Computer Vision and Pattern Recognition, 511–518. 

 

Wang, J., Chen, X., & Gao, W. (2005). Online selecting discriminative tracking features using 

particle filter. IEEE Conference on Computer Vision and Pattern Recognition, 2, 1037-1042. 

 


