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Abstract

This paper presents a novel approach to achieve accurate

and complete multi-view reconstruction of dynamic scenes

(or 3D videos). 3D videos consist in sequences of 3D mod-

els in motion captured by a surrounding set of video cam-

eras. To date 3D videos are reconstructed using multi-

view wide baseline stereo (MVS) reconstruction techniques.

However it is still tedious to solve stereo correspondence

problems: reconstruction accuracy falls when stereo photo-

consistency is weak, and completeness is limited by self-

occlusions. Most MVS techniques were indeed designed

to deal with static objects in a controlled environment and

therefore cannot solve these issues. Hence we propose to

take advantage of the image content stability provided by

each single-view video to recover any surface regions visi-

ble by at least one camera. In particular we present an orig-

inal probabilistic framework to derive and predict the true

surface of models. We propose to fuse multi-view structure-

from-motion with robust 3D features obtained by MVS in

order to significantly improve reconstruction completeness

and accuracy. A min-cut problem where all exact features

serve as priors is solved in a final step to reconstruct the 3D

models. In addition, experimental results were conducted

on synthetic and challenging real world datasets to illus-

trate the robustness and accuracy of our method.

1. Introduction

Multiple view stereo reconstruction of dynamic scenes (or

3D video) is an imaging technique which consists in se-

quences of 3D models captured by a surrounding set of cali-

brated and synchronized video cameras [18, 21, 7, 5, 2, 27].

It produces free-viewpoint videos of one or several models

in motion in an immersive environment. The technology

requires no special equipment to wear such as a suit with

markers. As subjects are free to perform any actions, this

system fits to a very wide range of motion capture applica-

tions: cultural heritage preservation (e.g. traditional dance

Figure 1. Complete multi-view reconstruction. Stereo corre-

spondence is challenging if the number of input images N is

low. Left: Red dots represent 3D points with high stereo photo-

consistency. The region around the chest is not visible by many

cameras (N ≤ 3) and has low stereo photo-consistency. Right:

The true surface is recovered using temporal cues from narrow

baseline stereo.

recording), medicine, sports, entertainment, and so on.

To date, due to hardware arrangement, existing systems

have used multi-view wide baseline stereo (MVS) recon-

struction algorithms to produce 3D videos. Every frame is

reconstructed independently. Nevertheless to obtain very

accurate 3D models from stereo a high number of input

views are required. While the reconstruction of static ob-

jects returns very good results [24], in the 3D video frame-

work, only ten to twenty video cameras are usually avail-

able, frame resolution is low, and lighting is not controlled.

3D models of humans in action usually present poorly

photo-consistent and self-occluded regions which are chal-

lenging to reconstruct. Consequently, the 3D video recon-

struction process is still open to many problems concerning

accuracy and completeness. As a matter of fact, although

MVS provides accurate depths (with large triangulation an-

gles), it suffers from correspondence and occlusion issues

since viewpoints are mainly different or insufficient in some

respect. On the other hand, correspondences become easy

to estimate and occlusions are less frequent with narrow

baseline stereo since viewpoints are very similar [6, 15].



We propose to introduce temporal cues into 3D video

to overcome the limitations of MVS reconstruction. Nar-

row baseline stereo can provide dense reconstruction up to a

scale using structure-from-motion techniques (cf. Figure 1).

Thus we fuse 3D structures computed from multi-view op-

tical flows to robust 3D features computed fromMVS. Both

techniques are complementary since narrow baseline stereo

can find information where the wide baseline stereo cannot

(e.g. in regions visible by only one camera), and wide base-

line stereo helps to recover the scale factor of 3D structures.

The fusion is formulated in a novel Bayesian probabilistic

framework to estimate the true surface of models. Finally,

a min-cut problem is formulated and efficiently solved us-

ing graph-cuts. Furthermore experimental results were con-

ducted on synthetic and real data and focus on the recon-

struction of poorly textured regions where MVS reconstruc-

tion fails due to insufficient number of input images.

The rest of the paper is organized as follows. The next

section discusses work related to the techniques presented

in this paper. Section 3 presents the 3D feature extraction

from narrow and wide baseline stereo. Section 4 gives a de-

scription of the new probabilistic fusion scheme. Section 5

presents the min-cut formulation problem. Section 6 shows

experimental results. Section 7 concludes with a discussion

on our contributions.

2. Related work

Since a decade an increasing number of immersive stereo

capture systems have become available [18, 21, 7, 5, 2, 27]

(cf. Figure 2). To date, multi-view wide baseline stereo

(MVS) reconstruction techniques have been used to recon-

struct the 3D video frames (see [24] for a survey). Using

MVS implies indeed to cope with challenging stereo cor-

respondence problems. Due to the complexity of the 3D

video framework, reconstruction completeness is usually

poor. On the other hand, the models are reconstructed in-

dependently. Reconstruction errors are not propagated in

the whole sequence and topology of models can vary freely.

Several methods were proposed to obtain dense recon-

struction of non-rigid models with various constraints. For

example in [16] the reconstruction is performed from a sin-

gle camera with multispectral lighting, and in [10] models

are reconstructed from multiple video streams by tracking

3D features over time. These approaches return impressive

results but special clothes are necessary, and reconstructions

consist in a deforming surface with fixed topology for the

whole sequence.

Alternatively, many methods combining spatial and tem-

poral cues have been proposed in the literature. In [13],

the problem is formulated as a 3D weighted hypersur-

face embedded in space-time. The optimal model is ob-

tained by minimizing an energy functional following photo-

consistency criteria. Nevertheless the temporal constraint is

Figure 2. 3D video. Top: Multi-view reconstruction from 14 video

cameras. Bottom: Corresponding video frames. Stereo correspon-

dence is challenging as several regions can be occluded in many

views.

purely based on the geometric smoothness of the 4D surface

and does not employ temporal photo-consistency. In [33],

shape, motion and in particular 3D motion flows (i.e. scene

flows [32]) are computed simultaneously. The scene is rep-

resented at two consecutive time instants in a 6D space to

carve. The method relies on a time-space photo-consistency

computation to extract accurate 3D features. As well, [35]

computes shape and motion simultaneously based on photo-

metric constraints yet assuming rigid motions and no occlu-

sions. In the 3D video framework, it sounds natural to com-

bine spatial and temporal cues in order to reconstruct the

sequences. However a strong dependency to temporal cues

is somehow a consistency constraint which limits the sur-

face evolution over time. Consequently, applying MVS on

every frame independently is still the most robust approach

to handle topology changes and self-occlusions. In [31],

a super-resolution approach is proposed to increase the ac-

curacy of 3D video reconstruction. Although improvements

can be observed locally, this approach requires several cam-

eras to compute super-resolution, and therefore cannot im-

prove significantly the reconstruction completeness. Let us

mention that a wide range of papers aims to recover depth

maps from stereo arrangement using fusion of stereo with

motion (or X) [8, 36]. However the extension to complete

multi-view reconstruction is not straightforward since oc-

clusions have to be managed.

In this paper, we propose a probabilistic framework

to derive an adaptative ballooning term as [17] in or-

der to formulate a min-cut problem to recover 3D sur-

faces [3, 19, 30, 27, 34]. Using probabilistic approach al-

lows indeed to soften constraints and recover partially oc-

cluded views. In previous work, all existing probabilistic

frameworks were designed to recover visibility using stereo



photo-consistency criteria [1, 4, 28, 11, 12, 17, 22]. Hence

every region has to be seen by at least two views. However

this cannot be guaranteed in the 3D video framework and

leads to poor results. To our knowledge, we are the first

to propose a probabilistic fusion of multi-view structure-

from-motion with robust MVS features to reconstruct dy-

namic scenes (as most of previous work propose depth map

fusion). Our approach allows to recover surface regions vis-

ible by only one camera, and thus the completeness is sig-

nificantly improved.

3. Complete 3D feature recovery

Multi-view wide baseline stereo allows to accurately recon-

struct static 3D objects. In particular, very good results can

be obtained with a robust stereo photo-consistency crite-

rion [24]. Nevertheless the performance are limited in the

3D video framework due to the low number of cameras

(some regions are seen only by one camera), video frame

resolution, lighting variations and motion noise: dense cor-

respondence finding is very challenging. On the other hand,

image contents and lighting are consistent for consecutive

frames captured at video frame rate from single viewpoints.

Assuming piecewise rigidity, even the regions seen by only

one camera can be recovered using motion fields. Hence

reconstruction completeness can be significantly increased

by fusion of both narrow and wide baseline stereo features.

3.1. Features from narrow baseline stereo

Consecutive frames from single-view video contain lots of

similarities. Many correspondences can be found efficiently

using a feature-based tracker (e.g. KLT [26], SIFT [20],

DAISY [29]). Having sufficient pairs of corresponding

points in two images allows to recover the feature positions

in the 3D space (up to a scale factor) using structure-from-

motion techniques [14, 6, 15]. Nonetheless this result is

valid only under rigidity assumption. In our framework we

cope with human models in motion. We believe a rigidity

assumption is locally reasonable even with loose clothing

due to the acquisition frame rate (25fps). Hence we propose

to group optical flows into clusters based on the following

simple criteria: length, orientation and position. This can be

robustly achieved using normalized spectral clustering [25].

The correlation function ρi,j which serves to construct the

similarity matrix (and consequently a graph Laplacian ma-

trix) between the trajectory of two feature points i and j is

defined as:

ρ2
i,j = ωlD

2
l (i, j) + ωθD

2
θ(i, j) + ωpD

2
p(i, j), (1)

where Dl, Dθ, Dp are normalized distances for optical

flow length, angle and position respectively, and ωl = 0.7,
ωθ = 0.2, ωp = 0.1 are empirically determined weight-

ing factors. The number of clusters K is set to 30. If K is

Figure 3. Motion flow clusters. Here, 2941 motion features were

detected and grouped in 30 clusters. Spectral clustering is used

to cluster optical flows according to length, orientation and po-

sition. Piecewise rigidity can be assumed between consecutive

frames due to the video frame rate (25fps).

overestimated then the flow field will be overpartionned, but

without any impact on the quality of the reconstruction. 3D

structures are then recovered from every optical flow cluster

(cf. Figure 3)

3.2. Features from multiview wide baseline stereo

Robust stereo photo-consistent 3D features are extracted

from multiple view wide baseline images using an approach

inspired from [9]. However a more selective constraint has

been added to ensure uniqueness of features: a feature is

valid if and only if it has a high stereo photo-consistency

score and no other candidate exists on its epipolar line. Thus

we obtain a set of robust 3D features for every 3D video

frame (cf. Figure 4 Left).

4. Probabilistic fusion of features

We propose an original probabilistic fusion framework to

estimate the true surface of models. Our formulation in-

volves features computed by both narrow and wide base-

line stereo techniques (cf. Section 3). It can be expressed

as a maximum a posteriori Markov Random Field (MAP-

MRF) problem and solved using global optimization algo-

rithms [28, 30]. The posterior probability to maximize is:

p(Θ|Φ,Γ) ∝
∏

i

Ep(θi, φi)Eq(θi, γi)
∏

i

∏
j∈N (i)

V (θi, θj),

(2)

where Θ = {θi} denotes the 3D surface points at t (hid-

den parameters), Φ = {φi} represents the input images

at t (observed data), Γ = {γi} represents the structures

found from motion flows at t (observed data), Ep is the lo-

cal evidence for node i based on the robust stereo photo-

consistency score estimated at Θ from Φ, Eq is the local ev-

idence for node i being on the true surface, N(i) represents
the neighbors of node i, and V is a smoothness assumption.



Figure 4. Feature fusion. Robust 3D features are extracted by multi-view wide baseline stereo (cf. Left), and projected into image planes

where photo-consistency is strong (in cyan). If the 3D features fall into a region where motion features exist, then 3D structures can be

estimated with scale factors. Note that robust stereo fails to extract features on the chest whereas many single-view motion features are

detected.

Our probabilistic fusion scheme aims indeed to recover

the unknown scale factors Σ = {σi} of 3D structures Γ
from the estimated sparse features Φ∗ in order to obtain the

surface points Θ∗ belonging to the true surface:

Θ∗ = arg max
Θ

p(Θ|Φ,Γ) = arg max
Θ

∫
Σ

p(Φ,Σ,Φ∗,Γ)dΣ.

(3)

Σ is used as a set of discrete labels to represent the state of

each hidden variables. Thus the true surface points Θ∗ can

be expressed as Eq. 3, where the most probable values of

Θ have to be found, given the observed data Φ and Γ, and
marginalizing out Σ. The problem is solved using graph-

cuts as a trade-off of accuracy and speed (cf. Section 5).

4.1. Problem initialization

Let assume Qi = {(xj
i , σi)} is the set of points defined by

the 3D coordinates x
j
i and the scale factor σi, and let denote

S the (yet unknown) true surface to reconstruct at t, and V
the visual hull computed from the M image silhouettes at

t. Our algorithm starts by approximating S with V using a

best fit in the least-squares sense. Let σ0
i be the initial value

of σi at t0:

σ0
i = arg min

σi

∑
q∈Qi

(q − fV(q))2, (4)

where fV is a function that projects a 3D point onto the sur-

face V with respect to its corresponding image viewpoint.

The probability of a point x lying on V should reflect the

uncertainty on whether or not x belongs to S.
Let denote Φ∗ the set of sparse robust 3D features com-

puted at t by multi-view wide baseline stereo as described

in Section 3.2. In theory, ∀x ∈ Φ∗ : x ∈ S. Assuming a

reference image φr, and Pr ⊂ Φ∗ the set of features visi-

ble1 in φr, if there exists a subset P
j
r ⊂ Pr which projection

into φr lies in a 2D feature cluster envelope Cj (as defined

1The visibility can be derived from the visual hull.

in Section 3.1), then the 3D structures Qj derived from Cj

are scaled to fit P j
r in the least-squares sense:

σ0
j = arg min

σj

∑
q∈Qj

(q − P j
r )2, (5)

where Qj is the set of 3D points having the scale factor σj .

The probability of a point x lying near a robust 3D feature

should reflect how well x is close to the true surface S.

4.2. Feature probabilistic evidence

In this section we formulate the evidence Eq as an explicit

estimation of the probability that a 3D scene point lies on

the true surface S. It relies on the fact that the sparse 3D

features are assumed to lie on S, and therefore if their pro-

jections {pj} into the input images Φ coincide with ex-

tracted motion features {cj}, then the 3D structures {γj}
found from {cj} can be recovered with the right scale fac-

tors. In this case {γj} ∈ S. Thus we define the probability
evidence Eq as:

Eq = f(∆), (6)

∆ = min
p∈{pj},q∈{cj}

(‖p − q‖), (7)

where the function f ∈ [0, 1] satisfies the following proper-
ties:

1. if ∆ is small, {γj} is close to S, then f is high.

2. f decreases as ∆ increases and conversely.

The probabilistic evidence for a 3D point to lie on the true

surface is estimated for each structure set in every image.

In our experiments, f is defined as a Gaussian distribution

centered on the 3D surface and truncated in the inside part

of the object.



4.3. Feature fusion

Assuming a reference image φr and the 3D structures {γr}
found from motion features {cr} ∈ φr, let denote Er the

evidence for {γr} being on S, andR ⊂ V the surface region

where the set {cr} projects onto. Using the visual hull, we

derive the image views {φi}i6=r where R is visible, extract

the motion features {ci}i6=r ∈ {φi}i6=r falling into R, and

then apply the process described in Section 4.1 and 4.2 to

estimate the evidence {Ei}i6=r for the 3D structures {γi}i6=r

(found from {ci}i6=r) to be on S.
Finally, theN largest local evidences {Ei}i∈[1,N ] are ag-

gregated to obtain the evidence Eq for the points
⋃N

i=1{γi}
to be on S:

Eq =

N∏
i=1

Ei, (8)

where ∀i, Ei > Ei+1. Point sets having too low evidences

are discarded from the reconstruction process.

4.4. Temporal cues

Let denote p(Qt) the probability for Qt = {(xj
t , σt)} to be

surface points of the model reconstructed at t. According to

Bayes’ theorem, the posterior probability p(Qt+1) at t + 1
can be estimated using p(Qt) as prior probability:

p(Qt+1) =
p(Qt)Eq(Qt)

p(Qt)Eq(Qt) + (1 − p(Qt))
. (9)

Consequently, the probability for 3D pointsQt+1 to have

scale factor σt is estimated to p(Qt+1) at t + 1.

5. 3D shape reconstruction

Labeling cost from 3D feature observations. The prob-

abilistic evidence presented in Section 4 is used as an intel-

ligent ballooning term i(x) as introduced in [17]. However

as explained in Section 2, unlike all previous work involv-

ing a probabilistic framework, our formulation does not aim

to recover visibility using stereo photo-consistency criteria,

but rather estimate and predict true model surfaces from 3D

feature observations.

Min-cut problem formulation. The 3D model recon-

struction is defined as a minimization of a Markov Random

Field (MRF) energy. A volumetric graph-cut is formulated

where 3D features serve as priors [3]. We map 3D vox-

els in the scene as graph nodes, and set the weights of s-

and t-links of each node to i(x) while n-links store photo-

consistencies. 3D features Φ are embedded as definitely ob-

ject surface points as proposed in [30, 27]. Local constraints

are crucial to prevent shrinking of thin parts. This approach

is well known to converge to an accurate solution in a poly-

nomial time.

Figure 5. Synthetic 3D video with camera arrangement.

Figure 6. Multiple views of the synthetic model with texture.

Figure 7. 3D structure from narrow baseline stereo. 3D surfaces

(in cyan and magenta) in the concave region are estimated at t from

real and virtual camera views (in light blue and light red, and in

dark blue and dark red respectively).

6. Experimental results

To evaluate the performance of our approach, we have

tested our algorithm on synthetic and real 3D video

sequences. The same camera arrangement was used for all

datasets (cf. Figure 5). The framework consists in 14 XGA

video cameras located at ∼3m distance from the center of



(a) Ground truth. (b) Visual hull. (c) MVS [30, 27]. (d) Proposed.

Figure 8. 3D model reconstruction comparison. The colors indicate the distance to the ground truth surface (red is closer). The concavity

is not well recovered by (b) and (c), whereas (d) performs well. Distances are computed using [23].

the studio. Frame rate is 25fps. Computation time takes

10min to generate one model using an Intel Core2Duo

3.0GHz with 1cm voxel grid resolution.

Synthetic sequence. The size of the synthetic model is

1m×1m×1m. The ground truth is represented in Figure 5.

All multi-view frames of the model with texture are shown

in Figure 6. The synthetic model includes a highly concave

region which depth and geometry are difficult to recover

using classical multi-view wide baseline stereo techniques

(MVS). However using our probabilistic fusion scheme we

show that 3D structures from the concavity can be accu-

rately recovered. Figure 7 shows the 3D surface recovered

by temporal narrow baseline stereo from two successive

captures by two camera views. The model is represented

in gray at time t and is seen by the light blue and light red

cameras. The model in motion is represented in yellow at

t + 1. The equivalent motion (translation and rotation) can

be applied to the cameras at t: the dark blue and dark red

cameras denote the virtual positions of the real light blue

and light red cameras at t + 1 respectively. At time t, the

light blue and dark blue cameras estimate the 3D surface in

cyan, and the light red and dark red estimate the 3D surface

in magenta using the approach described in this paper. Fig-

ure 8 shows: (a) the ground truth, (b) the visual hull, (c) the

3D model estimated from wide baseline MVS [30, 27] and

(d) the 3D model estimated by the proposed method. As the

concave region is mostly seen by only one single viewpoint,

it cannot be completely reconstructed using wide baseline

MVS only (without temporal cues). In Figure 8, (c) and

(d) clearly show the improvement by our proposed method.

As well, quantitative evaluations were reported in Table 1.

Accuracy is the distance d (in cm) such that 90% of the re-

constructed surface is within d cm of the ground truth, and

completeness measures the percentage of the reconstructed

surface that are within 2 cm of the ground truth [24]. For

d = 2cm, the accuracy measure returns 56.77%, 83.26%

and 98.20% for visual hull, MVS [30, 27] and our proposed

method respectively. The probabilistic fusion of narrow and

wide baseline stereo features outperforms MVS on the syn-

thetic dataset.

Accuracy Completeness

Visual hull 7.73cm 80.20%

MVS [30, 27] 5.09cm 86.73%

Proposed 1.32cm 90.15%
Table 1. Reconstruction accuracy and completeness.

Real sequences. Two challenging real sequences illustrate

this paper. Both maiko sequence and capoeira sequence

contain difficult regions to recover due to insufficient visi-

bility from camera views and lack of texture (cf. Figure 1).

For example, the maiko dances slowly and has long sleeves

which often occlude her chest in many camera views. As

well, the capoeira performer moves his arms relatively fast

in front of his chest, and wears a plain blue T-shirt which

has no texture except from a logo. Nevertheless while wide

baseline MVS fails to find features, narrow baseline can re-

cover 3D structures from motion features thanks to image

content stability between consecutive frames from single-

view videos (cf. Figures 3, 4 and 11). Outlying optical

flows were filtered using RANSAC with a hypothesized in-

lier ratio of 70%. Figures 9 and 12 illustrate failed recon-

structions using [30, 27] against our results. In Figures 10

and 13 models are shown with close-ups on the chest re-

gion. Visual hulls contain phantom volumes due to silhou-

ette projection ambiguities (top row). Regions having weak

stereo photo-consistency are not well carved by MVS and

protrusions remain (middle row). Finally our method is able

to recover the self-occluded regions by estimating the true

surface position, and produce smooth surfaces where ren-

dered texture quality is clearly better than classic MVS re-



Figure 9. Left: MVS [30, 27]. Right: Proposed.

Figure 10. Reconstruction results. Top: Visual hull. Middle:

MVS [30, 27]. Bottom: Proposed.

Figure 11. Optical flow extraction between consecutive frames

can be achieved taking advantage of image content stability.

construction (bottom row). These results show that proba-

bilistic fusion of narrow and wide baseline stereo features

achieves accurate and complete dynamic 3D shape recon-

struction.

Figure 12. Left: MVS [30, 27]. Right: Proposed.

Figure 13. Reconstruction results. Top: Visual hull. Middle:

MVS [30, 27]. Bottom: Proposed.

7. Conclusion

Multi-view reconstruction of dynamic scenes (3D video)

faces many issues that cannot be solved with existing multi-

view stereo (MVS) reconstruction approaches. In the 3D

video framework, stereo correspondences are very chal-

lenging since sequences of 3D models in motion are cap-

tured by a lower number of cameras, frame resolution is

lower, lighting is subject to variations, occlusions occur fre-

quently, and motion noise induces inaccurate matching.

In this paper, we present a novel method to achieve

accurate and complete multi-view reconstruction of dy-

namic scenes. Our approach consists in the probabilistic

fusion of narrow and wide baseline stereo features to re-



cover data where classical MVS reconstruction techniques

fail. In particular, our method allows to recover partially

occluded regions seen by only one camera (whereas previ-

ous work requires at least two or more input images). Thus

the reconstruction completeness is consequently improved.

The true surface of models are estimated using a proba-

bilistic scheme involving 3D features having robust photo-

consistency and 3D structure-from-motion derived from

single views. Consecutive frames from single-view cam-

eras show indeed sufficient consistency to take advantage

of temporal cues such as motion features. Hence we can

estimate and predict locally true surfaces using Bayesian

inference. Finally, a global optimization of min-cut prob-

lem is solved using graph-cuts in order to reconstruct the

complete 3D model sequences.

To our knowledge, our formulation is novel, and to date

no existing method can solve the 3D video correspondence

issues we pointed out. The performance of our approach

is demonstrated on both synthetic and complex real world

data.
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